Skip to main content

Advertisement

Log in

Reproductive Hormones and Bone

  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Hypothalamic gonadotropin-releasing hormone (GnRH) stimulates secretion of pituitary luteinizing hormone (LH) and follicle-stimulating hormone (FSH), which directly regulate ovarian function. Pituitary FSH can modulate osteoclast development, and thereby influence bone turnover. Pituitary oxytocin and prolactin effects on the skeleton are not merely limited to pregnancy and lactation; oxytocin stimulates osteoblastogenesis and bone formation, whereas prolactin exerts skeletal effects in an age-dependent manner. Cyclic levels of inhibins and estrogen suppress FSH and LH, respectively, and also suppress bone turnover via their suppressive effects on osteoblast and osteoclast differentiation. However, continuous exposure to inhibins or estrogen/androgens is anabolic for the skeleton in intact animals and protects against gonadectomy-induced bone loss. Alterations of one hormone in the hypothalamic-pituitary-gonadal (HPG) axis influence other bone-active hormones in the entire feedback loop in the axis. Thus, we propose that the action of the HPG axis should be extended to include its combined effects on the skeleton, thus creating the HPG skeletal (HPGS) axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Manolagas SC, Kousteni S, Jilka RL: Sex steroids and bone. Recent Prog Horm Res 2002, 57:385–409.

    Article  PubMed  CAS  Google Scholar 

  2. Riggs BL: Endocrine causes of age-related bone loss and osteoporosis. Novartis Found Symp 2002, 242:247–259.

    Article  PubMed  CAS  Google Scholar 

  3. Burger HG, Dudley EC, Robertson DM, Dennerstein L: Hormonal changes in the menopause transition. Recent Prog Horm Res 2002, 57:257–275.

    Article  PubMed  CAS  Google Scholar 

  4. Anawalt BD, Merriam GR: Neuroendocrine aging in men. Andropause and somatopause. Endocrinol Metab Clin North Am 2001, 30:647–669.

    Article  PubMed  CAS  Google Scholar 

  5. Melton LJ III, Khosla S, Malkasian GD, et al.: Fracture risk after bilateral oophorectomy in elderly women. J Bone Miner Res 2003, 18:900–905.

    Article  PubMed  Google Scholar 

  6. Manolagas SC: Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 2000, 21:115–137.

    Article  PubMed  CAS  Google Scholar 

  7. Rodan GA, Martin TJ: Role of osteoblasts in hormonal control of bone resorption—a hypothesis. Calcif Tissue Int 1982, 34:311.

    Article  PubMed  CAS  Google Scholar 

  8. Martin TJ, Sims NA: Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol Med 2005, 11:76–81.

    Article  PubMed  CAS  Google Scholar 

  9. •• Riggs BL, Melton LJ, Robb RA, et al.: A population-based assessment of rates of bone loss at multiple skeletal sites: evidence for substantial trabecular bone loss in young adult women and men. J Bone Miner Res 2008, 23:205–214. Using quantitative CT, this longitudinal, population-based assessment of rates of bone loss over life at the distal radius, distal tibia, and lumbar spine demonstrated that cortical bone loss began in perimenopause in women and later in life in men, whereas trabecular bone loss began in young adulthood in both sexes. The early-onset, substantial trabecular bone loss in both sexes during sex steroid sufficiency was unexplained by changes in LH, FSH, sex hormone–binding globulin, or sex steroids, and indicates that current paradigms on the pathogenesis of osteoporosis are incomplete.

  10. Riggs BL, Khosla S, Melton LJ III: Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 2002, 23:279–302.

    Article  PubMed  CAS  Google Scholar 

  11. Clarke BL, Khosla S: Androgens and bone. Steroids 2009, 74:296–305.

    Article  PubMed  CAS  Google Scholar 

  12. Khosla S, Bilezikian JP: The role of estrogens in men and androgens in women. Endocrinol Metab Clin North Am 2003, 32:195–218.

    Article  PubMed  CAS  Google Scholar 

  13. MacNamara P, O’Shaughnessy C, Manduca P, Loughrey HC: Progesterone receptors are expressed in human osteoblast-like cell lines and in primary human osteoblast cultures. Calcif Tissue Int 1995, 57:436–441.

    Article  PubMed  CAS  Google Scholar 

  14. Luo XH, Liao EY, Su X: Progesterone upregulates TGF-b isoforms (b1, b2, and b3) expression in normal human osteoblast-like cells. Calcif Tissue Int 2002, 71:329–334.

    Article  PubMed  CAS  Google Scholar 

  15. Chappell PE, Lydon JP, Conneely OM, et al.: Endocrine defects in mice carrying a null mutation for the progesterone receptor gene. Endocrinology 1997, 138:4147–4152.

    Article  PubMed  CAS  Google Scholar 

  16. • Gao J, Tiwari-Pandey R, Samadfam R, et al.: Altered ovarian function affects skeletal homeostasis independent of the action of follicle-stimulating hormone. Endocrinology 2007, 148:2613–2621. This study demonstrated that the sustained bone mass in FSH- and FSH receptor-deficient mice is due to changes in other aspects of the HPG axis (higher levels of androgens and non-ovarian aromatase), rather than the direct effects of FSH.

  17. • Perrien DS, Akel NS, Edwards PK, et al.: Inhibin A is an endocrine stimulator of bone mass and strength. Endocrinology 2007, 148:1654–1665. This manuscript provides the first demonstration that inhibins exert potent anabolic effects on the skeleton, and that inhibin A is protective against gonadectomy-induced bone loss.

  18. Bilezikjian LM, Blount AL, Donaldson CJ, Vale WW: Pituitary actions of ligands of the TGF-beta family: activins and inhibins. Reproduction 2006, 132:207–215.

    Article  PubMed  CAS  Google Scholar 

  19. Cook RW, Thompson TB, Jardetzky TS, Woodruff TK: Molecular biology of inhibin action. Semin Reprod Med 2004, 22:269–276.

    Article  PubMed  CAS  Google Scholar 

  20. Nicks KM, Perrien DS, Akel NS, et al.: Regulation of osteoblastogenesis and osteoclastogenesis by the other reproductive hormones, Activin and Inhibin. Mol Cell Endocrinol 2009, 310:11–20.

    Article  PubMed  CAS  Google Scholar 

  21. Gaddy-Kurten D, Coker JK, Abe E, et al.: Inhibin suppresses and activin stimulates osteoblastogenesis and osteoclastogenesis in murine bone marrow cultures. Endocrinology 2002, 143:74–83.

    Article  PubMed  CAS  Google Scholar 

  22. Perrien DS, Achenbach SJ, Bledsoe SE, et al.: Bone turnover across the menopause transition: correlations with inhibins and follicle-stimulating hormone. J Clin Endocrinol Metab 2006, 91:1848–1854.

    Article  PubMed  CAS  Google Scholar 

  23. Burger HG: The endocrinology of the menopause. J Steroid Biochem Mol Biol 1999, 69:31–35.

    Article  PubMed  CAS  Google Scholar 

  24. Muttukrishna S, Child T, Lockwood GM, et al.: Serum concentrations of dimeric inhibins, activin A, gonadotrophins and ovarian steroids during the menstrual cycle in older women. Hum Reprod 2000, 15:549–556.

    Article  PubMed  CAS  Google Scholar 

  25. Klein NA, Soules MR: Endocrine changes of the perimenopause. Clin Obstet Gynecol 1998, 41:912–920.

    Article  PubMed  CAS  Google Scholar 

  26. Vural F, Vural B, Yucesoy I, Badur S: Ovarian aging and bone metabolism in menstruating women aged 35–50 years. Maturitas 2005, 52:147–153.

    Article  PubMed  CAS  Google Scholar 

  27. Klein NA, Battaglia DE, Fujimoto VY, et al.: Reproductive aging: accelerated ovarian follicular development associated with a monotropic follicle-stimulating hormone rise in normal older women. J Clin Endocrinol Metab 1996, 81:1038–1045.

    Article  PubMed  CAS  Google Scholar 

  28. Welt CK, McNicholl DJ, Taylor AE, Hall JE: Female reproductive aging is marked by decreased secretion of dimeric inhibin. J Clin Endocrinol Metab 1999, 84:105–111.

    Article  PubMed  CAS  Google Scholar 

  29. Ebeling PR, Atley LM, Guthrie JR, et al.: Bone turnover markers and bone density across the menopausal transition. J Clin Endocrinol Metab 1996, 81:3366–3371.

    Article  PubMed  CAS  Google Scholar 

  30. Sowers MR, Finkelstein JS, Ettinger B, et al.: The association of endogenous hormone concentrations and bone mineral density measures in pre- and perimenopausal women of four ethnic groups: SWAN. Osteoporos Int 2003, 14:44–52.

    Article  PubMed  CAS  Google Scholar 

  31. Sowers MR, Greendale GA, Bondarenko I, et al.: Endogenous hormones and bone turnover markers in pre- and perimenopausal women: SWAN. Osteoporos Int 2003, 14:191–197.

    Article  PubMed  CAS  Google Scholar 

  32. Locklin RM, Khosla S, Turner RT, Biggs BL: Mediators of the biphasic responses of bone to intermittent and continuously administered parathyroid hormone. J Cell Biochem 2003, 89:180–190.

    Article  PubMed  CAS  Google Scholar 

  33. Sun L, Peng Y, Sharrow AC, et al.: FSH directly regulates bone mass. Cell 2006, 125:247–260.

    Article  PubMed  CAS  Google Scholar 

  34. Danilovich N, Babu PS, Xing W, et al.: Estrogen deficiency, obesity, and skeletal abnormalities in follicle-stimulating hormone receptor knockout (FORKO) female mice. Endocrinology 2000, 141:4295–4308.

    Article  PubMed  CAS  Google Scholar 

  35. Sjogren K, Lagerquist M, Moverare-Skrtic S, et al.: Elevated aromatase expression in osteoblasts leads to increased bone mass without systemic adverse effects. J Bone Miner Res 2009, 24:1263–1270.

    Article  PubMed  Google Scholar 

  36. Hernandez JL, Garces CM, Sumillera M, et al.: Aromatase expression in osteoarthritic and osteoporotic bone. Arthritis Rheum 2008, 58:1696–1700.

    Article  PubMed  CAS  Google Scholar 

  37. Martin TJ, Gaddy D: Bone loss goes beyond estrogen. Nat Med 2006, 12:612–613.

    Article  PubMed  CAS  Google Scholar 

  38. Baron R: FSH versus estrogen: who’s guilty of breaking bones? Cell Metab 2006, 3:302–305.

    Article  PubMed  CAS  Google Scholar 

  39. Ritter V, Thuering B, Saint Mezard P, et al.: Follicle-stimulating hormone does not impact male bone mass in vivo or human male osteoclasts in vitro. Calcif Tissue Int 2008, 82:383–391.

    Article  PubMed  CAS  Google Scholar 

  40. Sanyal A, Hoey KA, Modder UI, et al.: Regulation of bone turnover by sex steroids in men. J Bone Miner Res 2008, 23:705–714.

    Article  PubMed  CAS  Google Scholar 

  41. Nishimori K, Young LJ, Guo Q, et al.: Oxytocin is required for nursing but is not essential for parturition or reproductive behavior. Proc Natl Acad Sci U S A 1996, 93:11699–11704.

    Article  PubMed  CAS  Google Scholar 

  42. Copland JA, Ives KL, Simmons DJ, Soloff MS: Functional oxytocin receptors discovered in human osteoblasts. Endocrinology 1999, 140:4371–4374.

    Article  PubMed  CAS  Google Scholar 

  43. • Elabd C, Basillais A, Beaupied H, et al.: Oxytocin controls differentiation of human mesenchymal stem cells and reverses osteoporosis. Stem Cells 2008, 26:2399–2307. This study demonstrated that subcutaneous oxytocin injection reverses bone loss in OVX mice and reduces marrow adiposity. It also provided clinical data that plasma oxytocin levels are significantly lower in postmenopausal women developing osteoporosis than in their healthy counterparts.

  44. Tamma R, Colaianni G, Zhu LL, et al.: Oxytocin is an anabolic bone hormone. Proc Natl Acad Sci U S A 2009, 106:7149–7154.

    Article  PubMed  Google Scholar 

  45. Colucci S, Colaianni G, Mori G, et al.: Human osteoclasts express oxytocin receptor. Biochem Biophys Res Commun 2002, 297:442–445.

    Article  PubMed  CAS  Google Scholar 

  46. Elabd SK, Sabry I, Hassan WB, et al.: Possible neuroendocrine role for oxytocin in bone remodeling. Endocr Regul 2007, 41:131–141.

    PubMed  CAS  Google Scholar 

  47. Clement-Lacroix P, Ormandy C, Lepescheux L, et al.: Osteoblasts are a new target for prolactin: analysis of bone formation in prolactin receptor knockout mice. Endocrinology 1999, 140:96–105.

    Article  PubMed  CAS  Google Scholar 

  48. Seriwatanachai D, Krishnamra N, van Leeuwen JP: Evidence for direct effects of prolactin on human osteoblasts: inhibition of cell growth and mineralization. J Cell Biochem 2009, 107:677–685.

    Article  PubMed  CAS  Google Scholar 

  49. Krishnamra N, Seemoung J: Effects of acute and long-term administration of prolactin on bone 45Ca uptake, calcium deposit, and calcium resorption in weaned, young, and mature rats. Can J Physiol Pharmacol 1996, 74:1157–1165.

    Article  PubMed  CAS  Google Scholar 

  50. • Seriwatanachai D, Thongchote K, Charoenphandhu N, et al.: Prolactin directly enhances bone turnover by raising osteoblast-expressed receptor activator of nuclear factor kappaB ligand/osteoprotegerin ratio. Bone 2008, 42:535–546. These findings demonstrate the molecular mechanisms mediating the direct effects of prolactin on coupling, via enhancement of the RANKL/OPG ratio, thereby favoring increased osteoclastogenesis and bone resorption.

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana Gaddy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicks, K.M., Fowler, T.W. & Gaddy, D. Reproductive Hormones and Bone. Curr Osteoporos Rep 8, 60–67 (2010). https://doi.org/10.1007/s11914-010-0014-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-010-0014-3

Keywords

Navigation