Skip to main content
Log in

Sex and ethnic differences in bone architecture

  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Technologic developments and applications such as dual energy x-ray absorptiometry, magnetic resonance imaging, and computed tomography have enabled researchers to assess bone quantity (ie, bone mineral density) and bone quality (ie, bone architecture), which are two important and independent contributions to bone strength. Recent studies on sex differences in bone architecture indicate that a number of biomechanical variables lead to increased bone strength in males compared with females. Ethnic differences in bone architecture are less clear-cut, indicating a need to identify and test the social and biologic variables that race and ethnicity represent. New methods using magnetic resonance imaging technology may become important in creating efficient and reliable in vivo methods of assessing features of bone architecture that are relevant to fracture risk and contribute to the elucidation of sex and ethnic differences in osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. WHO Study Group: Assessment of Fracture Risk and its Application to Screening for Postmenopausal Osteoporosis. Geneva: WHO Technical Report Series 843, 1994.

  2. Seeman E: The structural and biomechanical basis of the gain and loss of bone strength in women and men. Endocrinol Metab Clin North Am 2003, 32:25–38. A review discussing the changes in bone strength in women and men, with an emphasis on understanding the material and structural properties of bone. Bone mineral content and the structural arrangement of trabeculae are inter-related factors that influence fracture risk.

    Article  PubMed  CAS  Google Scholar 

  3. Han Z-H, Palnitkar S, Nelson D, et al.: Effect of ethnicity and age or menopause on the structure and geometry of iliac bone. J Bone Miner Res 1996, 11:1967–1975.

    PubMed  CAS  Google Scholar 

  4. Han Z-H, Palnitkar S, Rao DS, et al.: Effects of ethnicity and age or menopause on the remodeling and turnover of iliac bone: implications for mechanisms of bone loss. J Bone Miner Res 1997, 12:498–508.

    Article  PubMed  CAS  Google Scholar 

  5. Parisien M, Cosman F, Morgan D, et al.: Histomorphometric assessment of bone mass, structure, and remodeling: a comparison between healthy black and white premenopausal women. J Bone Miner Res 1997, 12:948–957.

    Article  PubMed  CAS  Google Scholar 

  6. Singh M, Nagrath AR, Maini PS: Changes in trabecular pattern of the upper end of the femur as an index of osteoporosis. J Bone Joint Surg Am 1970, 52:457–467.

    PubMed  CAS  Google Scholar 

  7. Arnaud CD, Liew S, Steines D, et al.: Correlation of 2D trabecular structure parameters with 3D µCT and measurements of bone strength in femoral bone cores. J Bone Miner Res 2003, 18(Suppl 2):S56.

    Google Scholar 

  8. Barondess DA, Singh M, Hendrix SL, Nelson DA: Radiographic measurements, bone mineral density and the Singh Index in the proximal femur of White and African-American postmenopausal women. Clin J Womens Health 2001, 1:253–258.

    Article  Google Scholar 

  9. Faulkner KG, Cummings SR, Black D, et al.: Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures. J Bone Miner Res 1993, 8:1211–1217.

    PubMed  CAS  Google Scholar 

  10. Faulkner KG, McClung M, Cummings SR, et al.: Automated evaluation of hip axis length for predicting hip fracture. J Bone Miner Res 1994, 9:1065–1070.

    Article  PubMed  CAS  Google Scholar 

  11. Cummings SR, Cauley JA, Palermo L, et al.: Racial differences in hip axis lengths might explain racial differences in rates of hip fracture. Study of Osteoporotic Fractures Research Group. Osteoporos Int 1994, 4:226–229.

    Article  PubMed  CAS  Google Scholar 

  12. Greendale GA, Young JT, Huang MH, et al.: Hip axis length in mid-life Japanese and Caucasian U.S. residents: no evidence for an ethnic difference. Osteoporos Int 2003, 14:320–325.

    Article  PubMed  Google Scholar 

  13. Nelson DA, Barondess DA, Hendrix SL, Beck TJ: Cross-sectional geometry, bone strength, and bone mass in the proximal femur in black and white postmenopausal women. J Bone Miner Res 2000, 15:1992–1997.

    Article  PubMed  CAS  Google Scholar 

  14. Ruff CB, Hayes WC: Sex differences in age-related remodeling of the femur and tibia. J Orthop Res 1988, 6:886–896.

    Article  PubMed  CAS  Google Scholar 

  15. Beck TJ, Ruff CB, Warden KE, et al.: Predicting femoral neck strength from bone mineral data. A structural approach. Invest Radiol 1990, 25:6–18.

    Article  PubMed  CAS  Google Scholar 

  16. Nakamura T, Turner CH, Yoshikawa T: Do variations in hip geometry explain differences in hip fracture risk between Japanese and white Americans? J Bone Miner Res 1994, 9:1071–1076.

    PubMed  CAS  Google Scholar 

  17. Beck TJ, Ruff CB, Scott WW Jr, et al.: Sex differences in geometry of the femoral neck with aging: a structural analysis of bone mineral data. Calcif Tissue Int 1992, 50:24–29.

    Article  PubMed  CAS  Google Scholar 

  18. Duan Y, Beck TJ, Wang XF, Seeman E: Structural and biomechanical basis of sexual dimorphism in femoral neck fragility has its origins in growth and aging. J Bone Miner Res 2003, 18:1766–1774. The authors conclude that while age changes in hip geometry result in femoral neck fragility in both sexes, young males tend to have greater bending strength than young females. Males may have less fracture incidence than females because their comparatively greater bending strength is maintained during aging.

    Article  PubMed  Google Scholar 

  19. Nelson DA, Pettifor JM, Barondess DA, et al.: Comparison of cross-sectional geometry of the proximal femur in white and black women from Detroit and Johannesburg. J Bone Miner Res 2004, 19:560–565. This study compared cross-sectional geometric variables in the proximal femur in postmenopausal women from four ethnic groups. DXAderived data were obtained in black women from Detroit (n = 86) and Johannesburg (n = 60), and white women from Detroit (n = 151) and Johannesburg (n = 48). Based on hip structure analysis (developed by TJ Beck), similarities and differences across the groups are described. The results are consistent with greater bone strength in the black groups in both countries.

    Article  PubMed  Google Scholar 

  20. Solomon L: Osteoporosis and fracture of the femoral neck in the South African Bantu. J Bone Joint Surg Br 1968, 50:2–11.

    PubMed  CAS  Google Scholar 

  21. Farmer ME, White LR, Brody JA, Bailey KR: Race and sex differences in hip fracture incidence. Am J Public Health 1984, 74:1374–1380.

    PubMed  CAS  Google Scholar 

  22. Baron JA, Barrett J, Malenka D, et al.: Racial differences in fracture risk. Epidemiology 1994, 5:42–47.

    Article  PubMed  CAS  Google Scholar 

  23. Looker AC, Beck TJ, Orwoll ES, et al.: Does body size account for gender differences in femur bone density and geometry? J Bone Miner Res 2001, 16:1291–1299. This study determined that, while body size differences between males and females account for much of the femoral areal BMD differences between the sexes, even after adjusting for body size, male bones are bigger. This size difference may contribute to a lower fracture incidence in men.

    Article  PubMed  CAS  Google Scholar 

  24. Rho JY, Kuhn-Spearing L, Zioupos P: Mechanical properties and the hierarchical structure of bone. Med Eng Phys 1998, 20:92–102.

    Article  PubMed  CAS  Google Scholar 

  25. Vokes TJ, Favus MJ: Noninvasive assessment of bone structure. Curr Osteoporos Rep 2003, 1:20–24.

    PubMed  Google Scholar 

  26. Link TM, Majumdar S, Lin JC, et al.: A comparative study of trabecular bone properties in the spine and femur using high resolution MRI and CT. J Bone Miner Res 1998, 13:122–132.

    Article  PubMed  CAS  Google Scholar 

  27. Link TM, Vieth V, Matheis J, et al.: Bone structure of the distal radius and the calcaneus vs BMD of the spine and proximal femur in the prediction of osteoporotic spine fractures. Eur Radiol 2002, 12:401–408.

    Article  PubMed  Google Scholar 

  28. Issever AS, Vieth V, Lotter A, et al.: Local differences in the trabecular bone structure of the proximal femur depicted with high-spatial-resolution MR imaging and multisection CT. Acad Radiol 2002, 9:1395–1406.

    Article  PubMed  Google Scholar 

  29. Woodhead HJ, Kemp AF, Blimkie CJR, et al.: Measurement of midfemoral shaft geometry: repeatability and accuracy using magnetic resonance imaging and dual-energy x-ray absorptiometry. J Bone Miner Res 2001, 16:2251–2259.

    Article  PubMed  CAS  Google Scholar 

  30. Boutry N, Cortet B, Dubois P, et al.: Trabecular bone structure of the calcaneus: preliminary in vivo MR imaging assessment in men with osteoporosis. Radiology 2003, 227:708–717.

    Article  PubMed  Google Scholar 

  31. Wehrli FW, Saha PK, Gomberg BR, et al.: Role of magnetic resonance for assessing structure and function of trabecular bone. Top Magn Reson Imaging 2002, 13:335–355.

    Article  PubMed  Google Scholar 

  32. Wehrli FW, Popescu AM, Vasilic B, et al.: Longitudinal changes in trabecular bone architecture detected by micro-MRI based virtual bone biopsy. J Bone Miner Res 2003, 18(Suppl 2):S27.

    Google Scholar 

  33. Benito M, Gomberg, Wehrli FW, et al.: Deterioration of trabecular architecture in hypogonadal men. J Clin Endocrinol Metab 2003, 88:1497–1502. This study found significant deterioration of trabecular architecture in hypogonadal men compared with eugonadal controls, indicating that bone architecture is affected by sex hormone levels.

    Article  PubMed  CAS  Google Scholar 

  34. Seeman E: Pathogenesis of osteoporosis. J Appl Physiol 2003, 95:2142–2151.

    PubMed  Google Scholar 

  35. Schwartz RS: Racial profiling in medical research [letter]. N Engl J Med 2001, 344:1392–1393.

    Article  PubMed  CAS  Google Scholar 

  36. Anonymous: Census, race and science. Nat Genet 2000, 24:97–98.

  37. Bhopal R, Donaldson L: White, European, Western, Caucasian, or what? Inappropiate labeling in research on race, ethnicity, and health. Am J Pub Health 1998, 88:1303–1307.

    Article  PubMed  CAS  Google Scholar 

  38. Kaplan JB, Bennett T: Use of race and ethnicity in biomedical publication. JAMA 2003, 289:2709–2716.

    Article  PubMed  Google Scholar 

  39. Cooper RS, Kaufman JS, Ward R: Race and genomics. N Engl J Med 2003, 348:1166–1170.

    Article  PubMed  Google Scholar 

  40. Braun L: Race, ethnicity, and health, can genetics explain disparities? Perspect Biol Med 2002, 45:159–174.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, D.A., Megyesi, M.S. Sex and ethnic differences in bone architecture. Curr Osteoporos Rep 2, 65–69 (2004). https://doi.org/10.1007/s11914-004-0006-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-004-0006-2

Keywords

Navigation