Skip to main content

Advertisement

Log in

Molecular Profiling in Early ER + Breast Cancer to Aid Systemic Therapy Decisions

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Clinical decisions for (neo)adjuvant treatment in early breast cancer (eBC) have been based mostly on clinical factors over the last decades. We have reviewed development and validation of such assays in the HR + /HER2 eBC and discuss possible future directions in this field.

Recent Findings

Increasing knowledge about the biology of hormone-sensitive eBC, based on the precise and reproducible multigene expression analysis, has led to a significant change in the treatment pathways and reduction of overtreatment in particular by chemotherapy in HR + /HER2 eBC with up to 3 positive lymph nodes based on results from several retrospective-prospective trials used several genomic assays and in particular prospective trials (TAILORx, RxPonder, MINDACT, and ADAPT used OncotypeDX® and Mammaprint®).

Summary

Precise evaluation of tumor biology together with endocrine responsiveness assessment appears as promising tools for individualized treatment decisions together with clinical factors and menopausal status in early hormone-sensitive/HER2-negative breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References 

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. André F, Gonçalves A, Filleron T, et al. Abstract GS1–10: Clinical utility of molecular tumor profiling: results from the randomized trial SAFIR02-BREAST. Cancer Res. 2022;82:GS1-10-GS11-10.

    Article  Google Scholar 

  2. André F, Ciruelos E, Rubovszky G, et al. Alpelisib for PIK3CA-mutated, hormone receptor–positive advanced breast cancer. N Engl J Med. 2019;380:1929–40.

    Article  PubMed  Google Scholar 

  3. Tutt ANJ, Garber JE, Kaufman B, et al. Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. N Engl J Med. 2021;384:2394–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. • Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52. Both papers provide basis for understanding of molecular heterogeneity of breast cancer

    Article  CAS  PubMed  Google Scholar 

  5. • Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci. 2001;98:10869–74. Both papers provide basis for understanding of molecular heterogeneity of breast cancer

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Koboldt DC, Fulton RS, McLellan MD, et al. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.

    Article  CAS  Google Scholar 

  7. Ellis MJ, Ding L, Shen D, et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature. 2012;486:353–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Razavi P, Chang MT, Xu G, et al. The genomic landscape of endocrine-resistant advanced breast cancers. Cancer Cell. 2018;34:427-438.e426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. • Parker JS, Mullins M, Cheang MCU, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27:1160–7. This study creates a link between molecular subtypes, discovered by clustering methods and clinically applicable PAM50-signature, based on gene expression analysis on paraffine-embeded fixed tissue

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lundgren C, Bendahl P-O, Church SE, et al. PAM50 subtyping and ROR score add long-term prognostic information in premenopausal breast cancer patients. npj Breast Cancer. 2022;8:61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gnant M, Filipits M, Greil R, et al. Predicting distant recurrence in receptor-positive breast cancer patients with limited clinicopathological risk: using the PAM50 Risk of Recurrence score in 1478 postmenopausal patients of the ABCSG-8 trial treated with adjuvant endocrine therapy alone. Ann Oncol. 2014;25:339–45.

    Article  CAS  PubMed  Google Scholar 

  12. Nielsen TO, Parker JS, Leung S, et al. A comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor–positive breast cancer. Clin Cancer Res. 2010;16:5222–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Prat A, Cheang MCU, Martín M, et al. Prognostic significance of progesterone receptor–positive tumor cells within immunohistochemically defined luminal A breast cancer. J Clin Oncol. 2013;31:203–9.

    Article  CAS  PubMed  Google Scholar 

  14. Cheang MCU, Chia SK, Voduc D, et al. Ki67 Index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst. 2009;101:736–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Prat A, Carey LA, Adamo B et al. Molecular features and survival outcomes of the intrinsic subtypes within HER2-positive breast cancer. JNCI: J Natl Cancer Inst. 2014;106:dju152.

  16. Harbeck N, Nitz U, Christgen M, et al. LBA13 Predictive impact of biomarkers on pCR and survival after de-escalated neoadjuvant T-DM1 with or without endocrine therapy (ET) vs. trastuzumab+ET in HER2+/HR+ early breast cancer: WSG ADAPT TP trial. Ann Oncol. 2021;32:S1285.

    Article  Google Scholar 

  17. Prat A, Cheang MU, Galván P, et al. PRognostic value of intrinsic subtypes in hormone receptor–positive metastatic breast cancer treated with letrozole with or without lapatinib. JAMA Oncol. 2016;2:1287–94.

    Article  PubMed  Google Scholar 

  18. Prat A, Chaudhury A, Solovieff N, et al. Correlative biomarker analysis of intrinsic subtypes and efficacy across the MONALEESA phase III studies. J Clin Oncol. 2021;39:1458–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Filipits M, Rudas M, Jakesz R, et al. A new molecular predictor of distant recurrence in ER-positive, HER2-negative breast cancer adds independent information to conventional clinical risk factors. Clin Cancer Res. 2011;17:6012–20.

    Article  CAS  PubMed  Google Scholar 

  20. Nitz U, Gluz O, Christgen M, et al. Reducing chemotherapy use in clinically high-risk, genomically low-risk pN0 and pN1 early breast cancer patients: five-year data from the prospective, randomised phase 3 West German Study Group (WSG) PlanB trial. Breast Cancer Res Treat. 2017;165:573–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cuzick J, Dowsett M, Pineda S, et al. Prognostic value of a combined estrogen receptor, progesterone receptor, Ki-67, and human epidermal growth factor receptor 2 immunohistochemical score and comparison with the genomic health recurrence score in early breast cancer. J Clin Oncol. 2011;29:4273–8.

    Article  PubMed  Google Scholar 

  22. Gluz O, Liedtke C, Huober J, et al. Comparison of prognostic and predictive impact of genomic or central grade and immunohistochemical subtypes or IHC4 in HR+/HER2- early breast cancer: WSG-AGO EC-Doc Trial. Ann Oncol. 2016;27:1035–40.

    Article  CAS  PubMed  Google Scholar 

  23. Dowsett M, Sestak I, Buus R, et al. Estrogen receptor expression in 21-gene recurrence score predicts increased late recurrence for estrogen-positive/HER2-negative breast cancer. Clin Cancer Res. 2015;21:2763–70.

    Article  CAS  PubMed  Google Scholar 

  24. Dubsky P, Brase JC, Jakesz R, et al. The EndoPredict score provides prognostic information on late distant metastases in ER+/HER2- breast cancer patients. Br J Cancer. 2013;109:2959–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bartlett JMS, Bayani J, Marshall A et al. Comparing breast cancer multiparameter tests in the OPTIMA prelim trial: no test is more equal than the others. J Natl Cancer Inst. 2016;108:djw050.

  26. Christgen M, Gluz O, Harbeck N, et al. Differential impact of prognostic parameters in hormone receptor–positive lobular breast cancer. Cancer. 2020;126:4847–58.

    Article  CAS  PubMed  Google Scholar 

  27. Weiser R, Polychronopoulou E, Hatch SS, et al. Adjuvant chemotherapy in patients with invasive lobular carcinoma and use of the 21-gene recurrence score: a National Cancer Database analysis. Cancer. 2022;128:1738–47.

    Article  CAS  PubMed  Google Scholar 

  28. Makower D, Qin J, Lin J, et al. The 21-gene recurrence score in early non-ductal breast cancer: a National Cancer Database analysis. npj Breast Cancer. 2022;8:4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nunes R, Sella T, Treuner K, et al. Prognostic utility of Breast Cancer Index to stratify distant recurrence risk in invasive lobular carcinoma. Clin Cancer Res. 2021;27:5688–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang J, He Z-Y, Dong Y et al. The distribution and outcomes of the 21-gene recurrence score in T1-T2N0 estrogen receptor-positive breast cancer with different histologic subtypes. Front Genet. 2018;9:638.

  31. Turashvili G, Brogi E, Morrow M, et al. The 21-gene recurrence score in special histologic subtypes of breast cancer with favorable prognosis. Breast Cancer Res Treat. 2017;165:65–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang F, Reid S, Zheng W, et al. Sex disparity observed for oncotype DX breast recurrence score in predicting mortality among patients with early stage ER-positive breast cancer. Clin Cancer Res: Off J Am Assoc Cancer Res. 2020;26:101–9.

    Article  CAS  Google Scholar 

  33. Andre F, Ismaila N, Allison KH, et al. Biomarkers for adjuvant endocrine and chemotherapy in early-stage breast cancer: ASCO guideline update. J Clin Oncol. 2022;40:1816–37.

    Article  CAS  PubMed  Google Scholar 

  34. • Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351:2817–26. This study was of particular importance due to strong prognostic significance of OncotypeDX in node-negative hormone-sensitive BC, which was shown retrospectively on tumor tissue from a prospective trial

    Article  CAS  PubMed  Google Scholar 

  35. Dowsett M, Cuzick J, Wale C, et al. Prediction of risk of distant recurrence using the 21-gene recurrence score in node-negative and node-positive postmenopausal patients with breast cancer treated with anastrozole or tamoxifen: a TransATAC study. J Clin Oncol. 2010;28:1829–34.

    Article  PubMed  Google Scholar 

  36. • Albain KS, Barlow WE, Shak S, et al. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol. 2010;11:55. This manuscript has confirmed prognostic and predictive impact of Oncotype DX regarding chemotherapy use in postmenopausal node-positive breast cancer

    Article  CAS  PubMed  Google Scholar 

  37. • Sparano JA, Gray RJ, Makower DF, et al. Adjuvant chemotherapy guided by a 21-gene expression assay in breast cancer. N Engl J Med. 2018;379:111–21. This large study confirmed finding from retrospective analysis on lack of chemotherapy benefit in node-negative HR+/HER2- breast cancer and Recurrence Score 11-25 in patients older than 50 years. No chemotherapy benefit was observed in younger patients in Recurrence Score <16-20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kalinsky K, Barlow WE, Gralow JR, et al. 21-gene assay to inform chemotherapy benefit in node-positive breast cancer. New Engl J Med. 2021;385:2336–47 This very important study has shown no adjuvant chemoendocrine therapy benefit over endocrine therapy alone in postmenopausal patients with 1-3 positive lymph nodes and Recurrence Score 0-25. Moderate but significant chemotherapy effect was observed in premenopausal patients, if compared with tamoxifen alone in most patients.

    Article  CAS  PubMed  Google Scholar 

  39. Wolmark N, Mamounas EP, Baehner FL, et al. Prognostic impact of the combination of recurrence score and quantitative estrogen receptor expression (ESR1) on predicting late distant recurrence risk in estrogen receptor–positive breast cancer after 5 years of tamoxifen: results from NRG Oncology/National Surgical Adjuvant Breast and Bowel Project B-28 and B-14. J Clin Oncol. 2016;34:2350–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. • Paik S, Tang G, Steven S, Chungyeul K, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol. 2006;24:3726–34. First retrospective analysis, based on the data from a prospective trial, which shows a chemotherapy benefit in the N0 situation, which was addressed only to patients with high Recurrence Score >30.

    Article  CAS  PubMed  Google Scholar 

  41. Geyer CE, Tang G, Mamounas EP, et al. 21-Gene assay as predictor of chemotherapy benefit in HER2-negative breast cancer. npj Breast Cancer. 2018;4:37.

    Article  PubMed  PubMed Central  Google Scholar 

  42. • Sparano JA, Gray RJ, Makower DF, et al. Prospective validation of a 21-gene expression assay in breast cancer. N Engl J Med. 2015;373:2005–14. TAILORx study results provide a basis for daily use of OncotypeDX as a most validated test for chemotherapy decisions in early node-negative HR+/HER2- breast cancer, in particular with regard to clinical risk

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. • Sparano JA, Gray RJ, Ravdin PM, et al. Clinical and genomic risk to guide the use of adjuvant therapy for breast cancer. N Engl J Med. 2019;380:2395–405. TAILORx study results provide a basis for daily use of OncotypeDX as a most validated test for chemotherapy decisions in early node-negative HR+/HER2- breast cancer, in particular with regard to clinical risk

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kalinsky KM, Barlow WE, Gralow JR, et al. Cancer Research. 2022;82:GS2-07-GS02-07.

    Article  Google Scholar 

  45. Kaufmann M, Jonat W, Blamey R, et al. Survival analyses from the ZEBRA study: goserelin (Zoladex™) versus CMF in premenopausal women with node-positive breast cancer. Eur J Cancer. 2003;39:1711–7.

    Article  CAS  PubMed  Google Scholar 

  46. Schmid P, Untch M, Kossé V, et al. Leuprorelin acetate every-3-months depot versus cyclophosphamide, methotrexate, and fluorouracil as adjuvant treatment in premenopausal patients with node-positive breast cancer: the TABLE study. J Clin Oncol. 2007;25:2509–15.

    Article  CAS  PubMed  Google Scholar 

  47. Regan MM, Francis PA, Pagani O, et al. Absolute improvements in freedom from distant recurrence with adjuvant endocrine therapies for premenopausal women with hormone receptor-positive (HR+) HER2-negative breast cancer (BC): results from TEXT and SOFT. J Clin Oncol. 2018;36:503–503.

    Article  Google Scholar 

  48. Kim H-A, Lee JW, Nam SJ, et al. Adding ovarian suppression to tamoxifen for premenopausal breast cancer: a randomized phase III trial. J Clin Oncol. 2020;38:434–43.

    Article  CAS  PubMed  Google Scholar 

  49. Gnant M, Mlineritsch B, Stoeger H, et al. Zoledronic acid combined with adjuvant endocrine therapy of tamoxifen versus anastrozol plus ovarian function suppression in premenopausal early breast cancer: final analysis of the Austrian Breast and Colorectal Cancer Study Group Trial 12. Ann Oncol. 2015;26:313–20.

    Article  CAS  PubMed  Google Scholar 

  50. Nitz UA, Gluz O, Kümmel S et al. Endocrine therapy response and 21-gene expression assay for therapy guidance in HR+/HER2– early breast cancer. J Clin Oncol. 2022;40: 2557–2567.

  51. DeCensi A, Guerrieri-Gonzaga A, Gandini S, et al. Prognostic significance of Ki-67 labeling index after short-term presurgical tamoxifen in women with ER-positive breast cancer. Ann Oncol. 2011;22:582–7.

    Article  CAS  PubMed  Google Scholar 

  52. Gluz O, Nitz U, Christgen M, et al. Prognostic impact of recurrence score, endocrine response and clinical-pathological factors in high-risk luminal breast cancer: results from the WSG-ADAPT HR+/HER2- chemotherapy trial. J Clin Oncol. 2021;39:504–504.

    Article  Google Scholar 

  53. Kuemmel S, Gluz O, Nitz U, et al. Abstract GS4–03: neoadjuvant nab-paclitaxel weekly versus dose-dense paclitaxel followed by dose-dense EC in high risk HR+/HER2- early BC by: Results from the neoadjuvant part of ADAPT HR+/HER2- trial. Cancer Res. 2021;81:GS4-03-GS04-03.

    Article  Google Scholar 

  54. Kim C, Tang G, Pogue-Geile KL, et al. Estrogen receptor (ESR1) mRNA expression and benefit from tamoxifen in the treatment and prevention of estrogen receptor–positive breast cancer. J Clin Oncol. 2011;29:4160–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Iwata H, Masuda N, Yamamoto Y, et al. Validation of the 21-gene test as a predictor of clinical response to neoadjuvant hormonal therapy for ER+, HER2-negative breast cancer: the TransNEOS study. Breast Cancer Res Treat. 2019;173:123–33.

    Article  CAS  PubMed  Google Scholar 

  56. Lee H-B, Lee SB, Kim M, et al. Development and validation of a next-generation sequencing–based multigene assay to predict the prognosis of estrogen receptor–positive, HER2-negative breast cancer. Clin Cancer Res. 2020;26:6513–22.

    Article  CAS  PubMed  Google Scholar 

  57. Metzger O, Ballman KV, Campbell J, et al. Measurement of endocrine activity (SET2,3) related to prognosis and prediction of benefit from dose-dense (DD) chemotherapy in estrogen receptor-positive (ER+) cancer: CALGB 9741 (Alliance). J Clin Oncol. 2022;40:505–505.

    Article  Google Scholar 

  58. • Cardoso F, van’t Veer LJ, Bogaerts J, et al. 70-gene signature as an aid to treatment decisions in early-stage breast cancer. New Engl J Med. 2016;375:717–29. Both publications of the MINDACT trial result have a huge clinical importance together with the TailorX, RxPonder, and ADAPT results, in particular in view of different outcomes after chemoendocrine therapy in younger vs. older patients

    Article  CAS  PubMed  Google Scholar 

  59. • Piccart M, van’t Veer LJ, Poncet C, et al. 70-gene signature as an aid for treatment decisions in early breast cancer: updated results of the phase 3 randomised MINDACT trial with an exploratory analysis by age. Lancet Oncol. 2021;22:476–88. Both publications of the MINDACT trial result have a huge clinical importance together with the TailorX, RxPonder, and ADAPT results, in particular in view of different outcomes after chemoendocrine therapy in younger vs. older patients

    Article  CAS  PubMed  Google Scholar 

  60. van’t Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415:530–6.

    Article  Google Scholar 

  61. Lopes Cardozo JMN, Drukker CA, Rutgers EJT, et al. Outcome of patients with an ultralow-risk 70-gene signature in the MINDACT trial. J Clin Oncol. 2022;40:1335–45.

    Article  CAS  PubMed  Google Scholar 

  62. Viale G, de Snoo FA, Slaets L, et al. Immunohistochemical versus molecular (BluePrint and MammaPrint) subtyping of breast carcinoma. Outcome results from the EORTC 10041/BIG 3–04 MINDACT trial. Breast Cancer Res Treat. 2018;167:123–31.

    Article  CAS  PubMed  Google Scholar 

  63. Mittempergher L, Delahaye LJMJ, Witteveen AT, et al. MammaPrint and BluePrint molecular diagnostics using targeted RNA next-generation sequencing technology. J Mol Diagn. 2019;21:808–23.

    Article  CAS  PubMed  Google Scholar 

  64. Whitworth P, Pellicane JV Jr, Baron P, et al. Abstract PD9–01: 5-year outcomes in the NBRST trial: preoperative MammaPrint and BluePrint breast cancer subtype is associated with neoadjuvant treatment response and survival. Cancer Res. 2021;81:PD9-01-PD09-01.

    Article  Google Scholar 

  65. Whitworth P, Beitsch P, Mislowsky A, et al. Chemosensitivity and endocrine sensitivity in clinical luminal breast cancer patients in the prospective Neoadjuvant Breast Registry Symphony Trial (NBRST) predicted by molecular subtyping. Ann Surg Oncol. 2017;24:669–75.

    Article  PubMed  Google Scholar 

  66. Rastogi P, Bandos H, Lucas PC, et al. Utility of the 70-gene MammaPrint assay for prediction of benefit from extended letrozole therapy (ELT) in the NRG Oncology/NSABP B-42 trial. J Clin Oncol. 2021;39:502–502.

    Article  Google Scholar 

  67. Sparano JA, Crager MR, Tang G, et al. Development and validation of a tool integrating the 21-gene recurrence score and clinical-pathological features to individualize prognosis and prediction of chemotherapy benefit in early breast cancer. J Clin Oncol. 2021;39:557–64.

    Article  CAS  PubMed  Google Scholar 

  68. Tang G, Cuzick J, Costantino JP, et al. Risk of recurrence and chemotherapy benefit for patients with node-negative, estrogen receptor–positive breast cancer: recurrence score alone and integrated with pathologic and clinical factors. J Clin Oncol. 2011;29:4365–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sgroi DC, Carney E, Zarrella E, et al. Prediction of late disease recurrence and extended adjuvant letrozole benefit by the HOXB13/IL17BR biomarker. J Natl Cancer Inst. 2013;105:1036–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bartlett JMS, Sgroi DC, Treuner K, et al. Breast Cancer Index and prediction of benefit from extended endocrine therapy in breast cancer patients treated in the Adjuvant Tamoxifen-To Offer More? (aTTom) trial. Ann Oncol : Off J Eur Soc Med Oncol. 2019;30:1776–83.

    Article  CAS  Google Scholar 

  71. Noordhoek I, Treuner K, Putter H, et al. Breast Cancer Index predicts extended endocrine benefit to individualize selection of patients with HR+ early-stage breast cancer for 10 years of endocrine therapy. Clin Cancer Res. 2021;27:311–9.

    Article  CAS  PubMed  Google Scholar 

  72. Mamounas EP, Bandos H, Rastogi P, et al. Breast Cancer Index (BCI) and prediction of benefit from extended aromatase inhibitor (AI) therapy (tx) in HR+ breast cancer: NRG oncology/NSABP B-42. J Clin Oncol. 2021;39:501–501.

    Article  Google Scholar 

  73. Lænkholm A-V, Jensen M-B, Eriksen JO, et al. PAM50 risk of recurrence score predicts 10-year distant recurrence in a comprehensive Danish cohort of postmenopausal women allocated to 5 years of endocrine therapy for hormone receptor–positive early breast cancer. J Clin Oncol. 2018;36:735–40.

    Article  PubMed  Google Scholar 

  74. Sestak I, Cuzick J, Dowsett M, et al. Prediction of late distant recurrence after 5 years of endocrine treatment: a combined analysis of patients from the Austrian Breast and Colorectal Cancer Study group 8 and arimidex, tamoxifen alone or in combination randomized trials using the PAM50 Risk of Recurrence Score. J Clin Oncol. 2015;33:916–22.

    Article  CAS  PubMed  Google Scholar 

  75. Jensen MB, Lænkholm AV, Nielsen TO, et al. The Prosigna gene expression assay and responsiveness to adjuvant cyclophosphamide-based chemotherapy in premenopausal high-risk patients with breast cancer. Breast Cancer Res. 2018;20:79.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Sestak I, Martín M, Dubsky P, et al. Prediction of chemotherapy benefit by EndoPredict in patients with breast cancer who received adjuvant endocrine therapy plus chemotherapy or endocrine therapy alone. Breast Cancer Res Treat. 2019;176:377–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sestak I, Buus R, Cuzick J, et al. Comparison of the performance of 6 prognostic signatures for estrogen receptor–positive breast cancer: a secondary analysis of a randomized clinical trial. JAMA Oncol. 2018;4:545–53.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Brain E, Viansone AA, Bourbouloux E, et al. Final results from a phase III randomized clinical trial of adjuvant endocrine therapy ± chemotherapy in women ≥ 70 years old with ER+ HER2- breast cancer and a high genomic grade index: the Unicancer ASTER 70s trial. J Clin Oncol. 2022;40:500–500.

    Article  Google Scholar 

  79. Ignatiadis M, Azim HA Jr, Desmedt C, et al. The genomic grade assay compared with Ki67 to determine risk of distant breast cancer recurrence. JAMA Oncol. 2016;2:217–24.

    Article  PubMed  Google Scholar 

  80. Mamounas EP, Tang G, Fisher B et al. Association between the 21-gene recurrence score assay and risk of locoregional recurrence in node-negative, estrogen receptor-positive breast cancer: results from NSABP B-14 and NSABP B-20. J Clin Oncol. 2010;28:1677–1683.

  81. Grote I, Bartels S, Kandt L, et al. TP53 mutations are associated with primary endocrine resistance in luminal early breast cancer. Cancer Med. 2021;10:8581–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ma CX, Luo J, Freedman RA, et al. The phase II MutHER study of neratinib alone and in combination with fulvestrant in HER2-mutated, non-amplified metastatic breast cancer. Clin Cancer Res. 2022;28:1258–67.

    Article  CAS  PubMed  Google Scholar 

  83. Jhaveri K, Park H, Waisman J, et al. Abstract GS4–10: Neratinib + fulvestrant + trastuzumab for hormone receptor-positive, HER2-mutant metastatic breast cancer and neratinib + trastuzumab for triple-negative disease: latest updates from the SUMMIT trial. Cancer Res. 2022;82:GS4-10-GS14-10.

    Article  Google Scholar 

  84. Lipsyc-Sharf M, Bruin ECd, Santos K et al. Circulating tumor DNA and late recurrence in high-risk hormone receptor–positive, human epidermal growth factor receptor 2–negative breast cancer. J Clin Oncol. 2022;40:2408–2419.

  85. Tie J, Cohen JD, Lahouel K et al. Circulating tumor DNA analysis guiding adjuvant therapy in stage II colon cancer. New Engl J Med. 2022;386:2261–2272.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Gluz.

Ethics declarations

Conflict of Interest

OG received travel support from Roche and personal fees from Celgene, AstraZeneca, Roche, Pfizer, Novartis, Lilly, Pierre Fabre, Nanostring, MSD, Seagen, Gilead, Molecular Health, and Genomic Health/Exact Sciences. MG received travel support from Daiichi-Sankyo and personal fees from AstraZeneca.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gluz, O., Graeser, M. Molecular Profiling in Early ER + Breast Cancer to Aid Systemic Therapy Decisions. Curr Oncol Rep 25, 491–500 (2023). https://doi.org/10.1007/s11912-023-01377-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-023-01377-6

Keywords

Navigation