Skip to main content

Advertisement

Log in

Resistance to Poly (ADP-Ribose) Polymerase Inhibitors (PARPi): Mechanisms and Potential to Reverse

  • Gynecologic Cancers (NS Reed, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review will focus on the most common mechanisms for poly (ADP-ribose) polymerase inhibitors’ (PARPi) resistance and the main strategies for overcoming acquired or de novo PARPi resistance.

Recent Findings

Initial approvals for PARPi as part of treatment for advanced epithelial ovarian cancer (EOC) started in 2014 with patient with recurrent cancer characterized by BRCA mutations in the 3rd and 4th line and now have approvals for front-line maintenance in both the BRCA mutated and BRCAwt populations.

Summary

As with all therapies, patients will eventually develop resistance to treatment. The most common mechanisms for PARPi resistance include reversion mutations, methylation events, and restoration of homologous recombination deficiency (HRD) through combinations and targeting replication stress. As more and more patients receive initial treatment (and potential retreatment with PARPi), we need to better understand the mechanisms in which tumors acquire PARPi resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. FDA label for Olaparib https://www.azpicentral.com/lynparza_tb/lynparza_tb.pdf#page=1last accessed February 15, 2022.

  2. FDA Approval for Rubraca: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/209115s003lbl.pdf Last Accessed February 15, 2022.

  3. Kaufman B, Shapira-Frommer R, Schmutzler RK, et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol. 2015;33:244–50.

    Article  CAS  PubMed  Google Scholar 

  4. Swisher EM, Lin KK, Oza AM, et al. Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial. Lancet Oncol. 2017;18:75–87.

    Article  CAS  PubMed  Google Scholar 

  5. FDA label for niraparib: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/208447s015s017lbledt.pdf. Last Accessed February 15, 2022.

  6. Moore KN, Secord AA, Geller MA, et al. Niraparib monotherapy for late-line treatment of ovarian cancer (QUADRA): a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 2019;20:636–48. QUADRA, phase II study of niraparib as treatment in recurrent ovarian cancer

    Article  CAS  PubMed  Google Scholar 

  7. Coleman RL, Oza AM, Lorusso D, et al. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390:1949–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ledermann J, Harter P, Gourley C, et al. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol. 2014;15:852–61.

    Article  CAS  PubMed  Google Scholar 

  9. Mirza MR, Monk BJ, Herrstedt J, et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N Engl J Med. 2016;375:2154–64.

    Article  CAS  PubMed  Google Scholar 

  10. Pujade-Lauraine E, Ledermann JA, Selle F, et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2017;18:1274–84.

    Article  CAS  PubMed  Google Scholar 

  11. Moore K, Colombo N, Scambia G, et al. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med. 2018;379:2495–505. Pivotal phase III randomized control trial of olaparib in newly diagnosed advanced ovarian cancer, demonstrating improved progression-free survival in patients with newly diagnosed advanced ovarian cancer with olaparib maintenance compared with placebo

    Article  CAS  PubMed  Google Scholar 

  12. Gonzalez-Martin A, Pothuri B, Vergote I, et al: Niraparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med, 2019 Pivotal phase III randomized control trial of niraparib in newly diagnosed advanced ovarian cancer, demonstrating improved progression-free survival in patients with newly diagnosed advanced ovarian cancer with niraparib maintenance compared with placebo

  13. Ray-Coquard I, Pautier P, Pignata S, et al. Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. N Engl J Med. 2019;381:2416–28. Pivotal phase III randomized control trial of olaparib in combination with bevacizumab in newly diagnosed advanced ovarian cancer, demonstrating improved progression-free survival in patients with newly diagnosed advanced ovarian cancer with olaparib in combination with bevacizumab maintenance compared with placebo

    Article  CAS  PubMed  Google Scholar 

  14. Banerjee S, Moore KN, Colombo N, et al. Maintenance olaparib for patients with newly diagnosed advanced ovarian cancer and a BRCA mutation (SOLO1/GOG 3004): 5-year follow-up of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2021;22:1721–31. Five-year survival data on SOLO1, which was a pivotal trial for the olaparib maintenance in the upfront setting

    Article  CAS  PubMed  Google Scholar 

  15. Pujade-Lauraine E, Scambia SF, Asselain G, Marme B, Lundemann K, Colombo N, Madry R, Glasspool R, Dubot C, Oaknin A, Zamagni C, Heitz F, Gladie L, Rubo-Perez MJ, Scollo P, Blakeley C, Shaw B, Ray-Coquard I, Redondo A. Maintenance olaparib rechallenge in patients wth ovarian carcinoma previously treated with a PARP inhibitor: Phase IIIB OReO/ENGOT Ov-38 trial. Ann Oncol. 2021;32. https://doi.org/10.1016/j.annonc.2021.08.2110.

  16. Pilie PG, Tang C, Mills GB, et al. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat Rev Clin Oncol. 2019;16:81–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lin KK, Harrell MI, Oza AM, et al. BRCA reversion mutations in circulating tumor DNA predict primary and acquired resistance to the PARP inhibitor rucaparib in high-grade ovarian carcinoma. Cancer Discov. 2019;9:210–9.

    Article  CAS  PubMed  Google Scholar 

  18. Tobalina L, Armenia J, Irving E, et al. A meta-analysis of reversion mutations in BRCA genes identifies signatures of DNA end-joining repair mechanisms driving therapy resistance. Ann Oncol. 2021;32:103–12.

    Article  CAS  PubMed  Google Scholar 

  19. Pettitt SJ, Frankum JR, Punta M, et al. Clinical BRCA1/2 reversion analysis identifies hotspot mutations and predicted neoantigens associated with therapy resistance. Cancer Discov. 2020;10:1475–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zatreanu D, Robinson HMR, Alkhatib O, et al. Poltheta inhibitors elicit BRCA-gene synthetic lethality and target PARP inhibitor resistance. Nat Commun. 2021;12:3636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou J, Gelot C, Pantelidou C, et al. A first-in-class polymerase theta inhibitor selectively targets homologous-recombination-deficient tumors. Nat Cancer. 2021;2:598–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nesic K, Kondrashova O, Hurley RM, et al. Acquired RAD51C promoter methylation loss causes PARP inhibitor resistance in high-grade serous ovarian carcinoma. Cancer Res. 2021;81:4709–22.

    Article  CAS  PubMed  Google Scholar 

  23. Kaplan AR, Gueble SE, Liu Y, Oeck S, Kim H, Yun Z, Glazer PM. Cediranib suppresses homology-directed DNA repair through down-regulation of BRCA1/2 and RAD51. Sci Transl Med. 2019;11(492). https://doi.org/10.1126/scitranslmed.aav4508.

  24. Liu JF, Brady MF, Matulonis UA, Miller A, Kohn EC, Swisher EM, Cella D, Tew WP, Cloven NG, Muller CY, Bender DP, Moore RG, Michelin DP, Waggoner SE, Geller MA, Fujiwara K, D'Andre SD, Carney M, Alvarez Secord A, Moxley KM, … Bookman MA. Olaparib with or without cediranib versus platinum-based chemotherapy in recurrent platinum-sensitive ovarian cancer (NRG-GY004): a randomized, open-label, phase III trial. J Clin Oncol Off J Am Soc Clin Oncol. 2022;40(19):2138–2147. https://doi.org/10.1200/JCO.21.02011.

  25. Lheureux S, Oaknin A, Garg S, et al. EVOLVE: a multicenter open-label single-arm clinical and translational phase II trial of cediranib plus olaparib for ovarian cancer after PARP inhibition progression. Clin Cancer Res. 2020;26:4206–15.

    Article  CAS  PubMed  Google Scholar 

  26. Gabbasov R, Benrubi ID, O’Brien SW, et al. Targeted blockade of HSP90 impairs DNA-damage response proteins and increases the sensitivity of ovarian carcinoma cells to PARP inhibition. Cancer Biol Ther. 2019;20:1035–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Konstantinopoulos PA, Cheng SC, Supko JG, Polak M, Wahner-Hendrickson AE, Ivy SP, Bowes B, Sawyer H, Basada P, Hayes M, Curtis J, Horowitz N, Wright AA, Campos SM, Ivanova EV, Paweletz CP, Palakurthi S, Liu JF, D'Andrea AD, Gokhale PC, … Shapiro GI. Combined PARP and HSP90 inhibition: preclinical and Phase 1 evaluation in patients with advanced solid tumours. Br J Cancer. 2022;126(7):1027–1036. https://doi.org/10.1038/s41416-021-01664-8.

  28. Rehman FL, Lord CJ, Ashworth A. The promise of combining inhibition of PI3K and PARP as cancer therapy. Cancer Discov. 2012;2:982–4.

    Article  CAS  PubMed  Google Scholar 

  29. Juvekar A, Burga LN, Hu H, et al. Combining a PI3K inhibitor with a PARP inhibitor provides an effective therapy for BRCA1-related breast cancer. Cancer Discov. 2012;2:1048–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ibrahim YH, Garcia-Garcia C, Serra V, et al. PI3K inhibition impairs BRCA1/2 expression and sensitizes BRCA-proficient triple-negative breast cancer to PARP inhibition. Cancer Discov. 2012;2:1036–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Matulonis UA, Wulf GM, Barry WT, et al. Phase I dose escalation study of the PI3kinase pathway inhibitor BKM120 and the oral poly (ADP ribose) polymerase (PARP) inhibitor olaparib for the treatment of high-grade serous ovarian and breast cancer. Ann Oncol. 2017;28:512–8.

    Article  CAS  PubMed  Google Scholar 

  32. Konstantinopoulos PA, Barry WT, Birrer M, et al. Olaparib and alpha-specific PI3K inhibitor alpelisib for patients with epithelial ovarian cancer: a dose-escalation and dose-expansion phase 1b trial. Lancet Oncol. 2019;20:570–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dias MP, Moser SC, Ganesan S, et al. Understanding and overcoming resistance to PARP inhibitors in cancer therapy. Nat Rev Clin Oncol. 2021;18:773–91.

    Article  PubMed  Google Scholar 

  34. Yazinski SA, Comaills V, Buisson R, et al. ATR inhibition disrupts rewired homologous recombination and fork protection pathways in PARP inhibitor-resistant BRCA-deficient cancer cells. Genes Dev. 2017;31:318–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Murai J, Feng Y, Yu GK, et al. Resistance to PARP inhibitors by SLFN11 inactivation can be overcome by ATR inhibition. Oncotarget. 2016;7:76534–50.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kim H, Xu H, George E, et al. Combining PARP with ATR inhibition overcomes PARP inhibitor and platinum resistance in ovarian cancer models. Nat Commun. 2020;11:3726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shah PD, Wethington SL, Pagan C, et al. Combination ATR and PARP Inhibitor (CAPRI): a phase 2 study of ceralasertib plus olaparib in patients with recurrent, platinum-resistant epithelial ovarian cancer. Gynecol Oncol. 2021;163:246–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wethington SL, Shah PD, Martin LP, Tanyi JL, Latif NA, Morgan MA, Torigan DA, Pagan C, Rodiguez D, Domcheck SM, Drapkn R, Shih le-Mng, SMth S, Dean E, Armstrong DK, Gallard S, Simpkns F. Combination of PARP and ATR inhibitors (olaparib and ceralasertib) shows clinical activity in acquired PARP inhibitor-resistant recurrent ovarian cancer. J Clin Oncol. 2021; 39.

  39. Frenel JS KJ, Berton D, Asher R, Vidal L, Pautier P, Ledermann JA, Penson RT, Oza AM, Korach J, Huzarski T, Pgnata S, Colmbo N, Park-Simon TW, Tamura K, Sonke GS, Loer ES, Freimund AE, Lee CK, Pujade-Lauraine E. Patterns of progression and subsequent management of patients with BRCA1/2 mutated platinum-sensitive recurrent epithelial ovarian cancer (EOC) progressing on olaparib versus placebo: the SOLO2/ENGOT Ov-21 trial (NCT01874353). J Clin Oncol. 2020;38.

  40. Moore KN, Chambers SK, Hamilton EP, et al. Adavosertib with chemotherapy in patients with primary platinum-resistant ovarian, fallopian tube, or peritoneal cancer: an open-label, four-arm. Phase II study Clin Cancer Res. 2022;28:36–44.

    Article  CAS  PubMed  Google Scholar 

  41. Oza AM, Estevez-Diz M, Grischke EM, et al. A biomarker-enriched, randomized phase II trial of adavosertib (AZD1775) plus paclitaxel and carboplatin for women with platinum-sensitive TP53-mutant ovarian cancer. Clin Cancer Res. 2020;26:4767–76.

    Article  CAS  PubMed  Google Scholar 

  42. Lheureux S, Cristea MC, Bruce JP, et al. Adavosertib plus gemcitabine for platinum-resistant or platinum-refractory recurrent ovarian cancer: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet. 2021;397:281–92.

    Article  CAS  PubMed  Google Scholar 

  43. Takebe N, Naqash AR, O’Sullivan Coyne G, et al. Safety, antitumor activity, and biomarker analysis in a phase I trial of the once-daily Wee1 inhibitor adavosertib (AZD1775) in patients with advanced solid tumors. Clin Cancer Res. 2021;27:3834–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Westin SN, Coleman RL, FEllman BM, Yuan Y, Sood AK, Soliman PT, WRight AA, Norowitz NS, Campos SM, Konstantnopoulos PA, Levenback CF, Gershenson DM, Lu KH, Bayer V, Tukdi S, Rabbit A, Ottesen L, Godin R, Mills GB, Liu J. EFFORT: efficacy of adavosertib in parp resistance: a randomized two-arm non-comparative phase II study of adavosertib with or without olaparib in women with PARP-resistant ovarian cancer. J Clin Oncol. 2021; 39.

  45. Parmar K, Kochupurakkal BS, Lazaro JB, et al. The CHK1 inhibitor prexasertib exhibits monotherapy activity in high-grade serous ovarian cancer models and sensitizes to PARP inhibition. Clin Cancer Res. 2019;25:6127–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Do KT, Kochupurakkal B, Kelland S, et al. Phase 1 combination study of the CHK1 inhibitor prexasertib and the PARP inhibitor olaparib in high-grade serous ovarian cancer and other solid tumors. Clin Cancer Res. 2021;27:4710–6.

    Article  CAS  PubMed  Google Scholar 

  47. Rottenberg S, Jaspers JE, Kersbergen A, et al. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc Natl Acad Sci U S A. 2008;105:17079–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vaidyanathan A, Sawers L, Gannon AL, et al. ABCB1 (MDR1) induction defines a common resistance mechanism in paclitaxel- and olaparib-resistant ovarian cancer cells. Br J Cancer. 2016;115:431–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Andronikou C, Rottenberg S. Studying PAR-dependent chromatin remodeling to tackle PARPi resistance. Trends Mol Med. 2021;27:630–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina R. Washington.

Ethics declarations

Conflict of Interest

Christina Washington declares no conflict of interest. Kathleen Moore declares personal fees and other from Astra Zeneca; grants, personal fees, and other from Genentech/Roche; grants, personal fees, and other from Immunogen; grants, personal fees, and other from GSK/Tesaro; other from Pfizer; personal fees from Aravive; personal fees from VBL Therapeutics; personal fees and other from Onco Med; grants and other from Lilly; personal fees from Eisai; personal fees from Vavotar; personal fees from Abbvie; personal fees from Tarveda; personal fees from Myriad; personal fees from Rubius; personal fees from Elevar; personal fees from Merck; personal fees from Mersana; personal fees from Sorrento; personal fees from OncXerna; personal fees from Alkemeres; personal fees from Blueprint Pharmaceuticals; personal fees from Mereo; and personal fees from IMab, outside the submitted work, and serves as the Associate Director for GOG Partners and is a GOG Foundation Board of Directors member.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Gynecologic Cancers

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Washington, C.R., Moore, K.N. Resistance to Poly (ADP-Ribose) Polymerase Inhibitors (PARPi): Mechanisms and Potential to Reverse. Curr Oncol Rep 24, 1685–1693 (2022). https://doi.org/10.1007/s11912-022-01337-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-022-01337-6

Keywords

Navigation