Skip to main content

Advertisement

Log in

Central Nervous System Involvement in Adults with Acute Leukemia: Diagnosis, Prevention, and Management

  • Leukemia (A Aguayo, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Recent treatment advances in both acute myeloid leukemia and acute lymphoblastic leukemia have drastically improved outcomes for these diseases, but central nervous system (CNS) relapses still occur. Treatment of CNS disease can be challenging due to the impermeability of the blood–brain barrier to many systemic therapies.

Recent Findings

The diagnosis of CNS leukemia relies on assessment of clinical symptoms, cerebrospinal fluid sampling for conventional cytology and/or flow cytometry, and neuroimaging. While treatment of CNS leukemia with systemic or intrathecal chemotherapy and/or radiation can be curative in some patients, these modalities can also lead to serious toxicities. In the modern era, prophylaxis with intrathecal chemotherapy is the most important strategy to prevent CNS relapses in high risk patients.

Summary

Accurate risk stratification tools and the use of risk-adapted prophylactic therapy are imperative to improving the outcomes of patients with acute leukemias and preventing the development of CNS leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gokbuget N, Hoelzer D. Meningeosis leukaemica in adult acute lymphoblastic leukaemia. J Neurooncol. 1998;38:167–80. https://doi.org/10.1023/a:1005963732481.

    Article  CAS  PubMed  Google Scholar 

  2. Lazarus HM, et al. Central nervous system involvement in adult acute lymphoblastic leukemia at diagnosis: results from the international ALL trial MRC UKALL XII/ECOG E2993. Blood. 2006;108:465–72. https://doi.org/10.1182/blood-2005-11-4666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kreuger A, et al. Central nervous system disease in childhood acute lymphoblastic leukemia: prognostic factors and results of treatment. Pediatr Hematol Oncol. 1991;8:291–9. https://doi.org/10.3109/08880019109028802.

    Article  CAS  PubMed  Google Scholar 

  4. Shihadeh F, et al. Cytogenetic profile of patients with acute myeloid leukemia and central nervous system disease. Cancer. 2012;118:112–7. https://doi.org/10.1002/cncr.26253.

    Article  CAS  PubMed  Google Scholar 

  5. Vermeire, T. et al. Sera from different age cohorts in Belgium show limited cross-neutralization between the mumps vaccine and outbreak strains. Clin Microbiol Infect. 2019;907 e901–907.e906, https://doi.org/10.1016/j.cmi.2018.11.016

  6. Si M, et al. The role of cytokines and chemokines in the microenvironment of the blood-brain barrier in leukemia central nervous system metastasis. Cancer Manag Res. 2018;10:305–13. https://doi.org/10.2147/CMAR.S152419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wallez Y, Huber P. Endothelial adherens and tight junctions in vascular homeostasis, inflammation and angiogenesis. Biochim Biophys Acta. 2008;1778:794–809. https://doi.org/10.1016/j.bbamem.2007.09.003.

    Article  CAS  PubMed  Google Scholar 

  8. Taddei A, et al. Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nat Cell Biol. 2008;10:923–34. https://doi.org/10.1038/ncb1752.

    Article  CAS  PubMed  Google Scholar 

  9. Price RA, Johnson WW. The central nervous system in childhood leukemia. I. The arachnoid. Cancer. 1973;31:520–33. https://doi.org/10.1002/1097-0142(197303)31:3%3c520::aid-cncr2820310306%3e3.0.co;2-2.

    Article  CAS  PubMed  Google Scholar 

  10. Thomas LB. Pathology of leukemia in the brain and meninges: postmortem studies of patients with acute leukemia and of mice given inoculations of L1210 leukemia. Cancer Res. 1965;25:1555–71.

    CAS  PubMed  Google Scholar 

  11. Pui CH, Howard SC. Current management and challenges of malignant disease in the CNS in paediatric leukaemia. Lancet Oncol. 2008;9:257–68. https://doi.org/10.1016/S1470-2045(08)70070-6.

    Article  PubMed  Google Scholar 

  12. Alegretti AP, et al. The expression of CD56 antigen is associated with poor prognosis in patients with acute myeloid leukemia. Rev Bras Hematol Hemoter. 2011;33:202–6. https://doi.org/10.5581/1516-8484.20110054.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Deak D, et al. A narrative review of central nervous system involvement in acute leukemias. Ann Transl Med. 2021;9:68. https://doi.org/10.21037/atm-20-3140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chang H, et al. Extramedullary infiltrates of AML are associated with CD56 expression, 11q23 abnormalities and inferior clinical outcome. Leuk Res. 2004;28:1007–11. https://doi.org/10.1016/j.leukres.2004.01.006.

    Article  CAS  PubMed  Google Scholar 

  15. Ravandi F, et al. CD56 expression predicts occurrence of CNS disease in acute lymphoblastic leukemia. Leuk Res. 2002;26:643–9. https://doi.org/10.1016/s0145-2126(01)00188-6.

    Article  CAS  PubMed  Google Scholar 

  16. Zaidi SZ, Motabi IH, Al-Shanqeeti A. CD56 and RUNX1 isoforms in AML prognosis and their therapeutic potential. Hematol Oncol Stem Cell Ther. 2016;9:129–30. https://doi.org/10.1016/j.hemonc.2015.11.006.

    Article  PubMed  Google Scholar 

  17. Hu W, et al. Expression of CD56 is a risk factor for acute lymphocytic leukemia with central nervous system involvement in adults. Hematology. 2017;22:81–7. https://doi.org/10.1080/10245332.2016.1238183.

    Article  CAS  PubMed  Google Scholar 

  18. Hyun YM, Choe YH, Park SA, Kim M. LFA-1 (CD11a/CD18) and Mac-1 (CD11b/CD18) distinctly regulate neutrophil extravasation through hotspots I and II. Exp Mol Med. 2019;51:1–13. https://doi.org/10.1038/s12276-019-0227-1.

    Article  CAS  PubMed  Google Scholar 

  19. Yao H, et al. Leukaemia hijacks a neural mechanism to invade the central nervous system. Nature. 2018;560:55–60. https://doi.org/10.1038/s41586-018-0342-5.

    Article  CAS  PubMed  Google Scholar 

  20. Munch V, et al. Central nervous system involvement in acute lymphoblastic leukemia is mediated by vascular endothelial growth factor. Blood. 2017;130:643–54. https://doi.org/10.1182/blood-2017-03-769315.

    Article  CAS  PubMed  Google Scholar 

  21. Buonamici S, et al. CCR7 signalling as an essential regulator of CNS infiltration in T-cell leukaemia. Nature. 2009;459:1000–4. https://doi.org/10.1038/nature08020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alsadeq A, et al. The role of ZAP70 kinase in acute lymphoblastic leukemia infiltration into the central nervous system. Haematologica. 2017;102:346–55. https://doi.org/10.3324/haematol.2016.147744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Roboz GJ, Guzman M. Acute myeloid leukemia stem cells: seek and destroy. Expert Rev Hematol. 2009;2:663–72. https://doi.org/10.1586/ehm.09.53.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ford AM, et al. Protracted dormancy of pre-leukemic stem cells. Leukemia. 2015;29:2202–7. https://doi.org/10.1038/leu.2015.132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jonart LM, et al. Disrupting the leukemia niche in the central nervous system attenuates leukemia chemoresistance. Haematologica. 2020;105:2130–40. https://doi.org/10.3324/haematol.2019.230334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cortes J. Central nervous system involvement in adult acute lymphocytic leukemia. Hematol Oncol Clin North Am. 2001;15:145–62. https://doi.org/10.1016/s0889-8588(05)70203-3.

    Article  CAS  PubMed  Google Scholar 

  27. Sancho JM, et al. Central nervous system recurrence in adult patients with acute lymphoblastic leukemia: frequency and prognosis in 467 patients without cranial irradiation for prophylaxis. Cancer. 2006;106:2540–6. https://doi.org/10.1002/cncr.21948.

    Article  CAS  PubMed  Google Scholar 

  28. Kantarjian HM, et al. Identification of risk groups for development of central nervous system leukemia in adults with acute lymphocytic leukemia. Blood. 1988;72:1784–9.

    Article  CAS  Google Scholar 

  29. Samra B, et al. Long term outcome of Hyper-CVAD-R for Burkitt leukemia/lymphoma and high-grade B-cell lymphoma: focus on CNS relapse. Blood Adv. 2021. https://doi.org/10.1182/bloodadvances.2021004427.

    Article  PubMed  Google Scholar 

  30. Reman O, et al. Central nervous system involvement in adult acute lymphoblastic leukemia at diagnosis and/or at first relapse: results from the GET-LALA group. Leuk Res. 2008;32:1741–50. https://doi.org/10.1016/j.leukres.2008.04.011.

    Article  PubMed  Google Scholar 

  31. Rozovski U, et al. Incidence of and risk factors for involvement of the central nervous system in acute myeloid leukemia. Leuk Lymphoma. 2015;56:1392–7. https://doi.org/10.3109/10428194.2014.953148.

    Article  CAS  PubMed  Google Scholar 

  32. Cassileth PA, Sylvester LS, Bennett JM, Begg CB. High peripheral blast count in adult acute myelogenous leukemia is a primary risk factor for CNS leukemia. J Clin Oncol. 1988;6:495–8. https://doi.org/10.1200/JCO.1988.6.3.495.

    Article  CAS  PubMed  Google Scholar 

  33. Johnston DL, Alonzo TA, Gerbing RB, Lange BJ, Woods WG. Risk factors and therapy for isolated central nervous system relapse of pediatric acute myeloid leukemia. J Clin Oncol. 2005;23:9172–8. https://doi.org/10.1200/jco.2005.02.7482.

    Article  PubMed  Google Scholar 

  34. Jabbour E, et al. Factors associated with risk of central nervous system relapse in patients with non-core binding factor acute myeloid leukemia. Am J Hematol. 2017;92:924–928. https://doi.org/10.1002/ajh.24799. This paper identified risk factors for CNS relapse in patients with AML (i.e., older age, elevated LDH, and FLT3-ITD mutations).

  35. Martinez-Cuadron D, et al. Central nervous system involvement at first relapse in patients with acute myeloid leukemia. Haematologica. 2011;96:1375–9. https://doi.org/10.3324/haematol.2011.042960.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Grier HE, et al. Prognostic factors in childhood acute myelogenous leukemia. J Clin Oncol. 1987;5:1026–32. https://doi.org/10.1200/JCO.1987.5.7.1026.

    Article  CAS  PubMed  Google Scholar 

  37. Smith M, et al. Uniform approach to risk classification and treatment assignment for children with acute lymphoblastic leukemia. J Clin Oncol. 1996;14:18–24. https://doi.org/10.1200/JCO.1996.14.1.18.

    Article  CAS  PubMed  Google Scholar 

  38. Sasaki M, et al. Bilateral numb chin syndrome leading to a diagnosis of Burkitt’s cell acute lymphocytic leukemia: a case report and literature review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;111:e11-16. https://doi.org/10.1016/j.tripleo.2010.09.066.

    Article  PubMed  Google Scholar 

  39. Bromberg JE, et al. CSF flow cytometry greatly improves diagnostic accuracy in CNS hematologic malignancies. Neurology. 2007;68:1674–9. https://doi.org/10.1212/01.wnl.0000261909.28915.83.

    Article  CAS  PubMed  Google Scholar 

  40. Kaplan JG, et al. Leptomeningeal metastases: comparison of clinical features and laboratory data of solid tumors, lymphomas and leukemias. J Neurooncol. 1990;9:225–9. https://doi.org/10.1007/BF02341153.

    Article  CAS  PubMed  Google Scholar 

  41. Craig FE, Ohori NP, Gorrill TS, Swerdlow SH. Flow cytometric immunophenotyping of cerebrospinal fluid specimens. Am J Clin Pathol. 2011;135:22–34. https://doi.org/10.1309/AJCPANA7ER1ABMZI.

    Article  PubMed  Google Scholar 

  42. Craig FE, Foon KA. Flow cytometric immunophenotyping for hematologic neoplasms. Blood. 2008;111:3941–67. https://doi.org/10.1182/blood-2007-11-120535.

    Article  CAS  PubMed  Google Scholar 

  43. Del Principe, M. I. et al. Clinical significance of occult central nervous system disease in adult acute lymphoblastic leukemia. A multicenter report from the Campus ALL Network. Haematologica. 2021;106;39–45. https://doi.org/10.3324/haematol.2019.231704. This multicenter study showed the superior sensitivity of flow cytometry (as compared with conventional cytology) for the detection of CNS disease in patients with ALL.

  44. Zeiser R, et al. Clinical follow-up indicates differential accuracy of magnetic resonance imaging and immunocytology of the cerebral spinal fluid for the diagnosis of neoplastic meningitis - a single centre experience. Br J Haematol. 2004;124:762–8. https://doi.org/10.1111/j.1365-2141.2004.04853.x.

    Article  PubMed  Google Scholar 

  45. Quijano S, et al. Identification of leptomeningeal disease in aggressive B-cell non-Hodgkin’s lymphoma: improved sensitivity of flow cytometry. J Clin Oncol. 2009;27:1462–9. https://doi.org/10.1200/JCO.2008.17.7089.

    Article  CAS  PubMed  Google Scholar 

  46. Di Noto R, et al. Critical role of multidimensional flow cytometry in detecting occult leptomeningeal disease in newly diagnosed aggressive B-cell lymphomas. Leuk Res. 2008;32:1196–9. https://doi.org/10.1016/j.leukres.2007.12.016.

    Article  CAS  PubMed  Google Scholar 

  47. Subira D, et al. Flow cytometry and the study of central nervous disease in patients with acute leukaemia. Br J Haematol. 2001;112:381–4. https://doi.org/10.1046/j.1365-2141.2001.02505.x.

    Article  CAS  PubMed  Google Scholar 

  48. Grossman SA, Krabak MJ. Leptomeningeal carcinomatosis. Cancer Treat Rev. 1999;25:103–19. https://doi.org/10.1053/ctrv.1999.0119.

    Article  CAS  PubMed  Google Scholar 

  49. Baytan B, Evim MS, Guler S, Gunes AM, Okan M. Acute Central Nervous System Complications in Pediatric Acute Lymphoblastic Leukemia. Pediatr Neurol. 2015;53:312–8. https://doi.org/10.1016/j.pediatrneurol.2015.03.006.

    Article  PubMed  Google Scholar 

  50. Shen H, et al. The diagnostic and prognostic value of MRI in central nervous system involvement of acute myeloid leukemia: a retrospective cohort of 84 patients. Hematology. 2020;25:258–63. https://doi.org/10.1080/16078454.2020.1781500.

    Article  PubMed  Google Scholar 

  51. Lassman AB, et al. Systemic high-dose intravenous methotrexate for central nervous system metastases. J Neurooncol. 2006;78:255–60. https://doi.org/10.1007/s11060-005-9044-6.

    Article  CAS  PubMed  Google Scholar 

  52. Farber S. Some observations on the effect of folic acid antagonists on acute leukemia and other forms of incurable cancer. Blood. 1949;4:160–7.

    Article  CAS  Google Scholar 

  53. Freeman AI, Wang JJ, Sinks LF. High-dose methotrexate in acute lymphocytic leukemia. Cancer Treat Rep. 1977;61:727–31.

    CAS  PubMed  Google Scholar 

  54. Kadia TM, et al. Venetoclax plus intensive chemotherapy with cladribine, idarubicin, and cytarabine in patients with newly diagnosed acute myeloid leukaemia or high-risk myelodysplastic syndrome: a cohort from a single-centre, single-arm, phase 2 trial. Lancet Haematol. 2021;8:e552–61. https://doi.org/10.1016/S2352-3026(21)00192-7.

    Article  PubMed  Google Scholar 

  55. DiNardo CD, et al. Venetoclax Combined With FLAG-IDA Induction and Consolidation in Newly Diagnosed and Relapsed or Refractory Acute Myeloid Leukemia. J Clin Oncol. 2021;39:2768–78. https://doi.org/10.1200/JCO.20.03736.

    Article  CAS  PubMed  Google Scholar 

  56. Kantarjian HM, et al. Results of treatment with hyper-CVAD, a dose-intensive regimen, in adult acute lymphocytic leukemia. J Clin Oncol. 2000;18:547–61.

    Article  CAS  Google Scholar 

  57. Cortes J, et al. The value of high-dose systemic chemotherapy and intrathecal therapy for central nervous system prophylaxis in different risk groups of adult acute lymphoblastic leukemia. Blood. 1995;86:2091–7.

    Article  CAS  Google Scholar 

  58. Bostrom BC, et al. Dexamethasone versus prednisone and daily oral versus weekly intravenous mercaptopurine for patients with standard-risk acute lymphoblastic leukemia: a report from the Children’s Cancer Group. Blood. 2003;101:3809–17. https://doi.org/10.1182/blood-2002-08-2454.

    Article  CAS  PubMed  Google Scholar 

  59. Jones B, et al. Lower incidence of meningeal leukemia when prednisone is replaced by dexamethasone in the treatment of acute lymphocytic leukemia. Med Pediatr Oncol. 1991;19:269–75. https://doi.org/10.1002/mpo.2950190411.

    Article  CAS  PubMed  Google Scholar 

  60. Porkka K, et al. Dasatinib crosses the blood-brain barrier and is an efficient therapy for central nervous system Philadelphia chromosome-positive leukemia. Blood. 2008;112:1005–12. https://doi.org/10.1182/blood-2008-02-140665.

    Article  CAS  PubMed  Google Scholar 

  61. Foa R, et al. Dasatinib-Blinatumomab for Ph-Positive Acute Lymphoblastic Leukemia in Adults. N Engl J Med. 2020;383:1613–23. https://doi.org/10.1056/NEJMoa2016272.

    Article  CAS  PubMed  Google Scholar 

  62. Sabina Chiaretti RB, Vitale A, Elia L, Messina M, Viero P, Annunziata M, Lunghi M, Fabbiano F, Bonifacio M, Fracchiolla N, Di Bartolomeo P, Renzulli LG, De Propris MS, Vignetti M, Guarini A, Rambaldi A, Foà R. In European Hematology Association (EHA). 2021.

  63. Berg SL, et al. Plasma and cerebrospinal fluid pharmacokinetics of nelarabine in nonhuman primates. Cancer Chemother Pharmacol. 2007;59:743–7. https://doi.org/10.1007/s00280-006-0328-0.

    Article  CAS  PubMed  Google Scholar 

  64. Dunsmore KP, et al. Children's Oncology Group AALL0434: A Phase III Randomized Clinical Trial Testing Nelarabine in Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia. J Clin Oncol. 2020;38:3282–3293. https://doi.org/10.1200/JCO.20.00256. This randomized study showed EFS benefit for the addition of nelarabine in T-cell ALL. This was driven by a decrease in CNS relapses in the nelarabine arm.

  65. Abbott BL, et al. Clinical significance of central nervous system involvement at diagnosis of pediatric acute myeloid leukemia: a single institution’s experience. Leukemia. 2003;17:2090–6. https://doi.org/10.1038/sj.leu.2403131.

    Article  CAS  PubMed  Google Scholar 

  66. Bisschop MM, et al. Extramedullary infiltrates at diagnosis have no prognostic significance in children with acute myeloid leukaemia. Leukemia. 2001;15:46–9. https://doi.org/10.1038/sj.leu.2401971.

    Article  CAS  PubMed  Google Scholar 

  67. Pui CH, et al. Central nervous system leukemia in children with acute nonlymphoblastic leukemia. Blood. 1985;66:1062–7.

    Article  CAS  Google Scholar 

  68. DeAngelis L, Batchelor T. Primary CNS lymphoma: is there a role for prophylaxis against lymphomatous meningitis? Expert Rev Neurother. 2004;4:S19-24. https://doi.org/10.1586/14737175.4.4.S19.

    Article  PubMed  Google Scholar 

  69. Hodozuka A, et al. Intrathecal infusion of the antineoplastic agents for meningeal dissemination. Gan To Kagaku Ryoho. 2008;35:900–5.

    PubMed  Google Scholar 

  70. Ganzel C, et al. CNS Involvement in AML at Diagnosis is Rare and does not Affect Response or Survival: Data from 11 ECOG-ACRIN Trials. Blood Adv. 2021. https://doi.org/10.1182/bloodadvances.2021004999. This large study shows that CNS involvement in AML at the time of diagnosis is relatively rare (1.1% of cases) and did not impact prognosis.

  71. Glantz MJ, et al. A randomized controlled trial comparing intrathecal sustained-release cytarabine (DepoCyt) to intrathecal methotrexate in patients with neoplastic meningitis from solid tumors. Clin Cancer Res. 1999;5:3394–402.

    CAS  PubMed  Google Scholar 

  72. Chamberlain MC, Kormanik PA. Prognostic significance of 111indium-DTPA CSF flow studies in leptomeningeal metastases. Neurology. 1996;46:1674–7. https://doi.org/10.1212/wnl.46.6.1674.

    Article  CAS  PubMed  Google Scholar 

  73. Montes de Oca Delgado M, et al. The Comparative Treatment of Intraventricular Chemotherapy by Ommaya Reservoir vs. Lumbar Puncture in Patients With Leptomeningeal Carcinomatosis. Front Oncol. 2018;8:509. https://doi.org/10.3389/fonc.2018.00509.

  74. Obbens EA, Leavens ME, Beal JW, Lee YY. Ommaya reservoirs in 387 cancer patients: a 15-year experience. Neurology. 1985;35:1274–8. https://doi.org/10.1212/wnl.35.9.1274.

    Article  CAS  PubMed  Google Scholar 

  75. Perrin RG, et al. Experience with Ommaya reservoir in 120 consecutive patients with meningeal malignancy. Can J Neurol Sci. 1990;17:190–2. https://doi.org/10.1017/s0317167100030432.

    Article  CAS  PubMed  Google Scholar 

  76. Mead PA, Safdieh JE, Nizza P, Tuma S, Sepkowitz KA. Ommaya reservoir infections: a 16-year retrospective analysis. J Infect. 2014;68:225–30. https://doi.org/10.1016/j.jinf.2013.11.014.

    Article  PubMed  Google Scholar 

  77. Szvalb AD, et al. Ommaya reservoir-related infections: clinical manifestations and treatment outcomes. J Infect. 2014;68:216–24. https://doi.org/10.1016/j.jinf.2013.12.002.

    Article  PubMed  Google Scholar 

  78. Bin Nafisah S, Ahmad M. Ommaya reservoir infection rate: a 6-year retrospective cohort study of Ommaya reservoir in pediatrics. Childs Nerv Syst. 2015;31:29–36. https://doi.org/10.1007/s00381-014-2561-x.

    Article  PubMed  Google Scholar 

  79. Bomgaars L, et al. Phase I trial of intrathecal liposomal cytarabine in children with neoplastic meningitis. J Clin Oncol. 2004;22:3916–21. https://doi.org/10.1200/JCO.2004.01.046.

    Article  CAS  PubMed  Google Scholar 

  80. Kim S, et al. Extended CSF cytarabine exposure following intrathecal administration of DTC 101. J Clin Oncol. 1993;11:2186–93. https://doi.org/10.1200/JCO.1993.11.11.2186.

    Article  CAS  PubMed  Google Scholar 

  81. Chamberlain MC, Kormanik P, Howell SB, Kim S. Pharmacokinetics of intralumbar DTC-101 for the treatment of leptomeningeal metastases. Arch Neurol. 1995;52:912–7. https://doi.org/10.1001/archneur.1995.00540330094020.

    Article  CAS  PubMed  Google Scholar 

  82. Jabbour E, et al. Neurologic complications associated with intrathecal liposomal cytarabine given prophylactically in combination with high-dose methotrexate and cytarabine to patients with acute lymphocytic leukemia. Blood. 2007;109:3214–8. https://doi.org/10.1182/blood-2006-08-043646.

    Article  CAS  PubMed  Google Scholar 

  83. Parasole R, et al. Efficacy and safety of intrathecal liposomal cytarabine for the treatment of meningeal relapse in acute lymphoblastic leukemia: experience of two pediatric institutions. Leuk Lymphoma. 2008;49:1553–9. https://doi.org/10.1080/10428190802216749.

    Article  CAS  PubMed  Google Scholar 

  84. Blaney SM, et al. Phase I clinical trial of intrathecal topotecan in patients with neoplastic meningitis. J Clin Oncol. 2003;21:143–7. https://doi.org/10.1200/JCO.2003.04.053.

    Article  CAS  PubMed  Google Scholar 

  85. Groves MD, et al. A multicenter phase II trial of intrathecal topotecan in patients with meningeal malignancies. Neuro Oncol. 2008;10:208–15. https://doi.org/10.1215/15228517-2007-059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pui CH, et al. Early intensification of intrathecal chemotherapy virtually eliminates central nervous system relapse in children with acute lymphoblastic leukemia. Blood. 1998;92:411–5.

    Article  CAS  Google Scholar 

  87. Dekker AW, et al. Intensive postremission chemotherapy without maintenance therapy in adults with acute lymphoblastic leukemia. Dutch Hemato-Oncology Research Group. J Clin Oncol 1997;15:476–482. https://doi.org/10.1200/JCO.1997.15.2.476.

  88. Paul S, et al. Title: 12 Versus 8 Prophylactic Intrathecal (IT) Chemotherapy Administration Decrease Incidence of Central Nervous System (CNS) Relapse in Patients (pts) with Newly Diagnosed Philadelphia (Ph)-Positive Acute Lymphocytic Leukemia (ALL). Blood. 2019;134:3810–3810. https://doi.org/10.1182/blood-2019-130284.

    Article  Google Scholar 

  89. Rausch CR, Jabbour EJ, Kantarjian HM, Kadia TM. Optimizing the use of the hyperCVAD regimen: Clinical vignettes and practical management. Cancer. 2020;126;1152–1160. https://doi.org/10.1002/cncr.32606. This paper provides practical guidelines for the use of hyper-CVAD regimens in ALL, including how to sequence and dose intrathecal chemotherapy within this regimen.

  90. Liu HC, et al. Triple intrathecal therapy alone with omission of cranial radiation in children with acute lymphoblastic leukemia. J Clin Oncol. 2014;32:1825–9. https://doi.org/10.1200/JCO.2013.54.5020.

    Article  PubMed  Google Scholar 

  91. Pinnix CC, Yahalom J, Specht L, Dabaja BS. Radiation in Central Nervous System Leukemia: Guidelines From the International Lymphoma Radiation Oncology Group. Int J Radiat Oncol Biol Phys. 2018;102:53–58. https://doi.org/10.1016/j.ijrobp.2018.05.067. This paper from the International Lymphoma Radiation Oncology Group (ILROC) provides consensus guidelines for the use of radiation in acute leukemias, as well as the timing of intrathecal chemotherapy relative to radiation administration.

  92. Kim A, et al. A combination of methotrexate and irradiation promotes cell death in NK/T-cell lymphoma cells via down-regulation of NF-kappaB signaling. Leuk Res. 2012;36:350–7. https://doi.org/10.1016/j.leukres.2011.07.027.

    Article  CAS  PubMed  Google Scholar 

  93. Shehata WM, Meyer RL. The enhancement effect of irradiation by methotrexate. Report of three complications. Cancer. 1980;46:1349–52. https://doi.org/10.1002/1097-0142(19800915)46:6%3c1349::aid-cncr2820460609%3e3.0.co;2-c.

    Article  CAS  PubMed  Google Scholar 

  94. Vora, A. et al. Influence of Cranial Radiotherapy on Outcome in Children With Acute Lymphoblastic Leukemia Treated With Contemporary Therapy. J Clin Oncol. 2016;34:919–926. https://doi.org/10.1200/jco.2015.64.2850. This paper shows that in the contemporary era, cranial radiotherapy does not significantly impact relapse rates when given as prophylaxis in patients with ALL.

  95. Walker GV, et al. Comprehensive craniospinal radiation for controlling central nervous system leukemia. Int J Radiat Oncol Biol Phys. 2014;90:1119–25. https://doi.org/10.1016/j.ijrobp.2014.08.004.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Hiniker SM, et al. Survival and neurocognitive outcomes after cranial or craniospinal irradiation plus total-body irradiation before stem cell transplantation in pediatric leukemia patients with central nervous system involvement. Int J Radiat Oncol Biol Phys. 2014;89:67–74. https://doi.org/10.1016/j.ijrobp.2014.01.056.

    Article  PubMed  Google Scholar 

  97. Patel N, et al. Emergent Radiotherapy for Leukemia-Induced Cranial Neuropathies Refractory to Intrathecal Therapy. Cureus. 2021;13: e15212. https://doi.org/10.7759/cureus.15212.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Armenian SH, et al. Cardiovascular Disease in Survivors of Childhood Cancer: Insights Into Epidemiology, Pathophysiology, and Prevention. J Clin Oncol. 2018;36:2135–44. https://doi.org/10.1200/JCO.2017.76.3920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cole PD, et al. Folate homeostasis in cerebrospinal fluid during therapy for acute lymphoblastic leukemia. Pediatr Neurol. 2009;40:34–41. https://doi.org/10.1016/j.pediatrneurol.2008.09.005.

    Article  PubMed  Google Scholar 

  100. Vezmar S, Schusseler P, Becker A, Bode U, Jaehde U. Methotrexate-associated alterations of the folate and methyl-transfer pathway in the CSF of ALL patients with and without symptoms of neurotoxicity. Pediatr Blood Cancer. 2009;52:26–32. https://doi.org/10.1002/pbc.21827.

    Article  PubMed  Google Scholar 

  101. Vezmar S, Becker A, Bode U, Jaehde U. Biochemical and clinical aspects of methotrexate neurotoxicity. Chemotherapy. 2003;49:92–104. https://doi.org/10.1159/000069773.

    Article  CAS  PubMed  Google Scholar 

  102. Kishi S, et al. Ancestry and pharmacogenetics of antileukemic drug toxicity. Blood. 2007;109:4151–7. https://doi.org/10.1182/blood-2006-10-054528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Radtke S, et al. Germline genetic variations in methotrexate candidate genes are associated with pharmacokinetics, toxicity, and outcome in childhood acute lymphoblastic leukemia. Blood. 2013;121:5145–53. https://doi.org/10.1182/blood-2013-01-480335.

    Article  CAS  PubMed  Google Scholar 

  104. Vagace JM, et al. Methotrexate-induced subacute neurotoxicity in a child with acute lymphoblastic leukemia carrying genetic polymorphisms related to folate homeostasis. Am J Hematol. 2011;86:98–101. https://doi.org/10.1002/ajh.21897.

    Article  CAS  PubMed  Google Scholar 

  105. Bhojwani D, et al. Methotrexate-induced neurotoxicity and leukoencephalopathy in childhood acute lymphoblastic leukemia. J Clin Oncol. 2014;32:949–59. https://doi.org/10.1200/JCO.2013.53.0808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pinnix CC, et al. Dorsal column myelopathy after intrathecal chemotherapy for leukemia. Am J Hematol. 2017;92:155–60. https://doi.org/10.1002/ajh.24611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Murtomaa H, Saxen L. [Juvenile periodontitis. Report of a case (author's transl)]. Proc Finn Dent Soc 1976;72:135–138.

  108. Afshar M, Birnbaum D, Golden C. Review of dextromethorphan administration in 18 patients with subacute methotrexate central nervous system toxicity. Pediatr Neurol. 2014;50:625–9. https://doi.org/10.1016/j.pediatrneurol.2014.01.048.

    Article  PubMed  Google Scholar 

  109. Ritch PS, Hansen RM, Heuer DK. Ocular toxicity from high-dose cytosine arabinoside. Cancer. 1983;51:430–2. https://doi.org/10.1002/1097-0142(19830201)51:3%3c430::aid-cncr2820510313%3e3.0.co;2-5.

    Article  CAS  PubMed  Google Scholar 

  110. Hilgendorf I, et al. Neurological complications after intrathecal liposomal cytarabine application in patients after allogeneic haematopoietic stem cell transplantation. Ann Hematol. 2008;87:1009–12. https://doi.org/10.1007/s00277-008-0546-0.

    Article  CAS  PubMed  Google Scholar 

  111. Malhotra P, et al. Cytarabine-induced neurotoxicity responding to methyl prednisolone. Am J Hematol. 2004;77:416. https://doi.org/10.1002/ajh.20171.

    Article  PubMed  Google Scholar 

  112. Baker WJ, Royer GL Jr, Weiss RB. Cytarabine and neurologic toxicity. J Clin Oncol. 1991;9:679–93. https://doi.org/10.1200/JCO.1991.9.4.679.

    Article  CAS  PubMed  Google Scholar 

  113. Gottlieb D, et al. The neurotoxicity of high-dose cytosine arabinoside is age-related. Cancer. 1987;60:1439–41. https://doi.org/10.1002/1097-0142(19871001)60:7%3c1439::aid-cncr2820600705%3e3.0.co;2-f.

    Article  CAS  PubMed  Google Scholar 

  114. Damon LE, Mass R, Linker CA. The association between high-dose cytarabine neurotoxicity and renal insufficiency. J Clin Oncol. 1989;7:1563–8. https://doi.org/10.1200/JCO.1989.7.10.1563.

    Article  CAS  PubMed  Google Scholar 

  115. Rubin EH, et al. Risk factors for high-dose cytarabine neurotoxicity: an analysis of a cancer and leukemia group B trial in patients with acute myeloid leukemia. J Clin Oncol. 1992;10:948–53. https://doi.org/10.1200/JCO.1992.10.6.948.

    Article  CAS  PubMed  Google Scholar 

  116. Higa GM, Gockerman JP, Hunt AL, Jones MR, Horne BJ. The use of prophylactic eye drops during high-dose cytosine arabinoside therapy. Cancer. 1991;68:1691–3. https://doi.org/10.1002/1097-0142(19911015)68:8%3c1691::aid-cncr2820680805%3e3.0.co;2-w.

    Article  CAS  PubMed  Google Scholar 

  117. Matteucci P, et al. Topical prophylaxis of conjunctivitis induced by high-dose cytosine arabinoside. Haematologica. 2006;91:255–7.

    CAS  PubMed  Google Scholar 

  118. Gosavi T, Diong CP, Lim SH. Methotrexate-induced myelopathy mimicking subacute combined degeneration of the spinal cord. J Clin Neurosci. 2013;20:1025–6. https://doi.org/10.1016/j.jocn.2012.06.018.

    Article  CAS  PubMed  Google Scholar 

  119. Joseph PJ, Reyes MR. Dorsal column myelopathy following intrathecal chemotherapy for acute lymphoblastic leukemia. J Spinal Cord Med. 2014;37:107–13. https://doi.org/10.1179/2045772312Y.0000000081.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Lu CH, Yao M, Liu HM, Chen YF. MR findings of intrathecal chemotherapy-related myelopathy in two cases: mimicker of subacute combined degeneration. J Neuroimaging. 2007;17:184–7. https://doi.org/10.1111/j.1552-6569.2007.00094.x.

    Article  PubMed  Google Scholar 

  121. McLean DR, et al. Myelopathy after intrathecal chemotherapy. A case report with unique magnetic resonance imaging changes. Cancer. 1994;73, 3037–40. https://doi.org/10.1002/1097-0142(19940615)73:12<3037::aid-cncr2820731223>3.0.co;2-6.

  122. Bleyer WA, Drake JC, Chabner BA. Neurotoxicity and elevated cerebrospinal-fluid methotrexate concentration in meningeal leukemia. N Engl J Med. 1973;289:770–3. https://doi.org/10.1056/NEJM197310112891503.

    Article  CAS  PubMed  Google Scholar 

  123. Mahoney DH Jr, et al. Acute neurotoxicity in children with B-precursor acute lymphoid leukemia: an association with intermediate-dose intravenous methotrexate and intrathecal triple therapy–a Pediatric Oncology Group study. J Clin Oncol. 1998;16:1712–22. https://doi.org/10.1200/JCO.1998.16.5.1712.

    Article  CAS  PubMed  Google Scholar 

  124. Brown PD, et al. Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial. Neuro Oncol. 2013;15:1429–37. https://doi.org/10.1093/neuonc/not114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Nakanishi N, et al. Neuroprotection by the NR3A subunit of the NMDA receptor. J Neurosci. 2009;29:5260–5. https://doi.org/10.1523/JNEUROSCI.1067-09.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chen HS, et al. Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity. J Neurosci. 1992;12:4427–36.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas J. Short.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Leukemia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, S., Short, N.J. Central Nervous System Involvement in Adults with Acute Leukemia: Diagnosis, Prevention, and Management. Curr Oncol Rep 24, 427–436 (2022). https://doi.org/10.1007/s11912-022-01220-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-022-01220-4

Keywords

Navigation