Skip to main content
Log in

Mitochondrial Inhibition: a Treatment Strategy in Cancer?

  • Evolving Therapies (RM Bukowski, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Mitochondria have a major impact on virtually all processes linked to oncogenesis. Thus, mitochondrial metabolism inhibition has emerged as a promising anticancer strategy. In this review, we discuss the anticancer potential of mitochondrial inhibitors, with particular focus on metformin, in the context of more effective, targeted therapeutic modalities, and diagnostic strategies for cancer patients.

Recent Findings

Metformin has gained interest as an antitumor agent. However, promising results have not been translated into remarkable advances in the clinical practice. Recent findings emphasize the need of providing a metabolic context in which mitochondrial inhibitors may elicit its anticancerous effects. In addition, mitochondria are critical regulators in orchestrating immune responses. Thus, the immunomodulatory effect of mitochondrial inhibitors should also be taken into account to optimize its clinical use.

Summary

Targeting mitochondrial metabolic network represents a promising therapeutic strategy in cancer. However, there is a need to define the metabolic context in which mitochondrial inhibitors are more effective, as well as how the cross-talk between many immunological functions and mitochondrial functionality may be exploited for a therapeutic benefit in cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.

    Article  PubMed  Google Scholar 

  2. Zong WX, Rabinowitz JD, White E. Mitochondria and cancer. Mol Cell. 2016;61:667–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pedersen PL. Tumor mitochondria and the bioenergetics of cancer cells. Prog Exp Tumor Res. 1978;22:190–274.

    Article  CAS  PubMed  Google Scholar 

  4. Feichtinger RG, et al. Low aerobic mitochondrial energy metabolism in poorly- or undifferentiated neuroblastoma. BMC Cancer. 2010;10:149.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mayr JA, Meierhofer D, Zimmermann F, Feichtinger R, Kögler C, Ratschek M, et al. Loss of complex I due to mitochondrial DNA mutations in renal oncocytoma. Clin Cancer Res. 2008;14:2270–5.

    Article  CAS  PubMed  Google Scholar 

  6. Feichtinger RG, Weis S, Mayr JA, Zimmermann F, Geilberger R, Sperl W, et al. Alterations of oxidative phosphorylation complexes in astrocytomas. Glia. 2014;62:514–25.

    Article  PubMed  Google Scholar 

  7. Weinberg SE, Chandel NS. Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol. 2015;11:9–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Moreno-Sanchez R, Rodriguez-Enriquez S, Marin-Hernandez A, Saavedra E. Energy metabolism in tumor cells. FEBS J. 2007;274:1393–418.

    Article  CAS  PubMed  Google Scholar 

  9. •• Lissanu Deribe Y, et al. Mutations in the SWI/SNF complex induce a targetable dependence on oxidative phosphorylation in lung cancer. Nat Med. 2018;24:1047–57 This reserarch identified a fundamental role for SMARCA4 (SWI/SNF complex), in energy stress response which creates vulnerability of SMARCA4 mutant tumors to energy-depriving therapeutic strategies such as OXPHOS inhibition.

    Article  CAS  PubMed  Google Scholar 

  10. Lehuede C, Dupuy F, Rabinovitch R, Jones RG, Siegel PM. Metabolic plasticity as a determinant of tumor growth and metastasis. Cancer Res. 2016;76:5201–8.

    Article  PubMed  Google Scholar 

  11. Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med. 2000;6:513–9.

    Article  CAS  PubMed  Google Scholar 

  12. Newmeyer DD, Ferguson-Miller S. Mitochondria: releasing power for life and unleashing the machineries of death. Cell. 2003;112:481–90.

    Article  CAS  PubMed  Google Scholar 

  13. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  14. Mathupala SP, Ko YH, Pedersen PL. The pivotal roles of mitochondria in cancer: Warburg and beyond and encouraging prospects for effective therapies. Biochim Biophys Acta. 2010;1797:1225–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Porporato PE, Filigheddu N, Pedro JMB, Kroemer G, Galluzzi L. Mitochondrial metabolism and cancer. Cell Res. 2018;28:265–80.

    Article  CAS  PubMed  Google Scholar 

  16. Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci U S A. 2010;107:8788–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wen S, Zhu D, Huang P. Targeting cancer cell mitochondria as a therapeutic approach. Future Med Chem. 2013;5:53–67.

    Article  CAS  PubMed  Google Scholar 

  18. Kalyanaraman B, Cheng G, Hardy M, Ouari O, Lopez M, Joseph J, et al. A review of the basics of mitochondrial bioenergetics, metabolism, and related signaling pathways in cancer cells: therapeutic targeting of tumor mitochondria with lipophilic cationic compounds. Redox Biol. 2018;14:316–27.

    Article  CAS  PubMed  Google Scholar 

  19. LeBleu VS, et al. PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol. 2014;16(992-1003):1001–15.

    Google Scholar 

  20. Viale A, Pettazzoni P, Lyssiotis CA, Ying H, Sánchez N, Marchesini M, et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature. 2014;514:628–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Caro P, Kishan AU, Norberg E, Stanley IA, Chapuy B, Ficarro SB, et al. Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma. Cancer Cell. 2012;22:547–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Whitaker-Menezes D, Martinez-Outschoorn UE, Flomenberg N, Birbe R, Witkiewicz AK, Howell A, et al. Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effects of metformin in tumor tissue. Cell Cycle. 2011;10:4047–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lonardo E, Cioffi M, Sancho P, Sanchez-Ripoll Y, Trabulo SM, Dorado J, et al. Metformin targets the metabolic achilles heel of human pancreatic cancer stem cells. PLoS One. 2013;8:e76518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Haq R, Shoag J, Andreu-Perez P, Yokoyama S, Edelman H, Rowe GC, et al. Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF. Cancer Cell. 2013;23:302–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yuan P, Ito K, Perez-Lorenzo R, del Guzzo C, Lee JH, Shen CH, et al. Phenformin enhances the therapeutic benefit of BRAF(V600E) inhibition in melanoma. Proc Natl Acad Sci U S A. 2013;110:18226–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Reznik E et al. Mitochondrial DNA copy number variation across human cancers. Elife 5(2016)

  27. Wheaton WW, Weinberg SE, Hamanaka RB, Soberanes S, Sullivan LB, Anso E, et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. Elife. 2014;3:e02242.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Roesch A, Vultur A, Bogeski I, Wang H, Zimmermann KM, Speicher D, et al. Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells. Cancer Cell. 2013;23:811–25.

    Article  CAS  PubMed  Google Scholar 

  29. Shackelford DB, Abt E, Gerken L, Vasquez DS, Seki A, Leblanc M, et al. LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell. 2013;23:143–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2012;35:1364–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Andrzejewski S, Gravel SP, Pollak M, St-Pierre J. Metformin directly acts on mitochondria to alter cellular bioenergetics. Cancer Metab. 2014;2:12.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bridges HR, Jones AJ, Pollak MN, Hirst J. Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. Biochem J. 2014;462:475–87.

    Article  CAS  PubMed  Google Scholar 

  33. Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. 2000;348(Pt 3):607–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. El-Mir MY, et al. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem. 2000;275:223–8.

    Article  CAS  PubMed  Google Scholar 

  35. Coughlin SS, Calle EE, Teras LR, Petrelli J, Thun MJ. Diabetes mellitus as a predictor of cancer mortality in a large cohort of US adults. Am J Epidemiol. 2004;159:1160–7.

    Article  PubMed  Google Scholar 

  36. Koritzinsky M. Metformin: a novel biological modifier of tumor eesponse to radiation therapy. Int J Radiat Oncol Biol Phys. 2015;93:454–64.

    Article  CAS  PubMed  Google Scholar 

  37. Pernicova I, Korbonits M. Metformin--mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol. 2014;10:143–56.

    Article  CAS  PubMed  Google Scholar 

  38. Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD. Metformin and reduced risk of cancer in diabetic patients. BMJ. 2005;330:1304–5.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JMM. New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. Diabetes Care. 2009;32:1620–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li D, Yeung SC, Hassan MM, Konopleva M, Abbruzzese JL. Antidiabetic therapies affect risk of pancreatic cancer. Gastroenterology. 2009;137:482–8.

    Article  PubMed  Google Scholar 

  41. Donadon V, Balbi M, Mas MD, Casarin P, Zanette G. Metformin and reduced risk of hepatocellular carcinoma in diabetic patients with chronic liver disease. Liver Int. 2010;30:750–8.

    Article  CAS  PubMed  Google Scholar 

  42. Landman GW, et al. Metformin associated with lower cancer mortality in type 2 diabetes: ZODIAC-16. Diabetes Care. 2010;33:322–6.

    Article  CAS  PubMed  Google Scholar 

  43. Ben Sahra I, et al. The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene. 2008;27:3576–86.

    Article  CAS  PubMed  Google Scholar 

  44. Brown KA, Hunger NI, Docanto M, Simpson ER. Metformin inhibits aromatase expression in human breast adipose stromal cells via stimulation of AMP-activated protein kinase. Breast Cancer Res Treat. 2010;123:591–6.

    Article  CAS  PubMed  Google Scholar 

  45. Zhou XZ, Xue YM, Zhu B, Sha JP. Effects of metformin on proliferation of human colon carcinoma cell line SW-480. Nan Fang Yi Ke Da Xue Xue Bao. 2010;30:1935–8, 1942.

    CAS  PubMed  Google Scholar 

  46. Kato K, Gong J, Iwama H, Kitanaka A, Tani J, Miyoshi H, et al. The antidiabetic drug metformin inhibits gastric cancer cell proliferation in vitro and in vivo. Mol Cancer Ther. 2012;11:549–60.

    Article  CAS  PubMed  Google Scholar 

  47. Geoghegan F, Chadderton N, Farrar GJ, Zisterer DM, Porter RK. Direct effects of phenformin on metabolism/bioenergetics and viability of SH-SY5Y neuroblastoma cells. Oncol Lett. 2017;14:6298–306.

    PubMed  PubMed Central  Google Scholar 

  48. Jackson AL, Sun W, Kilgore J, Guo H, Fang Z, Yin Y, et al. Phenformin has anti-tumorigenic effects in human ovarian cancer cells and in an orthotopic mouse model of serous ovarian cancer. Oncotarget. 2017;8:100113–27.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Guo Z, Zhao M, Howard EW, Zhao Q, Parris AB, Ma Z, et al. Phenformin inhibits growth and epithelial-mesenchymal transition of ErbB2-overexpressing breast cancer cells through targeting the IGF1R pathway. Oncotarget. 2017;8:60342–57.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rajeshkumar NV, Yabuuchi S, Pai SG, de Oliveira E, Kamphorst JJ, Rabinowitz JD, et al. Treatment of pancreatic cancer patient-derived xenograft panel with metabolic inhibitors reveals efficacy of phenformin. Clin Cancer Res. 2017;23:5639–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Petrachi T, Romagnani A, Albini A, Longo C, Argenziano G, Grisendi G, et al. Therapeutic potential of the metabolic modulator phenformin in targeting the stem cell compartment in melanoma. Oncotarget. 2017;8:6914–28.

    Article  PubMed  Google Scholar 

  52. Kang JH, Lee SH, Lee JS, Nam B, Seong TW, Son J, et al. Aldehyde dehydrogenase inhibition combined with phenformin treatment reversed NSCLC through ATP depletion. Oncotarget. 2016;7:49397–410.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Birsoy K, Possemato R, Lorbeer FK, Bayraktar EC, Thiru P, Yucel B, et al. Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature. 2014;508:108–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Appleyard MV, et al. Phenformin as prophylaxis and therapy in breast cancer xenografts. Br J Cancer. 2012;106:1117–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Velez J, Pan R, Lee JTC, Enciso L, Suarez M, Duque JE, et al. Biguanides sensitize leukemia cells to ABT-737-induced apoptosis by inhibiting mitochondrial electron transport. Oncotarget. 2016;7:51435–49.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Molina JR, Sun Y, Protopopova M, Gera S, Bandi M, Bristow C, et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat Med. 2018;24:1036–46.

    Article  CAS  PubMed  Google Scholar 

  57. Tsuji A, Akao T, Masuya T, Murai M, Miyoshi H. IACS-010759, a potent inhibitor of glycolysis-deficient hypoxic tumor cells, inhibits mitochondrial respiratory complex I through a unique mechanism. J Biol Chem. 2020;295:7481–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kordes S, Pollak MN, Zwinderman AH, Mathôt RA, Weterman MJ, Beeker A, et al. Metformin in patients with advanced pancreatic cancer: a double-blind, randomised, placebo-controlled phase 2 trial. Lancet Oncol. 2015;16:839–47.

    Article  CAS  PubMed  Google Scholar 

  59. Nanni O, et al. Metformin plus chemotherapy versus chemotherapy alone in the first-line treatment of HER2-negative metastatic breast cancer. The MYME randomized, phase 2 clinical trial. Breast Cancer Res Treat. 2019;174:433–42.

    Article  CAS  PubMed  Google Scholar 

  60. Navarro P, Bueno MJ, Zagorac I, Mondejar T, Sanchez J, Mourón S, et al. Targeting tumor mitochondrial metabolism overcomes resistance to antiangiogenics. Cell Rep. 2016;15:2705–18.

    Article  CAS  PubMed  Google Scholar 

  61. Rashid M, Shahzad M, Mahmood S, Khan K. Variability in the therapeutic response of metformin treatment in patients with type 2 diabetes mellitus. Pak J Med Sci. 2019;35:71–6.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chen LB. Mitochondrial membrane potential in living cells. Annu Rev Cell Biol. 1988;4:155–81.

    Article  CAS  PubMed  Google Scholar 

  63. Fantin VR, Leder P. Mitochondriotoxic compounds for cancer therapy. Oncogene. 2006;25:4787–97.

    Article  CAS  PubMed  Google Scholar 

  64. Lim SC, Carey KT, McKenzie M. Anti-cancer analogues ME-143 and ME-344 exert toxicity by directly inhibiting mitochondrial NADH: ubiquinone oxidoreductase (Complex I). Am J Cancer Res. 2015;5:689–701.

    PubMed  PubMed Central  Google Scholar 

  65. •• Quintela-Fandino M, et al. Randomized Phase 0/I Trial of the Mitochondrial Inhibitor ME-344 or Placebo Added to Bevacizumab in Early HER2-Negative Breast Cancer. Clin Cancer Res. 2020;26:35–45 This study randomized patients with early Her2-negative breast cancer to receive ME-344 or ME-344 plus bevacizumab. The investigators found that ME-344 has a significant biological antitumor activity in HER2-negative breast cancer, particularly after induction of vascular normalization and tissue reoxygenation with bevacizumab.

    Article  CAS  PubMed  Google Scholar 

  66. Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28:3167–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Couzin-Frankel J. Breakthrough of the year 2013. Cancer immunotherapy. Science. 2013;342:1432–3.

    CAS  PubMed  Google Scholar 

  68. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov. 2015;14:561–84.

    Article  CAS  PubMed  Google Scholar 

  70. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015;27:450–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gauci ML, Lanoy E, Champiat S, Caramella C, Ammari S, Aspeslagh S, et al. Long-term survival in patients responding to anti-PD-1/PD-L1 therapy and disease outcome upon treatment discontinuation. Clin Cancer Res. 2019;25:946–56.

    Article  PubMed  Google Scholar 

  72. Fares CM, Van Allen EM, Drake CG, Allison JP, Hu-Lieskovan S. Mechanisms of resistance to immune checkpoint blockade: why does checkpoint inhibitor immunotherapy not work for all patients? Am Soc Clin Oncol Educ Book. 2019;39:147–64.

    Article  PubMed  Google Scholar 

  73. Bonaventura P, Shekarian T, Alcazer V, Valladeau-Guilemond J, Valsesia-Wittmann S, Amigorena S, et al. Cold Tumors: A Therapeutic Challenge for Immunotherapy. Front Immunol. 2019;10:168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. van der Woude LL, Gorris MAJ, Halilovic A, Figdor CG, de Vries IJM. Migrating into the tumor: a roadmap for T cells. Trends Cancer. 2017;3:797–808.

    Article  PubMed  Google Scholar 

  75. Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity. 2011;35:871–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR, et al. The CD28 signaling pathway regulates glucose metabolism. Immunity. 2002;16:769–77.

    Article  CAS  PubMed  Google Scholar 

  77. Araki K, Turner AP, Shaffer VO, Gangappa S, Keller SA, Bachmann MF, et al. mTOR regulates memory CD8 T-cell differentiation. Nature. 2009;460:108–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rao RR, Li Q, Odunsi K, Shrikant PA. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity. 2010;32:67–78.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Pearce EL, Walsh MC, Cejas PJ, Harms GM, Shen H, Wang LS, et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature. 2009;460:103–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Williams MA, Bevan MJ. Effector and memory CTL differentiation. Annu Rev Immunol. 2007;25:171–92.

    Article  CAS  PubMed  Google Scholar 

  81. Buck MD, O’Sullivan D, Klein Geltink RI, Curtis JD, Chang CH, Sanin DE, et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell. 2016;166:63–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. • Shin B, et al. Mitochondrial oxidative phosphorylation regulates the fate decision between pathogenic Th17 and regulatory T cells. Cell Rep. 2020;30:1898–1909 e1894 The authors showed that mitochondrial OXPHOS is essential for pathogenic Th17 development. In addition, they demonstrated the regulatory roles of mitochondrial metabolism in regulating molecular events during Th17 lineage commitment.

    Article  CAS  PubMed  Google Scholar 

  83. Diebold LP, Gil HJ, Gao P, Martinez CA, Weinberg SE, Chandel NS. Mitochondrial complex III is necessary for endothelial cell proliferation during angiogenesis. Nat Metab. 2019;1:158–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol. 2011;186:3299–303.

    Article  CAS  PubMed  Google Scholar 

  85. Berod L, Friedrich C, Nandan A, Freitag J, Hagemann S, Harmrolfs K, et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med. 2014;20:1327–33.

    Article  CAS  PubMed  Google Scholar 

  86. Mockler MB, Conroy MJ, Lysaght J. Targeting T cell immunometabolism for cancer immunotherapy; understanding the impact of the tumor microenvironment. Front Oncol. 2014;4:107.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B, Bell LN, et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun. 2015;6:6692.

    Article  CAS  PubMed  Google Scholar 

  88. •• Cha JH, et al. Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Mol Cell. 2018;71:606–620 e607 Authors showed that metformin significantly improved the antitumor effects by CTLA4 blockade without detectable toxicity and suggested that metformin has strong potential to be used in combination with immunotherapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Eikawa S, Nishida M, Mizukami S, Yamazaki C, Nakayama E, Udono H. Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc Natl Acad Sci U S A. 2015;112:1809–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. de Oliveira S, Houseright RA, Graves AL, Golenberg N, Korte BG, Miskolci V, et al. Metformin modulates innate immune-mediated inflammation and early progression of NAFLD-associated hepatocellular carcinoma in zebrafish. J Hepatol. 2019;70:710–21.

    Article  PubMed  Google Scholar 

  91. Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, et al. PD-1 and PD-L1 Checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol. 2017;8:561.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12:492–9.

    Article  CAS  PubMed  Google Scholar 

  93. Pereira FV, Melo ACL, Low JS, de Castro ÍA, Braga TT, Almeida DC, et al. Metformin exerts antitumor activity via induction of multiple death pathways in tumor cells and activation of a protective immune response. Oncotarget. 2018;9:25808–25.

    Article  PubMed  PubMed Central  Google Scholar 

  94. • Afzal MZ, Mercado RR, Shirai K. Efficacy of metformin in combination with immune checkpoint inhibitors (anti-PD-1/anti-CTLA-4) in metastatic malignant melanoma. J Immunother Cancer. 2018;6:64 In this research, authors observed favorable treatment-related outcomes (ORR, DCR, median PFS, and median OS) in patients who have received metformin in combination with ICIs without reaching significance, probably, due to small sample size.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Han Y, Li CW, Hsu JM, Hsu JL, Chan LC, Tan X, et al. Metformin reverses PARP inhibitors-induced epithelial-mesenchymal transition and PD-L1 upregulation in triple-negative breast cancer. Am J Cancer Res. 2019;9:800–15.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Quintela-Fandino.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Evolving Therapies

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bueno, M.J., Ruiz-Sepulveda, J.L. & Quintela-Fandino, M. Mitochondrial Inhibition: a Treatment Strategy in Cancer?. Curr Oncol Rep 23, 49 (2021). https://doi.org/10.1007/s11912-021-01033-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11912-021-01033-x

Keywords

Navigation