Skip to main content

Advertisement

Log in

Cardiovascular Disease and Cancer: Is There Increasing Overlap?

  • Cardio-oncology (EH Yang, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cancer and cardiovascular disease are the leading causes of mortality in the USA. In this review, we highlight these shared disease pathways and provide a framework for a systems-based approach to reduce overall risk burden.

Recent Findings

From traditional risk factors such as age and tobacco use to more recently recognized entities including clonal hematopoiesis, we are gaining insights into shared mechanisms. Because of these overlapping risks, providers on each level of patient care (primary care providers, cardiologists, oncologists) need to recognize and reduce these underlying risk factors.

Summary

There is significant overlap in the epidemiology and risk factors for the development of cardiovascular disease and cancer, providing opportunities for joint risk factor modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Xu J, Murphy SL, Kochanek KD, Bastian BA. Deaths: final data for 2013. Natl Vital Stat Rep. 2016;64(2):1–119.

  2. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380:2095–128.

    Article  PubMed  Google Scholar 

  3. Lerner DJ, Kannel WB. Patterns of coronary heart disease morbidity and mortality in the sexes: a 26-year follow-up of the Framingham population. Am Heart J. 1986;111:383–90.

    Article  CAS  PubMed  Google Scholar 

  4. Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, Finkelstein EA, Hong Y, Johnston SC, Khera A, Lloyd-Jones DM. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation. 2011 Mar 1;123(8):933–44.

  5. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. Heart disease and stroke statistics—2018 update: a report from the American Heart Association. Circulation. 2018;137:e67–e492.

    Article  PubMed  Google Scholar 

  6. Centers for Disease Control and Prevention. Prevalence and most common causes of disability among adults--United States, 2005. MMWR: Morbidity and Mortality weekly report. 2009;58(16):421–6.

  7. Navi BB, Reiner AS, Kamel H, Iadecola C, Okin PM, Elkind MSV, et al. Risk of arterial thromboembolism in patients with cancer. J Am Coll Cardiol. 2017;70:926–38.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Navi BB, Reiner AS, Kamel H, Iadecola C, Elkind MSV, Panageas KS, et al. Association between incident cancer and subsequent stroke. Ann Neurol. 2015;77:291–300.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zöller B, Ji J, Sundquist J, Sundquist K. Risk of coronary heart disease in patients with cancer: a nationwide follow-up study from Sweden. Eur J Cancer. 2012;48:121–8.

    Article  PubMed  Google Scholar 

  10. Lloyd-Jones DM, Larson MG, Leip EP, Beiser A, D’Agostino RB, Kannel WB, et al. Lifetime risk for developing congestive heart failure: the Framingham Heart Study. Circulation. 2002;106:3068–72.

    Article  PubMed  Google Scholar 

  11. Heidenreich PA, Albert NM, Allen LA, et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail. 2013; HHF. 0b013e318291329a.

  12. MacIntyre K, Capewell S, Stewart S, Chalmers JWT, Boyd J, Finlayson A, et al. Evidence of improving prognosis in heart failure: trends in case fatality in 66 547 patients hospitalized between 1986 and 1995. Circulation. 2000;102:1126–31.

    Article  CAS  PubMed  Google Scholar 

  13. Hasin T, Gerber Y, McNallan SM, et al. Patients with heart failure have an increased risk of incident cancer. J Am Coll Cardiol. 2013;62:881–6.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hasin T, Gerber Y, Weston SA, Jiang R, Killian JM, Manemann SM, et al. Heart failure after myocardial infarction is associated with increased risk of cancer. J Am Coll Cardiol. 2016;68:265–71.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Banke A, Schou M, Videbaek L, Møller JE, Torp-Pedersen C, Gustafsson F, et al. Incidence of cancer in patients with chronic heart failure: a long-term follow-up study. Eur J Heart Fail. 2016;18:260–6.

    Article  PubMed  Google Scholar 

  16. Sakamoto M, Hasegawa T, Asakura M, Kanzaki H, Takahama H, Amaki M, et al. Does the pathophysiology of heart failure prime the incidence of cancer? Hypertens Res. 2017;40:831–6.

    Article  PubMed  Google Scholar 

  17. Selvaraj S, Bhatt DL, Claggett B, Djoussé L, Shah SJ, Chen J, et al. Lack of association between heart failure and incident cancer. J Am Coll Cardiol. 2018;71:1501–10.

    Article  PubMed  Google Scholar 

  18. Society AC. Cancer facts & figures 2018. American Cancer Society: Atlanta; 2018.

    Google Scholar 

  19. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30.

    Article  PubMed  Google Scholar 

  20. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30.

    Article  PubMed  Google Scholar 

  21. Savji N, Rockman CB, Skolnick AH, Guo Y, Adelman MA, Riles T, et al. Association between advanced age and vascular disease in different arterial territories: a population database of over 3.6 million subjects. J Am Coll Cardiol. 2013;61:1736–43.

    Article  PubMed  Google Scholar 

  22. Garcia M, Jemal A, Ward E, et al. Global cancer facts & figures 2007, vol. 1. Atlanta: American cancer society; 2007. p. 52.

    Google Scholar 

  23. Yusuf S, Hawken S, Ôunpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364:937–52.

    Article  PubMed  Google Scholar 

  24. Piercy KL, Troiano RP, Ballard RM, et al. The physical activity guidelines for Americans. JAMA. 2018. https://doi.org/10.1001/jama.2018.14854.

  25. Thune I, Furberg A-S. Physical activity and cancer risk: dose-response and cancer, all sites and site-specific. Med Sci Sports Exerc. 2001;33:S530–50 discussion S609-10.

    Article  CAS  PubMed  Google Scholar 

  26. McTiernan A. Mechanisms linking physical activity with cancer. Nat Rev Cancer. 2008;8:205–11.

    Article  CAS  PubMed  Google Scholar 

  27. Prevention CfDCa. Consumption of cigarettes and combustible tobacco--United States, 2000–2011. MMWR Morb Mortal Wkly Rep. 2012;61:565.

    Google Scholar 

  28. Services UDoHaH. The health consequences of smoking—50 years of progress: a report of the Surgeon General, vol. 17. Atlanta: US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health; 2014.

    Google Scholar 

  29. Gilmour S, Moffiet T, d’Espaignet ET, et al. Global trends and projections for tobacco use, 1990–2025: an analysis of smoking indicators from the WHO Comprehensive Information Systems for Tobacco Control. Lancet. 2015;385:966–76.

    Article  PubMed  Google Scholar 

  30. Hecht SS. Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nat Rev Cancer. 2003;3:733–44.

    Article  CAS  PubMed  Google Scholar 

  31. Walser T, Cui X, Yanagawa J, Lee JM, Heinrich E, Lee G, et al. Smoking and lung cancer: the role of inflammation. Proc Am Thorac Soc. 2008;5:811–5.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Burns DM. Epidemiology of smoking-induced cardiovascular disease. Prog Cardiovasc Dis. 2003;46:11–29.

    Article  PubMed  Google Scholar 

  33. Morris PB, Ference BA, Jahangir E, Feldman DN, Ryan JJ, Bahrami H, et al. Cardiovascular effects of exposure to cigarette smoke and electronic cigarettes: clinical perspectives from the Prevention of Cardiovascular Disease Section Leadership Council and Early Career Councils of the American College of Cardiology. J Am Coll Cardiol. 2015;66:1378–91.

    Article  CAS  PubMed  Google Scholar 

  34. Johnson HM, Gossett LK, Piper ME, Aeschlimann SE, Korcarz CE, Baker TB, et al. Effects of smoking and smoking cessation on endothelial function: 1-year outcomes from a randomized clinical trial. J Am Coll Cardiol. 2010;55:1988–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Doll R. Uncovering the effects of smoking: historical perspective. Stat Methods Med Res. 1998;7:87–117.

    Article  CAS  PubMed  Google Scholar 

  36. Ronksley PE, Brien SE, Turner BJ, Mukamal KJ, Ghali WA. Association of alcohol consumption with selected cardiovascular disease outcomes: a systematic review and meta-analysis. Bmj. 2011;342:d671.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Di Castelnuovo A, Costanzo S, Bagnardi V, Donati MB, Iacoviello L, De Gaetano G. Alcohol dosing and total mortality in men and women: an updated meta-analysis of 34 prospective studies. Arch Intern Med. 2006;166:2437–45.

    Article  PubMed  Google Scholar 

  38. Beulens JW, Rimm EB, Ascherio A, Spiegelman D, Hendriks HF, Mukamal KJ. Alcohol consumption and risk for coronary heart disease among men with hypertension. Ann Intern Med. 2007;146:10–9.

    Article  PubMed  Google Scholar 

  39. Mukamal KJ, Chiuve SE, Rimm EB. Alcohol consumption and risk for coronary heart disease in men with healthy lifestyles. Arch Intern Med. 2006;166:2145–50.

    Article  PubMed  Google Scholar 

  40. Zairis M, Ambrose J, Lyras A, Thoma MA, Psarogianni PK, Psaltiras PG, et al. C Reactive protein, moderate alcohol consumption, and long term prognosis after successful coronary stenting: four year results from the GENERATION study. Heart. 2004;90:419–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lucas DL, Brown RA, Wassef M, Giles TD. Alcohol and the cardiovascular system: research challenges and opportunities. J Am Coll Cardiol. 2005;45:1916–24.

    Article  CAS  PubMed  Google Scholar 

  42. Bagnardi V, Rota M, Botteri E, Tramacere I, Islami F, Fedirko V, et al. Alcohol consumption and site-specific cancer risk: a comprehensive dose–response meta-analysis. Br J Cancer. 2015;112:580–93.

    Article  CAS  PubMed  Google Scholar 

  43. Baan R, Straif K, Grosse Y, Secretan B, el Ghissassi F, Bouvard V, et al. Carcinogenicity of alcoholic beverages. Lancet Oncol. 2007;8:292–3.

    Article  PubMed  Google Scholar 

  44. Cao Y, Willett WC, Rimm EB, Stampfer MJ, Giovannucci EL. Light to moderate intake of alcohol, drinking patterns, and risk of cancer: results from two prospective US cohort studies. BMJ. 2015;351:h4238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xi B, Veeranki SP, Zhao M, Ma C, Yan Y, Mi J. Relationship of alcohol consumption to all-cause, cardiovascular, and cancer-related mortality in US adults. J Am Coll Cardiol. 2017;70:913–22.

    Article  PubMed  Google Scholar 

  46. Seitz HK, Stickel F. Molecular mechanisms of alcohol-mediated carcinogenesis. Nat Rev Cancer. 2007;7:599–612.

    Article  CAS  PubMed  Google Scholar 

  47. Watson R, Nixon P, Seitz H, Maclennan R. Alcohol and cancer. Alcohol Alcohol Suppl. 1994;2:453–5.

    CAS  PubMed  Google Scholar 

  48. Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and trends in obesity among US adults, 1999-2008. Jama. 2010;303:235–41.

    Article  CAS  PubMed  Google Scholar 

  49. Wilson PW, D’agostino RB, Sullivan L, Parise H, Kannel WB. Overweight and obesity as determinants of cardiovascular risk: the Framingham experience. Arch Intern Med. 2002;162:1867–72.

    Article  PubMed  Google Scholar 

  50. Hubert HB, Feinleib M, McNamara PM, Castelli WP. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation. 1983;67:968–77.

    Article  CAS  PubMed  Google Scholar 

  51. Grundy SM. Obesity, metabolic syndrome, and coronary atherosclerosis. Circulation. 2002;105:2696–2698.

  52. Litwin SE. Cardiac Remodeling in Obesity. Time for a New Paradigm. JACC Cardiovasc Imaging. 2010;3:275–277.

  53. Vasan RS. Cardiac function and obesity. Heart 2003;89:1127–9.

  54. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of US adults. N Engl J Med. 2003;348:1625–38.

    Article  PubMed  Google Scholar 

  55. Bianchini F, Kaaks R, Vainio H. Overweight, obesity, and cancer risk. Lancet Oncol. 2002;3:565–74.

    Article  PubMed  Google Scholar 

  56. Calle EE, Thun MJ, Petrelli JM, Rodriguez C, Heath CW Jr. Body-mass index and mortality in a prospective cohort of US adults. N Engl J Med. 1999;341:1097–105.

    Article  CAS  PubMed  Google Scholar 

  57. Tee MC, Cao Y, Warnock GL, Hu FB, Chavarro JE. Effect of bariatric surgery on oncologic outcomes: a systematic review and meta-analysis. Surg Endosc. 2013;27:4449–56.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sjöström L, Narbro K, Sjöström CD, Karason K, Larsson B, Wedel H, et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med. 2007;357:741–52.

    Article  PubMed  Google Scholar 

  59. Gallagher EJ, LeRoith D. Epidemiology and molecular mechanisms tying obesity, diabetes, and the metabolic syndrome with cancer. Diabetes Care. 2013;36:S233–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Matsuda M, Shimomura I. Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract. 2013;7:e330–41.

    Article  PubMed  Google Scholar 

  61. Scheid MP, Sweeney G. The role of adiponectin signaling in metabolic syndrome and cancer. Rev Endocr Metab Disord. 2014;15:157–67.

    Article  CAS  PubMed  Google Scholar 

  62. Drazner MH. The progression of hypertensive heart disease. Circulation. 2011;123:327–34.

    Article  PubMed  Google Scholar 

  63. Alexander RW. Hypertension and the pathogenesis of atherosclerosis: oxidative stress and the mediation of arterial inflammatory response: a new perspective. Hypertension. 1995;25:155–61.

    Article  CAS  PubMed  Google Scholar 

  64. Sipahi I, Debanne SM, Rowland DY, Simon DI, Fang JC. Angiotensin-receptor blockade and risk of cancer: meta-analysis of randomised controlled trials. Lancet Oncol. 2010;11:627–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Collaboration AT. Effects of telmisartan, irbesartan, valsartan, candesartan, and losartan on cancers in 15 trials enrolling 138 769 individuals. J Hypertens. 2011;29:623–35.

    Article  CAS  Google Scholar 

  66. Bangalore S, Kumar S, Kjeldsen SE, Makani H, Grossman E, Wetterslev J, et al. Antihypertensive drugs and risk of cancer: network meta-analyses and trial sequential analyses of 324 168 participants from randomised trials. Lancet Oncol. 2011;12:65–82.

    Article  CAS  PubMed  Google Scholar 

  67. FDA Drug Safety Communication. No increase in risk of cancer with certain blood pressure drugs—Angiotensin Receptor Blockers (ARBs), 15 July 2010; www.fda.gov/Drugs/DrugSafety/ucm257516.htm.

  68. Hicks BM, Filion KB, Yin H, Sakr L, Udell JA, Azoulay L. Angiotensin converting enzyme inhibitors and risk of lung cancer: population based cohort study. BMJ. 2018;363:k4209.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Perez-Sayans M, Somoza-Martin JM, Barros-Angueira F, Diz PG, Gandara Rey JM, Garcia-Garcia A. Beta-adrenergic receptors in cancer: therapeutic implications. Oncol Res. 2010;19:45–54.

    Article  CAS  PubMed  Google Scholar 

  70. Coelho M, Soares-Silva C, Brandao D, Marino F, Cosentino M, Ribeiro L. beta-Adrenergic modulation of cancer cell proliferation: available evidence and clinical perspectives. J Cancer Res Clin Oncol. 2017;143:275–91.

    Article  CAS  PubMed  Google Scholar 

  71. Barron TI, Connolly RM, Sharp L, Bennett K, Visvanathan K. Beta blockers and breast cancer mortality: a population- based study. J Clin Oncol. 2011;29:2635–44.

    Article  CAS  PubMed  Google Scholar 

  72. Childers WK, Hollenbeak CS, Cheriyath P. beta-Blockers reduce breast cancer recurrence and breast cancer death: a meta-analysis. Clin Breast Cancer. 2015;15:426–31.

    Article  CAS  PubMed  Google Scholar 

  73. Grytli HH, Fagerland MW, Fossa SD, Tasken KA. Association between use of beta-blockers and prostate cancer-specific survival: a cohort study of 3561 prostate cancer patients with high-risk or metastatic disease. Eur Urol. 2014;65:635–41.

    Article  CAS  PubMed  Google Scholar 

  74. Wang HM, Liao ZX, Komaki R, Welsh JW, O’Reilly MS, Chang JY, et al. Improved survival outcomes with the incidental use of beta-blockers among patients with non-small-cell lung cancer treated with definitive radiation therapy. Ann Oncol. 2013;24:1312–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Watkins JL, Thaker PH, Nick AM, Ramondetta LM, Kumar S, Urbauer DL, et al. Clinical impact of selective and nonselective beta-blockers on survival in patients with ovarian cancer. Cancer. 2015;121:3444–51.

    Article  CAS  PubMed  Google Scholar 

  76. Weberpals J, Jansen L, Haefeli WE, Hoffmeister M, Wolkewitz M, Herk-Sukel MPP, et al. Pre- and post-diagnostic beta-blocker use and lung cancer survival: a population-based cohort study. Sci Rep. 2017;7:2911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Weberpals J, Jansen L, van Herk-Sukel MPP, Kuiper JG, Aarts MJ, Vissers PAJ, et al. Immortal time bias in pharmacoepidemiological studies on cancer patient survival: empirical illustration for beta-blocker use in four cancers with different prognosis. Eur J Epidemiol. 2017;32:1019–31.

    Article  PubMed  Google Scholar 

  78. Jansen L, Weberpals J, Kuiper JG, Vissers PAJ, Wolkewitz M, Hoffmeister M, et al. Pre- and post-diagnostic beta-blocker use and prognosis after colorectal cancer: results from a population-based study. Int J Cancer. 2017;141:62–71.

    Article  CAS  PubMed  Google Scholar 

  79. Na Z, Qiao X, Hao X, Fan L, Xiao Y, Shao Y, et al. The effects of beta-blocker use on cancer prognosis: a meta-analysis based on 319,006 patients. Onco Targets Ther. 2018;11:4913–44.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Livingstone E, Hollestein LM, van Herk-Sukel MP, et al. beta-Blocker use and all-cause mortality of melanoma patients: results from a population-based Dutch cohort study. Eur J Cancer. 2013;49:3863–71.

    Article  CAS  PubMed  Google Scholar 

  81. Yap A, Lopez-Olivo MA, Dubowitz J, Pratt G, Hiller J, Gottumukkala V, et al. Effect of beta-blockers on cancer recurrence and survival: a meta-analysis of epidemiological and perioperative studies. Br J Anaesth. 2018;121:45–57.

    Article  CAS  PubMed  Google Scholar 

  82. Grossman E, Messerli FH, Boyko V, Goldbourt U. Is there an association between hypertension and cancer mortality? Am J Med. 2002;112:479–86.

    Article  PubMed  Google Scholar 

  83. Felmeden DC, Spencer CG, Belgore FM, Blann AD, Beevers DG, Lip GY. Endothelial damage and angiogenesis in hypertensive patients: relationship to cardiovascular risk factors and risk factor management. Am J Hypertens. 2003;16:11–20.

    Article  CAS  PubMed  Google Scholar 

  84. Ferrara N. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer. 2002;2:795–803.

    Article  CAS  PubMed  Google Scholar 

  85. Robinson ES, Matulonis UA, Ivy P, Berlin ST, Tyburski K, Penson RT, Humphreys BD. Rapid development of hypertension and proteinuria with cediranib, an oral vascular endothelial growth factor receptor inhibitor. Clinical Journal of the American Society of Nephrology. 2010 Mar 1;5(3):477–83.

  86. Pekkanen J, Linn S, Heiss G, Suchindran CM, Leon A, Rifkind BM, et al. Ten-year mortality from cardiovascular disease in relation to cholesterol level among men with and without preexisting cardiovascular disease. N Engl J Med. 1990;322:1700–7.

    Article  CAS  PubMed  Google Scholar 

  87. Pearson TA, Blair SN, Daniels SR, Eckel RH, Fair JM, Fortmann SP, et al. AHA guidelines for primary prevention of cardiovascular disease and stroke: 2002 update: consensus panel guide to comprehensive risk reduction for adult patients without coronary or other atherosclerotic vascular diseases. Circulation. 2002;106:388–91.

    Article  PubMed  Google Scholar 

  88. Smith SC, Allen J, Blair SN, et al. AHA/ACC guidelines for secondary prevention for patients with coronary and other atherosclerotic vascular disease: 2006 update: endorsed by the National Heart, Lung, and Blood Institute. J Am Coll Cardiol. 2006;47:2130–9.

    Article  PubMed  Google Scholar 

  89. Nelson ER, Wardell SE, Jasper JS, Park S, Suchindran S, Howe MK, et al. 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science. 2013;342:1094–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Warner M, Gustafsson J-A. On estrogen, cholesterol metabolism, and breast cancer. N Engl J Med. 2014;370:572–3.

    Article  CAS  PubMed  Google Scholar 

  91. DuSell CD, Umetani M, Shaul PW, Mangelsdorf DJ, McDonnell DP. 27-Hydroxycholesterol is an endogenous selective estrogen receptor modulator. Mol Endocrinol. 2008;22:65–77.

    Article  CAS  PubMed  Google Scholar 

  92. Brown AJ, Jessup W. Oxysterols and atherosclerosis. Atherosclerosis. 1999;142:1–28.

    Article  CAS  PubMed  Google Scholar 

  93. Umetani M, Ghosh P, Ishikawa T, Umetani J, Ahmed M, Mineo C, et al. The cholesterol metabolite 27-hydroxycholesterol promotes atherosclerosis via proinflammatory processes mediated by estrogen receptor alpha. Cell Metab. 2014;20:172–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Undela K, Srikanth V, Bansal D. Statin use and risk of breast cancer: a meta-analysis of observational studies. Breast Cancer Res Treat. 2012;135:261–9.

    Article  CAS  PubMed  Google Scholar 

  95. Carter PR, Uppal H, Chandran S, Bainey KR, Potluri R. Algorithm for Comorbidities, Length of Stay and Mortality (ACALM) Research Unit. Patients with a diagnosis of hyperlipidaemia have a reduced risk of developing breast cancer and lower mortality rates: a large retrospective longitudinal cohort study from the UK ACALM registry. European Heart Journal 2017;38:3106

  96. Berglund G, Nilsson P, Eriksson KF, Nilsson JA, Hedblad B, Kristenson H, et al. Long-term outcome of the Malmö Preventive Project: mortality and cardiovascular morbidity. J Intern Med. 2000;247:19–29.

    Article  CAS  PubMed  Google Scholar 

  97. Nielsen SF, Nordestgaard BG, Bojesen SE. Statin use and reduced cancer-related mortality. N Engl J Med. 2012;367:1792–802.

    Article  CAS  PubMed  Google Scholar 

  98. Wang A, Aragaki AK, Tang JY, Kurian AW, Manson JAE, Chlebowski RT, et al. Statin use and all-cancer survival: prospective results from the Women’s Health Initiative. Br J Cancer. 2016;115:129–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mei Z, Liang M, Li L, Zhang Y, Wang Q, Yang W. Effects of statins on cancer mortality and progression: a systematic review and meta-analysis of 95 cohorts including 1,111,407 individuals. Int J Cancer. 2017;140:1068–81.

    Article  CAS  PubMed  Google Scholar 

  100. Ahern TP, Pedersen L, Tarp M, Cronin-Fenton DP, Garne JP, Silliman RA, et al. Statin prescriptions and breast cancer recurrence risk: a Danish nationwide prospective cohort study. J Natl Cancer Inst. 2011;103:1461–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Preventing anthracycline cardiovascular toxicity with statins (PREVENT). https://clinicaltrials.gov/ct2/show/nct01988571. Accessed 1/22/2019.

  102. Mellitus D. A major risk factor for cardiovascular disease: a joint editorial statement by the American Diabetes Association; the National Heart, Lung, and Blood Institute; the Juvenile Diabetes Foundation International; the National Institute of Diabetes and Digestive and Kidney Diseases; and the American Heart Association. Circulation. 1999;100:1132–3.

    Article  Google Scholar 

  103. Tesfamariam B, Cohen RA. Free radicals mediate endothelial cell dysfunction caused by elevated glucose. Am J Phys Heart Circ Phys. 1992;263:H321–6.

    CAS  Google Scholar 

  104. Delafontaine P, Song Y-H, Li Y. Expression, regulation, and function of IGF-1, IGF-1R, and IGF-1 binding proteins in blood vessels. Arterioscler Thromb Vasc Biol. 2004;24:435–44.

    Article  CAS  PubMed  Google Scholar 

  105. Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, et al. Diabetes and cancer: a consensus report. CA Cancer J Clin. 2010;60:207–21.

    Article  PubMed  Google Scholar 

  106. Tsilidis KK, Kasimis JC, Lopez DS, Ntzani EE, Ioannidis JP. Type 2 diabetes and cancer: umbrella review of meta-analyses of observational studies. BMJ. 2015;350:g7607.

    Article  PubMed  Google Scholar 

  107. Inoue M, Iwasaki M, Otani T, Sasazuki S, Noda M, Tsugane S. Diabetes mellitus and the risk of cancer: results from a large-scale population-based cohort study in Japan. Arch Intern Med. 2006;166:1871–7.

    Article  PubMed  Google Scholar 

  108. Noto H, Goto A, Tsujimoto T, Noda M. Cancer risk in diabetic patients treated with metformin: a systematic review and meta-analysis. PLoS One. 2012;7:e33411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. DeCensi A, Puntoni M, Goodwin P, Cazzaniga M, Gennari A, Bonanni B, Gandini S. Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer prevention research. 2010 Nov 1;3(11):1451–61.

  110. Jiralerspong S, Palla SL, Giordano SH, Meric-Bernstam F, Liedtke C, Barnett CM, et al. Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol. 2009;27:3297–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. McFarland MS, Cripps R. Diabetes mellitus and increased risk of cancer: focus on metformin and the insulin analogs. Pharmacotherapy. 2010;30:1159–78.

    Article  CAS  PubMed  Google Scholar 

  112. Scafoglio CR, Villegas B, Abdelhady G, et al. Sodium-glucose transporter 2 is a diagnostic and therapeutic target for early-stage lung adenocarcinoma. Sci Transl Med. 2018;10:eaat5933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Renehan AG, Zwahlen M, Minder C, O’Dwyer ST, Shalet SM, Egger M. Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet. 2004;363:1346–53.

    Article  CAS  PubMed  Google Scholar 

  114. Kaaks R, Lukanova A, Kurzer MS. Obesity, endogenous hormones, and endometrial cancer risk: a synthetic review. Cancer Epidemiol Prev Biomark. 2002;11:1531–43.

    CAS  Google Scholar 

  115. Spranger J, Kroke A, Möhlig M, et al. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes. 2003;52:812–7.

    Article  CAS  PubMed  Google Scholar 

  116. Libby P. Inflammation and cardiovascular disease mechanisms. Am J Clin Nutr. 2006;83:456S–60S.

    Article  CAS  PubMed  Google Scholar 

  117. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357:539–45.

    Article  CAS  PubMed  Google Scholar 

  118. Collaboration ERF. C-reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med. 2012;367:1310–20.

    Article  Google Scholar 

  119. Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med. 2000;342:836–43.

    Article  CAS  PubMed  Google Scholar 

  120. de Sanjose S, Quint WG, Alemany L, Geraets DT, Klaustermeier JE, Lloveras B, et al. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol. 2010;11:1048–56.

    Article  CAS  PubMed  Google Scholar 

  121. Katsanos K, Tsianos E. The kidneys in inflammatory bowel disease. Ann Gastroenterol. 2002;15(1):41–52

  122. Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. J Investig Dermatol. 2007;127:514–25.

    Article  CAS  PubMed  Google Scholar 

  123. Turesson C, Matteson EL. Malignancy as a comorbidity in rheumatic diseases. Rheumatology. 2012;52:5–14.

    Article  PubMed  Google Scholar 

  124. Derk CT, Rasheed M, Artlett CM, Jimenez SA. A cohort study of cancer incidence in systemic sclerosis. J Rheumatol. 2006;33:1113–6.

    PubMed  Google Scholar 

  125. Ridker PM, MacFadyen JG, Thuren T, et al. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet. 2017;390:1833–42.

    Article  CAS  PubMed  Google Scholar 

  126. Ridker PM, Everett BM, Thuren T, MacFadyen J, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377:1119–31.

    Article  CAS  PubMed  Google Scholar 

  127. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371:2488–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Jaiswal S, Natarajan P, Silver AJ, Gibson CJ, Bick AG, Shvartz E, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med. 2017;377:111–21.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Dorsheimer L, Assmus B, Rasper T, et al. Association of mutations contributing to clonal hematopoiesis with prognosis in chronic ischemic heart failure. JAMA Cardiol. 2019;4(1):25–33

  130. Khairy P, Ionescu-Ittu R, Mackie AS, Abrahamowicz M, Pilote L, Marelli AJ. Changing mortality in congenital heart disease. J Am Coll Cardiol. 2010;56:1149–57.

    Article  PubMed  Google Scholar 

  131. Gurvitz M, Ionescu-Ittu R, Guo L, Eisenberg MJ, Abrahamowicz M, Pilote L, et al. Prevalence of cancer in adults with congenital heart disease compared with the general population. Am J Cardiol. 2016;118:1742–50.

    Article  PubMed  Google Scholar 

  132. Asrani SK, Warnes CA, Kamath PS. Hepatocellular carcinoma after the Fontan procedure. N Engl J Med. 2013;368:1756–7.

    Article  CAS  PubMed  Google Scholar 

  133. Cohen S, Liu A, Gurvitz M, Guo L, Therrien J, Laprise C, et al. Exposure to low-dose ionizing radiation from cardiac procedures and malignancy risk in adults with congenital heart disease. Circulation. 2018;137:1334–45.

    Article  PubMed  Google Scholar 

  134. •• Lancellotti P, Suter T, Lopez-Fernandez T, et al. Cardio-oncology services: rationale, organization, and implementation. A report from the ESC Cardio-Oncology council. Eur Heart J. 2018;00:1–8 A report from the European Society of Cardiology Cardio-Oncology council that provides justification for the existence of Cardio-Oncology services, provides options for how these services should be organized, and addresses their scope of practice. It emphasizes members of the Cardio-Oncology team and describes options for structuring these services across different care settings (i.e., clinic vs. community hospital vs. tertiary hospital).

    Google Scholar 

  135. Herrmann J, Lerman A, Sandhu N, Villarraga H, Mulvagh S, Kohli M. Evaluation and management of patients with heart disease and cancer: cardio-oncology. Mayo Clin Proc. 2014;89:1287–306.

    Article  PubMed  Google Scholar 

  136. •• Handy C, Quispe R, Pinto X, et al. Synergistic opportunities in the interplay between cancer screening and cardiovascular disease risk assessment: together we are stronger. Circulation. 2018;138:727–34 Review article that evaluates opportunities for overlap in the prevention of cardiovascular and oncologic disease. It lays out the data for a relationship between common cancers and cardiovascular disease and possible targets for combining cardiovascular and oncologic screening. These include low-dose chest CT for coronary calcification and lung cancer, and mammography for breast cancer and breast arterial calcification.

    Article  PubMed  Google Scholar 

  137. Zanon M, Pacini G, de Souza V, et al. Early detection of lung cancer using ultra-low-dose computed tomography in coronary CT angiography scans among patients with suspected coronary heart disease. Lung Cancer. 2017;114:1–5.

    Article  PubMed  Google Scholar 

  138. Kemmeren JM, van Noord PA, Beijerinck D, Fracheboud J, Banga JD, van der Graaf Y. Arterial calcification found on breast cancer screening mammograms and cardiovascular mortality in women: the DOM Project. Doorlopend Onderzoek Morbiditeit en Mortaliteit. Am J Epidemiol. 1998;147:333–41.

    Article  CAS  PubMed  Google Scholar 

  139. Kemmeren JM, Beijerinck D, van Noord PA, Banga JD, Deurenberg JJ, Pameijer FA, et al. Breast arterial calcifications: association with diabetes mellitus and cardiovascular mortality. Work Prog Radiol. 1996;201:75–8.

    CAS  Google Scholar 

  140. Iribarren C, Go AS, Tolstykh I, Sidney S, Johnston SC, Spring DB. Breast vascular calcification and risk of coronary heart disease, stroke, and heart failure. J Women’s Health (Larchmt). 2004;13:381–9 discussion 390-2.

    Article  Google Scholar 

  141. Schnatz PF, Marakovits KA, O’Sullivan DM. The association of breast arterial calcification and coronary heart disease. Obstet Gynecol. 2011;117:233–41.

    Article  PubMed  Google Scholar 

  142. Hendriks E, de Jong P, van der Graaf Y, Mali W, van der Schouw Y, Beulens J. Breast arterial calcifications: a systematic review and meta-analysis of their determinants and their association with cardiovascular events. Atherosclerosis. 2015;239:11–20.

    Article  CAS  PubMed  Google Scholar 

  143. Lotrionte M, Biondi-Zoccai G, Abbate A, et al. Review and meta-analysis of incidence and clinical predictors or anthracycline cardiotoxicity. Am J Cardiol. 2013;112:1980–4.

    Article  CAS  PubMed  Google Scholar 

  144. Albini A, Pennesi G, Donatelli F, Cammarota R, De Flora S, Noonan D. Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. J Natl Cancer Inst. 2010;102:14–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. • Tajiri K, Aonuma K, Sekine I. Cardio-oncology: a multidisciplinary approach for detection, prevention and management of cardiac dysfunction in cancer patients. Jpn J Clin Oncol. 2017;47:678–82 A review article exploring possible means of detecting and caring for cardiovascular disease and complications of oncologic diagnoses. The review encourages immediate cardiovascular risk assessment following every cancer diagnosis, and anticipation, monitoring, and treatment for cardiotoxicity. It also emphasizes the importance of long-term monitoring for cardiovascular complications given potential significant delay in development of cardiovascular complications.

    Article  PubMed  Google Scholar 

  146. Armenian SH, Lacchetti C, Barac A, Carver J, Constine LS, Denduluri N, et al. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2017;35:893–911.

    Article  PubMed  Google Scholar 

  147. • Johnson CB, Davis MK, Law A, Sulpher J. Shared risk factors for cardiovascular disease and cancer: implications for preventive health and clinical care in oncology patients. Can J Cardiol. 2016;32:900–7 A review article summarizing the evidence for overlapping epidemiology for cardiovascular and oncologic disease and how cardiovascular disease may affect treatment of malignancies. It also addresses how cardiovascular disease may play a role in determining cancer outcomes. Finally, it touches on the potential for modeling of individually tailored cardiovascular risk in the setting of a cancer diagnosis.

    Article  PubMed  Google Scholar 

  148. Plana J, Galderisi M, Barac A, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2014;15:1063–93.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Armenian S, Armstrong G, Aune G, et al. Cardiovascular disease in survivors of childhood cancer: insights into epidemiology, pathophysiology, and prevention. J Clin Oncol. 2018;36:2135–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Chow E, Chen Y, Kremer L, et al. Individual prediction of heart failure among childhood cancer survivors. J Clin Oncol. 2015;33:394–402.

    Article  PubMed  Google Scholar 

  151. • Armenian S, Xu L, Ky B, et al. Cardiovascular disease among survivors of adult-onset cancer: A community-based retrospective cohort study. J Clin Oncol. 2016;34:1122–30 A retrospective cohort study to evaluate burden of cardiovascular disease in a large population of adult-onset cancer survivors. They found that rates of cardiovascular disease following cancer treatment were related to the number of cardiovascular risk factors and type of cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ligibel J, Alfano C, Courneya K, et al. American Society of Clinical Oncology position statement on obesity and cancer. J Clin Oncol. 2014;32:3568–74.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Piccirillo J, Tierney R, Costas I, Grove L, Spitznagel E. Prognostic importance of comorbidity in a hospital-based cancer registry. JAMA. 2004;291:2441–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard K. Cheng.

Ethics declarations

Conflict of Interest

Logan Vincent declares that she has no conflict of interest.

Douglas Leedy declares that he has no conflict of interest.

Sofia Carolina Masri declares that she has no conflict of interest.

Richard K. Cheng has served as a consultant and participated on advisory boards for Alnylam Pharmaceuticals (modest) and Ionis/Akcea Pharmaceuticals (modest).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardio-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vincent, L., Leedy, D., Masri, S.C. et al. Cardiovascular Disease and Cancer: Is There Increasing Overlap?. Curr Oncol Rep 21, 47 (2019). https://doi.org/10.1007/s11912-019-0796-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-019-0796-0

Keywords

Navigation