Skip to main content

Advertisement

Log in

Cardiovascular Complications Associated with Multiple Myeloma Therapies: Incidence, Pathophysiology, and Management

  • Cardio-oncology (EH Yang, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Multiple myeloma is a common hematologic malignancy characterized by recurrent relapsing disease course requiring use of various therapies. Over the past few decades, significant advancements in the treatment of myeloma have occurred including routine use of proteasome inhibitors and immunomodulatory drugs. These have effectively improved survival; however, some also have increased risk of cardiovascular toxicity. Here, we will review the incidence, pathophysiology, and management of cardiovascular complications associated with antimyeloma agents.

Recent Findings

Cardiovascular complications associated with myeloma treatment are common. These cardiovascular complications include accelerated hypertension, ischemic heart disease, congestive heart failure, arrhythmia, pulmonary hypertension, venous thromboembolism, and arterial thromboembolism. Thromboprophylactic strategies during treatment with immunomodulatory agents and screening strategies to detect changes in myocardial function prior to the development of overt heart failure have occurred.

Summary

Cardiovascular complications associated with proteasome inhibitors and immunomodulatory drugs are an important component in supportive care of patients with myeloma. The incidence of cardiotoxicity is high, and, as such, early intervention and collaborative efforts between cardiologists and oncologists to mitigate and effectively manage these complications are imperative. Additional studies are needed to clarify the underlying pathophysiology and evaluate effective strategies for prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Palumbo A, Anderson K. Multiple myeloma. N Engl J Med. 2011;364:1046–60.

    Article  CAS  Google Scholar 

  2. Kazandjian D. Multiple myeloma epidemiology and survival: a unique malignancy. Semin Oncol. 2016;43:676–81.

    Article  Google Scholar 

  3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    Article  Google Scholar 

  4. Gandhi UH, Senapedis W, Baloglu E, Unger TJ, Chari A, Vogl D, et al. Clinical implications of targeting XPO1-mediated nuclear export in multiple myeloma. Clin Lymphoma Myeloma Leuk. 2018;18:335–45.

    Article  Google Scholar 

  5. Li W, Cornell RF, Lenihan D, Slosky D, Jagasia M, Piazza G, et al. Cardiovascular complications of novel multiple myeloma treatments. Circulation. 2016;133:908–12.

    Article  Google Scholar 

  6. Kistler KD, Kalman J, Sahni G, Murphy B, Werther W, Rajangam K, et al. Incidence and risk of cardiac events in patients with previously treated multiple myeloma versus matched patients without multiple myeloma: an observational, retrospective, Cohort Study. Clin Lymphoma Myeloma Leuk. 2017;17:89–96.e3.

    Article  Google Scholar 

  7. Kristinsson SY, Fears TR, Gridley G, Turesson I, Mellqvist UH, Bjorkholm M, et al. Deep vein thrombosis after monoclonal gammopathy of undetermined significance and multiple myeloma. Blood. 2008;112:3582–6.

    Article  CAS  Google Scholar 

  8. Kristinsson SY, Pfeiffer RM, Bjorkholm M, Goldin LR, Schulman S, Blimark C, et al. Arterial and venous thrombosis in monoclonal gammopathy of undetermined significance and multiple myeloma: a population-based study. Blood. 2010;115:4991–8.

    Article  CAS  Google Scholar 

  9. Kristinsson SY, Pfeiffer RM, Bjorkholm M, Schulman S, Landgren O. Thrombosis is associated with inferior survival in multiple myeloma. Haematologica. 2012;97:1603–7.

    Article  Google Scholar 

  10. Kistler KD, Rajangam K, Faich G, Lanes S. Event rates in patients with newly diagnosed and relapsed multiple myeloma in US clinical practice. 54th American Society of Hematology Annual Meeting. Atlanta, GA; 2012.

  11. Falk RH, Alexander KM, Liao R, Dorbala S. AL (light-chain) cardiac amyloidosis: a review of diagnosis and therapy. J Am Coll Cardiol. 2016;68:1323–41.

    Article  Google Scholar 

  12. Tomey MI, Winston JA. Cardiovascular pathophysiology in chronic kidney disease: opportunities to transition from disease to health. Ann Glob Health. 2014;80:69–76.

    Article  Google Scholar 

  13. Heher EC, Rennke HG, Laubach JP, Richardson PG. Kidney disease and multiple myeloma. Clin J Am Soc Nephrol. 2013;8:2007–17.

    Article  CAS  Google Scholar 

  14. Mitsiades CS. Therapeutic landscape of carfilzomib and other modulators of the ubiquitin-proteasome pathway. J Clin Oncol. 2015;33:782–5.

    Article  CAS  Google Scholar 

  15. Bockorny M, Chakravarty S, Schulman P, Bockorny B, Bona R. Severe heart failure after bortezomib treatment in a patient with multiple myeloma: a case report and review of the literature. Acta Haematol. 2012;128:244–7.

    Article  Google Scholar 

  16. Enrico O, Gabriele B, Nadia C, Sara G, Daniele V, Giulia C, et al. Unexpected cardiotoxicity in haematological bortezomib treated patients. Br J Haematol. 2007;138:396–7.

    Article  Google Scholar 

  17. Xiao Y, Yin J, Wei J, Shang Z. Incidence and risk of cardiotoxicity associated with bortezomib in the treatment of cancer: a systematic review and meta-analysis. PLoS One. 2014;9:e87671.

    Article  Google Scholar 

  18. Laubach JP, Moslehi JJ, Francis SA, San Miguel JF, Sonneveld P, Orlowski RZ, et al. A retrospective analysis of 3954 patients in phase 2/3 trials of bortezomib for the treatment of multiple myeloma: towards providing a benchmark for the cardiac safety profile of proteasome inhibition in multiple myeloma. Br J Haematol. 2017;178:547–60.

    Article  CAS  Google Scholar 

  19. Lonial S, Richardson PG, San Miguel J, Sonneveld P, Schuster MW, Bladé J, et al. Characterisation of haematological profiles and low risk of thromboembolic events with bortezomib in patients with relapsed multiple myeloma. Br J Haematol. 2008;143:222–9.

    Article  CAS  Google Scholar 

  20. Zangari M, Fink L, Zhan F, Tricot G. Low venous thromboembolic risk with bortezomib in multiple myeloma and potential protective effect with thalidomide/lenalidomide-based therapy: review of data from phase 3 trials and studies of novel combination regimens. Clin Lymphoma Myeloma Leuk. 2011;11:228–36.

    Article  CAS  Google Scholar 

  21. Palumbo A, Cavo M, Bringhen S, Zamagni E, Romano A, Patriarca F, et al. Aspirin, warfarin, or enoxaparin thromboprophylaxis in patients with multiple myeloma treated with thalidomide: a phase III, open-label, randomized trial. J Clin Oncol. 2011;29:986–93.

    Article  CAS  Google Scholar 

  22. Schwartz R, Davidson T. Pharmacology, pharmacokinetics, and practical applications of bortezomib. Oncology (Williston Park). 2004;18:14–21.

    Google Scholar 

  23. Pye J, Ardeshirpour F, McCain A, Bellinger DA, Merricks E, Adams J, et al. Proteasome inhibition ablates activation of NF-kappa B in myocardial reperfusion and reduces reperfusion injury. Am J Physiol Heart Circ Physiol. 2003;284:H919–26.

    Article  CAS  Google Scholar 

  24. Stansfield WE, Tang RH, Moss NC, Baldwin AS, Willis MS, Selzman CH. Proteasome inhibition promotes regression of left ventricular hypertrophy. Am J Physiol Heart Circ Physiol. 2008;294:H645–50.

    Article  CAS  Google Scholar 

  25. Meiners S, Dreger H, Fechner M, Bieler S, Rother W, Günther C, et al. Suppression of cardiomyocyte hypertrophy by inhibition of the ubiquitin-proteasome system. Hypertension. 2008;51:302–8.

    Article  CAS  Google Scholar 

  26. Hiroi T, Deming CB, Zhao H, Hansen BS, Arkenbout EK, Myers TJ, et al. Proteasome inhibitors enhance endothelial thrombomodulin expression via induction of Kruppel-like transcription factors. Arterioscler Thromb Vasc Biol. 2009;29:1587–93.

    Article  CAS  Google Scholar 

  27. Nayak L, Shi H, Atkins GB, Lin Z, Schmaier AH, Jain MK. The thromboprotective effect of bortezomib is dependent on the transcription factor Kruppel-like factor 2 (KLF2). Blood. 2014;123:3828–31.

    Article  CAS  Google Scholar 

  28. Sonneveld P, Asselbergs E, Zweegman S, van der Holt B, Kersten MJ, Vellenga E, et al. Phase 2 study of carfilzomib, thalidomide, and dexamethasone as induction/consolidation therapy for newly diagnosed multiple myeloma. Blood. 2015;125:449–56.

    Article  CAS  Google Scholar 

  29. Dimopoulos MA, Moreau P, Palumbo A, Joshua D, Pour L, Hájek R, et al. Carfilzomib and dexamethasone versus bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma (ENDEAVOR): a randomised, phase 3, open-label, multicentre study. Lancet Oncol. 2016;17:27–38.

    Article  CAS  Google Scholar 

  30. Stewart AK, Rajkumar SV, Dimopoulos MA, Masszi T, Špička I, Oriol A, et al. Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N Engl J Med. 2015;372:142–52.

    Article  Google Scholar 

  31. Danhof S, Schreder M, Rasche L, Strifler S, Einsele H, Knop S. ‘Real-life’ experience of preapproval carfilzomib-based therapy in myeloma—analysis of cardiac toxicity and predisposing factors. Eur J Haematol. 2016;97:25–32.

    Article  CAS  Google Scholar 

  32. Siegel D, Martin T, Nooka A, Harvey RD, Vij R, Niesvizky R, et al. Integrated safety profile of single-agent carfilzomib: experience from 526 patients enrolled in 4 phase II clinical studies. Haematologica. 2013;98:1753–61.

    Article  CAS  Google Scholar 

  33. Atrash S, Tullos A, Panozzo S, Bhutani M, van Rhee F, Barlogie B, et al. Cardiac complications in relapsed and refractory multiple myeloma patients treated with carfilzomib. Blood Cancer J. 2015;5:e272.

    Article  CAS  Google Scholar 

  34. Siegel DS, Martin T, Wang M, Vij R, Jakubowiak AJ, Lonial S, et al. A phase 2 study of single-agent carfilzomib (PX-171-003-A1) in patients with relapsed and refractory multiple myeloma. Blood. 2012;120:2817–25.

    Article  CAS  Google Scholar 

  35. Vij R, Siegel DS, Jagannath S, Jakubowiak AJ, Stewart AK, McDonagh K, et al. An open-label, single-arm, phase 2 study of single-agent carfilzomib in patients with relapsed and/or refractory multiple myeloma who have been previously treated with bortezomib. Br J Haematol. 2012;158:739–48.

    Article  CAS  Google Scholar 

  36. Papadopoulos KP, Siegel DS, Vesole DH, Lee P, Rosen ST, Zojwalla N, et al. Phase I study of 30-minute infusion of carfilzomib as single agent or in combination with low-dose dexamethasone in patients with relapsed and/or refractory multiple myeloma. J Clin Oncol. 2015;33:732–9.

    Article  CAS  Google Scholar 

  37. Moreau P, Mateos MV, Berenson JR, et al. Once weekly versus twice weekly carfilzomib dosing in patients with relapsed and refractory multiple myeloma (A.R.R.O.W.): interim analysis results of a randomised, phase 3 study. Lancet Oncol. 2018;19:953–64. Only phase 3 randomized control trial evaluating dosing of carfilzomib for replased and refractory multiple myleoma. Early clinical trial data suggested bolus dose and infusion time may play a role in the development of proteasome inhibitor related cardiotoxicity. This trial showed that bolus and infusion methods likely have no effect in the development of cardiotoxicity.

    Article  CAS  Google Scholar 

  38. • Cornell RF, et al. Prospective study of cardiac events during proteasome inhibitor therapy for relapsed multiple myeloma. Blood. 2017;130:1855. Most recent prospective study to determine predictive markers and outcomes of cardiotoxicity associated with carfilzomib. Results showed that patients developed cardiotoxicity primarily within the first three months of therapy and it was associated with worse overall survivial. In addition, BNP and nt-BNP were shown to be predicitive markers of subsequent heart failure associated with treatment .

    Google Scholar 

  39. Pagan J, Seto T, Pagano M, Cittadini A. Role of the ubiquitin proteasome system in the heart. Circ Res. 2013;112:1046–58.

    Article  CAS  Google Scholar 

  40. Stangl K, Stangl V. The ubiquitin-proteasome pathway and endothelial (dys)function. Cardiovasc Res. 2010;85:281–90.

    Article  CAS  Google Scholar 

  41. Grandin EW, Ky B, Cornell RF, Carver J, Lenihan DJ. Patterns of cardiac toxicity associated with irreversible proteasome inhibition in the treatment of multiple myeloma. J Card Fail. 2015;21:138–44.

    Article  CAS  Google Scholar 

  42. Wei Q, Xia Y. Proteasome inhibition down-regulates endothelial nitric-oxide synthase phosphorylation and function. J Biol Chem. 2006;281:21652–9.

    Article  CAS  Google Scholar 

  43. Versari D, Herrmann J, Gossl M, et al. Dysregulation of the ubiquitin-proteasome system in human carotid atherosclerosis. Arterioscler Thromb Vasc Biol. 2006;26:2132–9.

    Article  CAS  Google Scholar 

  44. Shah C, Bishnoi R, Jain A, et al. Cardiotoxicity associated with carfilzomib: systematic review and meta-analysis. Leuk Lymphoma. 2018;1–13.

  45. Russell SD, Lyon A, Lenihan DJ, Moreau P, Joshua D, Chng W-J, et al. Serial echocardiographic assessment of patients with relapsed multiple myleoma receiving carfilzomib and dexamethasone vs. bortezomib and dexamethasone: a substudy of the phase 3 endeavor trial. Blood. 2015;126:4250.

    Google Scholar 

  46. Thavendiranathan P, Poulin F, Lim KD, Plana JC, Woo A, Marwick TH. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J Am Coll Cardiol. 2014;63:2751–68.

    Article  Google Scholar 

  47. Ong G, Brezden-Masley C, Dhir V, Deva DP, Chan KKW, Chow CM, et al. Myocardial strain imaging by cardiac magnetic resonance for detection of subclinical myocardial dysfunction in breast cancer patients receiving trastuzumab and chemotherapy. Int J Cardiol. 2018;261:228–33.

    Article  Google Scholar 

  48. Chang X, Zhu Y, Shi C, Stewart AK. Mechanism of immunomodulatory drugs’ action in the treatment of multiple myeloma. Acta Biochim Biophys Sin Shanghai. 2014;46:240–53.

    Article  CAS  Google Scholar 

  49. Quach H, Ritchie D, Stewart AK, Neeson P, Harrison S, Smyth MJ, et al. Mechanism of action of immunomodulatory drugs (IMiDS) in multiple myeloma. Leukemia. 2010;24:22–32.

    Article  CAS  Google Scholar 

  50. Kronke J, Udeshi ND, Narla A, Grauman P, Hurst SN, McConkey M, et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science. 2014;343:301–5.

    Article  Google Scholar 

  51. Lu G, Middleton RE, Sun H, Naniong M, Ott CJ, Mitsiades CS, et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science. 2014;343:305–9.

    Article  CAS  Google Scholar 

  52. Gandhi AK, Kang J, Havens CG, Conklin T, Ning Y, Wu L, et al. Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4(CRBN.). Br J Haematol. 2014;164:811–21.

    Article  CAS  Google Scholar 

  53. D’Amato RJ, Loughnan MS, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A. 1994;91:4082–5.

    Article  Google Scholar 

  54. Srkalovic G, Cameron MG, Rybicki L, Deitcher SR, Kattke-Marchant K, Hussein MA. Monoclonal gammopathy of undetermined significance and multiple myeloma are associated with an increased incidence of venothromboembolic disease. Cancer. 2004;101:558–66.

    Article  Google Scholar 

  55. Richardson P, Schlossman R, Jagannath S, Alsina M, Desikan R, Blood E, et al. Thalidomide for patients with relapsed multiple myeloma after high-dose chemotherapy and stem cell transplantation: results of an open-label multicenter phase 2 study of efficacy, toxicity, and biological activity. Mayo Clin Proc. 2004;79:875–82.

    Article  CAS  Google Scholar 

  56. Schey SA, Cavenagh J, Johnson R, Child JA, Oakervee H, Jones RW. An UK myeloma forum phase II study of thalidomide; long term follow-up and recommendations for treatment. Leuk Res. 2003;27:909–14.

    Article  CAS  Google Scholar 

  57. Weber D, Rankin K, Gavino M, Delasalle K, Alexanian R. Thalidomide alone or with dexamethasone for previously untreated multiple myeloma. J Clin Oncol. 2003;21:16–9.

    Article  CAS  Google Scholar 

  58. Osman K, Comenzo R, Rajkumar SV. Deep venous thrombosis and thalidomide therapy for multiple myeloma. N Engl J Med. 2001;344:1951–2.

    Article  CAS  Google Scholar 

  59. El Accaoui RN, Shamseddeen WA, Taher AT. Thalidomide and thrombosis. A meta-analysis. Thromb Haemost. 2007;97:1031–6.

    Article  Google Scholar 

  60. Rajkumar SV, Jacobus S, Callander NS, Fonseca R, Vesole DH, Williams ME, et al. Lenalidomide plus high-dose dexamethasone versus lenalidomide plus low-dose dexamethasone as initial therapy for newly diagnosed multiple myeloma: an open-label randomised controlled trial. Lancet Oncol. 2010;11:29–37.

    Article  CAS  Google Scholar 

  61. Richardson PG, Siegel DS, Vij R, Hofmeister CC, Baz R, Jagannath S, et al. Pomalidomide alone or in combination with low-dose dexamethasone in relapsed and refractory multiple myeloma: a randomized phase 2 study. Blood. 2014;123:1826–32.

    Article  CAS  Google Scholar 

  62. • Dimopoulos MA, Dytfeld D, Grosicki S, et al. Elotuzumab plus pomalidomide and dexamethasone for multiple myeloma. N Engl J Med. 2018;379:1811–22. Recent trial evaluating novel combination therapy with elotuzumab and pomalidomide. Study protocol mandated the use of thromboprophylaxis with the IMiD therapy. Results showed that rates of VTE were <1% suggested that current strategies are effective.

    Article  CAS  Google Scholar 

  63. Miguel JS, Weisel K, Moreau P, Lacy M, Song K, Delforge M, et al. Pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone alone for patients with relapsed and refractory multiple myeloma (MM-003): a randomised, open-label, phase 3 trial. Lancet Oncol. 2013;14:1055–66.

    Article  CAS  Google Scholar 

  64. Libourel EJ, Sonneveld P, van der Holt B, de Maat MP, Leebeek FW. High incidence of arterial thrombosis in young patients treated for multiple myeloma: results of a prospective cohort study. Blood. 2010;116:22–6.

    Article  CAS  Google Scholar 

  65. Lenalidomide: risk of thrombosis and thromboembolism.

  66. Corso A, Lorenzi A, Terulla V, et al. Modification of thrombomodulin plasma levels in refractory myeloma patients during treatment with thalidomide and dexamethasone. Ann Hematol. 2004;83:588–91.

    Article  CAS  Google Scholar 

  67. Elice F, Fink L, Tricot G, Barlogie B, Zangari M. Acquired resistance to activated protein C (aAPCR) in multiple myeloma is a transitory abnormality associated with an increased risk of venous thromboembolism. Br J Haematol. 2006;134:399–405.

    Article  CAS  Google Scholar 

  68. Zangari M, Saghafifar F, Anaissie E, Badros A, Desikan R, Fassas A, et al. Activated protein C resistance in the absence of factor V Leiden mutation is a common finding in multiple myeloma and is associated with an increased risk of thrombotic complications. Blood Coagul Fibrinolysis. 2002;13:187–92.

    Article  CAS  Google Scholar 

  69. Bagratuni T, Kastritis E, Politou M, Roussou M, Kostouros E, Gavriatopoulou M, et al. Clinical and genetic factors associated with venous thromboembolism in myeloma patients treated with lenalidomide-based regimens. Am J Hematol. 2013;88:765–70.

    Article  CAS  Google Scholar 

  70. Rosovsky R, Hong F, Tocco D, Connell B, Mitsiades C, Schlossman R, et al. Endothelial stress products and coagulation markers in patients with multiple myeloma treated with lenalidomide plus dexamethasone: an observational study. Br J Haematol. 2013;160:351–8.

    Article  CAS  Google Scholar 

  71. Offidani M, Corvatta L, Marconi M, Visani G, Alesiani F, Brunori M, et al. Low-dose thalidomide with pegylated liposomal doxorubicin and high-dose dexamethasone for relapsed/refractory multiple myeloma: a prospective, multicenter, phase II study. Haematologica. 2006;91:133–6.

    CAS  PubMed  Google Scholar 

  72. Offidani M, Corvatta L, Piersantelli MN, Visani G, Alesiani F, Brunori M, et al. Thalidomide, dexamethasone, and pegylated liposomal doxorubicin (ThaDD) for patients older than 65 years with newly diagnosed multiple myeloma. Blood. 2006;108:2159–64.

    Article  CAS  Google Scholar 

  73. Larocca A, Cavallo F, Bringhen S, di Raimondo F, Falanga A, Evangelista A, et al. Aspirin or enoxaparin thromboprophylaxis for patients with newly diagnosed multiple myeloma treated with lenalidomide. Blood. 2012;119:933–9 quiz 1093.

    Article  CAS  Google Scholar 

  74. Kastritis E, Dimopoulos MA. When a little aspirin may be enough. Blood. 2012;119:905–6.

    Article  CAS  Google Scholar 

  75. • Cornell RF, Goldhaber SZ, Englehardt BG, et al. Prospective study of apixaban for primary prevention of venous thromboembolism in patients with multiple myeloma receiving immunomodulatory therapy. Blood. 2018;132:1233. Pilot observational cohort study evaluating efficacy of direct anticoagulant, apixaban, for venous thromboembolism prophylaxis in patients receiving IMiDs. Interim analysis showed that this may be an effective strategy and is the only study to report these results. The study highlights the need for evaluationg the role of DOACs compared to warfarin and lovenox in prophylactic strategies.

    Google Scholar 

  76. Hicks LK, Haynes AE, Reece DE, Walker IR, Herst JA, Meyer RM, et al. A meta-analysis and systematic review of thalidomide for patients with previously untreated multiple myeloma. Cancer Treat Rev. 2008;34:442–52.

    Article  CAS  Google Scholar 

  77. Chari A, Larson S, Holkova B, Cornell RF, Gasparetto C, Karanes C, et al. Phase 1 trial of ibrutinib and carfilzomib combination therapy for relapsed or relapsed and refractory multiple myeloma. Leuk Lymphoma. 2018;59:2588–94.

    Article  CAS  Google Scholar 

  78. Richardson PG, Bensinger WI, Huff CA, Costello CL, Lendvai N, Berdeja JG, et al. Ibrutinib alone or with dexamethasone for relapsed or relapsed and refractory multiple myeloma: phase 2 trial results. Br J Haematol. 2018;180:821–30.

    Article  CAS  Google Scholar 

  79. Lampson BL, Yu L, Glynn RJ, Barrientos JC, Jacobsen ED, Banerji V, et al. Ventricular arrhythmias and sudden death in patients taking ibrutinib. Blood. 2017;129:2581–4.

    Article  CAS  Google Scholar 

  80. Bonifant CL, Jackson HJ, Brentjens RJ, Curran KJ. Toxicity and management in CAR T-cell therapy. Mol Ther Oncolytics. 2016;3:16011.

    Article  CAS  Google Scholar 

  81. Brudno JN, Kochenderfer JN. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood. 2016;127:3321–30.

    Article  CAS  Google Scholar 

  82. Sun S, Hao H, Yang G, Zhang Y, Fu Y. Immunotherapy with CAR-modified T cells: toxicities and overcoming strategies. J Immunol Res. 2018;2018:2386187.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert F. Cornell.

Ethics declarations

Conflict of Interest

The authors declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardio-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, V.G., Cornell, R.F. Cardiovascular Complications Associated with Multiple Myeloma Therapies: Incidence, Pathophysiology, and Management. Curr Oncol Rep 21, 29 (2019). https://doi.org/10.1007/s11912-019-0784-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-019-0784-4

Keywords

Navigation