Skip to main content

Advertisement

Log in

The Role of Biomarkers in Detection of Cardio-toxicity

  • Cardio-oncology (EH Yang, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

The goal of this paper is to review the current literature on the role of biomarkers in the detection and management of patients with cardio-oncologic disease. The role of biomarker surveillance in patients with known cardiac disease, as a result of chemotherapy or with the potential to develop cardio-toxicity, will be discussed. In addition, the studies surrounding sub-clinical cardiac toxicity monitoring during therapy, identification of high-risk patients prior to therapy, and tailoring oncologic therapies to potential biomarker risk profiles are reviewed. Based on evidence, to date, troponin and natriuretic peptides have the greatest potential to detect sub-clinical cardiac dysfunction and even tailor therapy to prevent progression based on biomarker profiles. Finally, future directions for potential utilization of novel biomarkers for the improvement of care of patients in the field of cardio-oncology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Shelburne N, Adhikari B, Brell J, et al. Cancer treatment-related cardiotoxicity: current state of knowledge and future research priorities. J Natl Cancer Inst 2014;106(9). doi:10.1093/jnci/dju232.

  2. Raschi E, de Ponti F. Cardiovascular toxicity of anticancer-targeted therapy: emerging issues in the era of cardio-oncology. Intern Emerg Med. 2012;7(2):113–31. doi:10.1007/s11739-011-0744-y.

    Article  PubMed  Google Scholar 

  3. Chargari C, Kirov KM, Bollet MA, et al. Cardiac toxicity in breast cancer patients: from a fractional point of view to a global assessment. Cancer Treat Rev. 2011;37(4):321–30. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed10&NEWS=N&AN=2011171876

    Article  CAS  PubMed  Google Scholar 

  4. Reinbolt RE, Patel R, Pan X, et al. Risk factors for anthracycline-associated cardio toxicity. Support Care Cancer. 2016;24(5):2173–80. doi:10.1007/s00520-015-3008-y.

    Article  PubMed  Google Scholar 

  5. Gunaldi M, Duman BB, Afsar CU, et al. Risk factors for developing cardiotoxicity of trastuzumab in breast cancer patients: an observational single-centre study. J Oncol Pharm Pract 2015:1–6. doi:10.1177/1078155214567162.

  6. Jones LW, Haykowsky MJ, Swartz JJ, Douglas PS, Mackey JR. Early breast cancer therapy and cardiovascular injury. J Am Coll Cardiol. 2007;50(15):1435–41. doi:10.1016/j.jacc.2007.06.037.

    Article  PubMed  Google Scholar 

  7. •• Moslehi JJ. Cardiovascular toxic effects of targeted cancer therapies. N Engl J Med. 2016;375(15):1457–67. doi:10.1056/NEJMra1100265. This quintessential review article explains the cardiovascular toxic effects that may be associated with new targeted cancer therapies and provides a broad overview of the field of cardio-oncology

    Article  CAS  PubMed  Google Scholar 

  8. O’Hare M, Sharma A, Murphy K, Mookadam F, Lee H. Cardio-oncology part I: chemotherapy and cardiovascular toxicity. Expert Rev Cardiovasc Ther. 2015;13:511–8. doi:10.1586/14779072.2015.1032940.

    Article  PubMed  Google Scholar 

  9. •• Witteles RM. Biomarkers as predictors of cardiac toxicity from targeted cancer therapies. J Card Fail. 2016; doi:10.1016/j.cardfail.2016.03.016. This comprenehsive review article discusses current data on biomarkers as predictors of cardiovascular toxicity in patients receiving various targeted cancer therapies.

    Google Scholar 

  10. Roffi M, Patrono C, Collet J-P, et al. 2015 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. 2015;32(23):2999–3054. doi:10.1093/eurheartj/ehr236.

    Google Scholar 

  11. Reichlin T, Twerenbold R, Reiter M, et al. Introduction of high-sensitivity troponin assays: impact on myocardial infarction incidence and prognosis. Am J Med. 2012;125(12):1205–13. doi:10.1016/j.amjmed.2012.07.015.

    Article  CAS  PubMed  Google Scholar 

  12. Olson F, Engborg J, Grønhøj MH, et al. Association between high-sensitive troponin I and coronary artery calcification in a Danish general population. Atherosclerosis. 2016;245:88–93. doi:10.1016/j.atherosclerosis.2015.12.017.

    Article  CAS  PubMed  Google Scholar 

  13. Cardinale D, Sandri MT, Colombo A, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation. 2004;109(22):2749–54. doi:10.1161/01.CIR.0000130926.51766.CC.

    Article  CAS  PubMed  Google Scholar 

  14. Cardinale D, Sandri MT, Martinoni A, et al. Left ventricular dysfunction predicted by early troponin I release after high-dose chemotherapy. J Am Coll Cardiol. 2000;36(2):517–22. doi:10.1016/S0735-1097(00)00748-8.

    Article  CAS  PubMed  Google Scholar 

  15. Sherwood MW, Kristin Newby L. High-sensitivity troponin assays: evidence, indications, and reasonable use. J Am Heart Assoc. 2014;3(1). doi:10.1161/JAHA.113.000403.

  16. • Blaes AH, Rehman A, Vock DM, et al. Utility of high-sensitivity cardiac troponin T in patients receiving anthracycline chemotherapy. Vasc Health Risk Manag. 2015;11:591–4. doi:10.2147/VHRM.S89842. This demonstrates the utility a high sensitive assay to determine patients who will be undergoing anthracycline therapy who are at elevated risk for cardio-toxicity based on circulating levels of troponin.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Johnson DB, Balko JM, Compton ML, et al. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med. 2016;375(18):1749–55. doi:10.1056/NEJMoa1609214.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ylänen K, Poutanen T, Savukoski T, Eerola A, Vettenranta K. Cardiac biomarkers indicate a need for sensitive cardiac imaging among long-term childhood cancer survivors exposed to anthracyclines. Acta Paediatr. 2015;104(3):313–9. doi:10.1111/apa.12862.

    Article  PubMed  Google Scholar 

  19. Mavinkurve-Groothuis AMC, Groot-Loonen J, Bellersen L, et al. Abnormal nt-pro-bnp levels in asymptomatic long-term survivors of childhood cancer treated with anthracyclines. Pediatr Blood Cancer. 2009;52(5):631–6. doi:10.1002/pbc.21913.

    Article  PubMed  Google Scholar 

  20. Pourier MS, Kapusta L, van Gennip A, et al. Values of high sensitive troponin T in long-term survivors of childhood cancer treated with anthracyclines. Clin Chim Acta. 2015;441:29–32. doi:10.1016/j.cca.2014.12.011.

    Article  CAS  PubMed  Google Scholar 

  21. Cowie MR, Jourdain P, Maisel A, et al. Clinical applications of B-type natriuretic peptide (BNP) testing. Eur Heart J. 2003;24(19):1710–8. doi:10.1016/S0195-668X(03)00476-7.

    Article  CAS  PubMed  Google Scholar 

  22. Maisel AS, Daniels LB. Breathing not properly 10 years later: what we have learned and what we still need to learn. J Am Coll Cardiol. 2012;60(4):277–82. doi:10.1016/j.jacc.2012.03.057.

    Article  PubMed  Google Scholar 

  23. • Lenihan DJ, Stevens PL, Massey M, et al. The utility of point of care biomarkers to detect cardiotoxicity during anthracycline chemotherapy: a feasibility study. J Card Fail. 2016;22(6). doi:10.1016/j.cardfail.2016.04.003. This study demonstrates the potential to use point of care BNP measurement in patients receiving anthracycline therapy which showed BNP values greater than 100 pg/mL were consistently seen prior to LVEF reduction or development of clinical HF.

  24. Hayakawa H, Komada Y, Hirayama M, Hori H, Ito M, Sakurai M. Plasma levels of natriuretic peptides in relation to doxorubicin-induced cardiotoxicity and cardiac function in children with cancer. Med Pediatr Oncol. 2001;37(1):4–9. doi:10.1002/mpo.1155.

    Article  CAS  PubMed  Google Scholar 

  25. Palumbo I, Palumbo B, Fravolini ML, et al. Brain natriuretic peptide as a cardiac marker of transient radiotherapy-related damage in left-sided breast cancer patients: a prospective study. Breast. 2016;25:45–50. doi:10.1016/j.breast.2015.10.004.

    Article  CAS  PubMed  Google Scholar 

  26. Sandri MT, Salvatici M, Cardinale D, et al. N-terminal pro-B-type natriuretic peptide after high-dose chemotherapy: a marker predictive of cardiac dysfunction? Clin Chem. 2005;51(8):1405–10. doi:10.1373/clinchem.2005.050153.

    Article  CAS  PubMed  Google Scholar 

  27. Wieshammer S, Dreyhaupt J, Müller D, Momm F, Jakob A. Limitations of N-terminal pro-B-type natriuretic peptide in the diagnosis of heart disease among cancer patients who present with cardiac or pulmonary symptoms. Oncology. 2016;90(3):143–50. doi:10.1159/000443505.

    Article  CAS  PubMed  Google Scholar 

  28. Cardinale D, Colombo A, Torrisi R, et al. Trastuzumab-induced cardiotoxicity: clinical and prognostic implications of troponin I evaluation. J Clin Oncol. 2010;28(25):3910–6. doi:10.1200/JCO.2009.27.3615.

    Article  CAS  PubMed  Google Scholar 

  29. Fallah-Rad N, Walker JR, Wassef A, et al. The utility of cardiac biomarkers, tissue velocity and strain imaging, and. J Am Coll Cardiol. 2011;57(22):2263–70. doi:10.1016/j.jacc.2010.11.063.

    Article  CAS  PubMed  Google Scholar 

  30. Morris PG, Chen C, Steingart R, et al. Troponin I and C-reactive protein are commonly detected in patients with breast cancer treated with dose-dense chemotherapy incorporating trastuzumab and lapatinib. Clin Cancer Res. 2011;17(10):3490–9. doi:10.1158/1078-0432.CCR-10-1359.

    Article  CAS  PubMed  Google Scholar 

  31. Sawaya H, Sebag IA, Plana JC, et al. Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am J Cardiol. 2011;107(9):1375–80. doi:10.1016/j.amjcard.2011.01.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ky B, Putt M, Sawaya H, et al. Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J Am Coll Cardiol. 2014;63(8):809–16. doi:10.1016/j.jacc.2013.10.061.

    Article  CAS  PubMed  Google Scholar 

  33. Putt M, Hahn VS, Januzzi JL, et al. Longitudinal changes in multiple biomarkers are associated with cardiotoxicity in breast cancer patients treated with doxorubicin, taxanes, and trastuzumab. Clin Chem. 2015;61(9):1164–72. doi:10.1373/clinchem.2015.241232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Romano S, Fratini S, Ricevuto E, et al. Serial measurements of NT-proBNP are predictive of not-high-dose anthracycline cardiotoxicity in breast cancer patients. Br J Cancer. 2011;105(11):1663–8. doi:10.1038/bjc.2011.439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kittiwarawut A, Vorasettakarnkij Y, Tanasanvimon S, Manasnayakorn S, Sriuranpong V. Serum NT-proBNP in the early detection of doxorubicin-induced cardiac dysfunction. Asia Pac J Clin Oncol. 2013;9(2):155–61. doi:10.1111/j.1743-7563.2012.01588.x.

    Article  PubMed  Google Scholar 

  36. Anatoliotakis N, Deftereos S, Bouras G, et al. Myeloperoxidase: expressing inflammation and oxidative stress in cardiovascular disease. Curr Top Med Chem. 2013;13(2):115–38. doi:10.2174/1568026611313020004.

    Article  CAS  PubMed  Google Scholar 

  37. •• Plana JC, Galderisi M, Barac A, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American society of echocardiography and the European association of cardiovascular imaging. J Am Soc Echocardiogr. 2014;27(9):911–39. doi:10.1016/j.echo.2014.07.012. This expert consensus document by the American Society of Echocardiography details recommendations regarding the modality and frequency of imaging and biomarkers in surveillance for cardio-toxicity

    Article  PubMed  Google Scholar 

  38. Zamorano JL. 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines. 2016. doi:10.1093/eurheartj/ehw211.

  39. •• Armenian SH, Gelehrter SK, Vase T, et al. Screening for cardiac dysfunction in anthracycline-exposed childhood cancer survivors. Clin Cancer Res. 2014;20(24):6314–23. doi:10.1158/1078-0432.CCR-13-3490. This cross-sectional cohort examines the ability of echocardiography and biomarkers to detect development of cardio-toxicity in survivors of childhood cancer. It re-emphasizes the dose-dependent effect of anthracycline therapy and LV dysfunction

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pavo N, Raderer M, Hülsmann M, et al. Cardiovascular biomarkers in patients with cancer and their association with all-cause mortality. Heart. 2015;25:heartjnl-2015-307848. doi:10.1136/heartjnl-2015-307848.

  41. Serrano NA, Mikkelsen R, Canada J, Mezzaroma E, Weiss E, Abbate A. Biomarkers of cardiac injury in patients undergoing thoracic radiation therapy. Int J Cardiol. 2016;223:507–9. doi:10.1016/j.ijcard.2016.08.263.

    Article  PubMed  Google Scholar 

  42. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DEJ. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force. Circulation. 2013. http://www.ncbi.nlm.nih.gov/pubmed/23741058.

  43. Kalay N, Basar E, Ozdogru I, et al. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2006;48(11):2258–62. doi:10.1016/j.jacc.2006.07.052.

    Article  CAS  PubMed  Google Scholar 

  44. Janbabai G, Nabati M, Faghihinia M, Azizi S, Borhani S, Yazdani J. Effect of enalapril on preventing anthracycline-induced cardiomyopathy. Cardiovasc Toxicol. 2016 1–10.

  45. Akpek M, Ozdogru I, Sahin O, et al. Protective effects of spironolactone against anthracycline-induced cardiomyopathy. Eur J Heart Fail. 2015;17(1):81–9. doi:10.1002/ejhf.196.

    Article  CAS  PubMed  Google Scholar 

  46. Gulati G, Heck SL, Ree AH, et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 × 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur Heart J. 2016:ehw022. doi:10.1093/eurheartj/ehw022.

  47. Cardinale D, Colombo A, Sandri MT, et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation. 2006;114(23):2474–81. doi:10.1161/CIRCULATIONAHA.106.635144.

    Article  CAS  PubMed  Google Scholar 

  48. Yu AF, Ky B. Roadmap for biomarkers of cancer therapy cardiotoxicity. Heart. 2015;102(6):425–30. doi:10.1136/heartjnl-2015-307894.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin S. Shah.

Ethics declarations

Conflict of Interest

Kevin S. Shah and Eric H. Yang declare that they have no conflict of interest. Alan S. Maisel has received compensation from Critical Diagnostics and Alere for service as a consultant and has received non-financial research support from Roche and Abbott Laboratories. Gregg C. Fonarow has received compensation from Medtronic, Amgen, Novartis, ZS Pharma, St. Jude Medical, and Janssen for service as a consultant and has received financial support through grants from the National Institutes of Health (NIH).

Human and Animal Rights and Informed Consent

This article does not contain any studies with animal subjects performed by any of the authors but does contain studies with human subjects performed by Drs. Maisel and Fonarow.

Additional information

This article is part of the Topical Collection on Cardio-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, K.S., Yang, E.H., Maisel, A.S. et al. The Role of Biomarkers in Detection of Cardio-toxicity. Curr Oncol Rep 19, 42 (2017). https://doi.org/10.1007/s11912-017-0602-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-017-0602-9

Keywords

Navigation