Skip to main content

Advertisement

Log in

Genetic Landscape and Classification of Peripheral T Cell Lymphomas

  • Lymphomas (MR Smith, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of review

Peripheral T cell lymphomas (PTCLs) are markedly heterogeneous at the clinical, pathological, and molecular levels. This review will discuss genetic findings in PTCL with special emphasis on how they impact lymphoma classification.

Recent findings

Sequencing studies have identified recurrent genetic alterations in nearly every PTCL subtype. In anaplastic large cell lymphoma, these studies have revealed novel chromosomal rearrangements and mutations that have prognostic significance and may suggest new therapeutic approaches. Angioimmunoblastic T cell lymphoma has been found to have mutations overlapping some cases of PTCL, not otherwise specified with a T follicular helper cell phenotype. Across various subtypes, recurrent mutations and structural alterations affecting genes involved in epigenetic regulation, T cell receptor signaling, and immune response may represent targets for precision therapy approaches.

Summary

New genetic findings are refining the classification of PTCLs and are beginning to be used clinically for diagnosis, risk stratification, and individualized therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Attygalle AD, Cabecadas J, Gaulard P, et al. Peripheral T-cell and NK-cell lymphomas and their mimics; taking a step forward—report on the lymphoma workshop of the XVIth meeting of the European Association for Haematopathology and the Society for Hematopathology. Histopathology. 2014;64(2):171–99.

    Article  PubMed  Google Scholar 

  2. Armitage JO. The aggressive peripheral T-cell lymphomas: 2012 update on diagnosis, risk stratification, and management. Am J Hematol. 2012;87(5):511–9.

    Article  PubMed  Google Scholar 

  3. •• Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90. Recently published summary of the 2016 revision of the WHO classification, including new provisional entities and incorporating genetic data not available when the 2008 WHO classification was published.

  4. Foss FM, Zinzani PL, Vose JM, Gascoyne RD, Rosen ST, Tobinai K. Peripheral T-cell lymphoma. Blood. 2011;117(25):6756–67.

    Article  CAS  PubMed  Google Scholar 

  5. Jaffe ES, Harris NL, Stein H, Campo E, Pileri SA, Swerdlow SH. Introduction and overview of the classification of the lymphoid neoplasms. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri S, Stein H, Thiele J, Vardiman JW, editors. WHO classification of tumors of hematopoietic and lymphoid tissues. Lyon: International Agency for Research on Cancer; 2008. p. 158–66.

    Google Scholar 

  6. Perry AM, Diebold J, Nathwani BN, et al. Non-Hodgkin lymphoma in the Far East: review of 730 cases from the international non-Hodgkin lymphoma classification project. Ann Hematol. 2016;95(2):245–51.

    Article  PubMed  Google Scholar 

  7. William BM, Armitage JO. International analysis of the frequency and outcomes of NK/T-cell lymphomas. Best Pract Res Clin Haematol. 2013;26(1):23–32.

    Article  CAS  PubMed  Google Scholar 

  8. Huang Y, Moreau A, Dupuis J, et al. Peripheral T-cell lymphomas with a follicular growth pattern are derived from follicular helper T cells (TFH) and may show overlapping features with angioimmunoblastic T-cell lymphomas. Am J Surg Pathol. 2009;33(5):682–90.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Miranda RN, Aladily TN, Prince HM, et al. Breast implant-associated anaplastic large-cell lymphoma: long-term follow-up of 60 patients. J Clin Oncol. 2014;32(2):114–20.

    Article  PubMed  Google Scholar 

  10. Roden AC, Macon WR, Keeney GL, Myers JL, Feldman AL, Dogan A. Seroma-associated primary anaplastic large-cell lymphoma adjacent to breast implants: an indolent T-cell lymphoproliferative disorder. Mod Pathol. 2008;21(4):455–63.

    Article  CAS  PubMed  Google Scholar 

  11. •• Swerdlow S, Campo E, Harris N, Jaffe E, Pileri S, Stein H, Thiele J, Vardiman J (eds.): WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4 edn. Lyon: International Agency for Research on Cancer; 2008. Most recent published edition of the WHO classification of lymphoid neoplasms at the time of this writing.

  12. Vose J, Armitage J, Weisenburger D, International TCLP. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol. 2008;26(25):4124–30.

    Article  PubMed  Google Scholar 

  13. Hoffmann JC, Chisholm KM, Cherry A, et al. An analysis of MYC and EBV in diffuse large B-cell lymphomas associated with angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma not otherwise specified. Hum Pathol. 2016;48:9–17.

    Article  CAS  PubMed  Google Scholar 

  14. Couronne L, Bastard C, Bernard OA. TET2 and DNMT3A mutations in human T-cell lymphoma. N Engl J Med. 2012;366(1):95–6.

    Article  CAS  PubMed  Google Scholar 

  15. Odejide O, Weigert O, Lane AA, et al. A targeted mutational landscape of angioimmunoblastic T-cell lymphoma. Blood. 2014;123(9):1293–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. • Palomero T, Couronne L, Khiabanian H, et al. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat Genet. 2014;46(2):166–70. Identification of recurrent RHOA mutations in peripheral T-cell lymphomas.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. • Sakata-Yanagimoto M, Enami T, Yoshida K, et al. Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet. 2014;46(2):171–5. Identification of recurrent RHOA mutations in peripheral T-cell lymphomas.

    Article  CAS  PubMed  Google Scholar 

  18. • Yoo HY, Sung MK, Lee SH, et al. A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. Nat Genet. 2014;46(4):371–5. Identification of recurrent RHOA mutations in peripheral T-cell lymphomas.

    Article  CAS  PubMed  Google Scholar 

  19. Wang C, McKeithan TW, Gong Q, et al. IDH2R172 mutations define a unique subgroup of patients with angioimmunoblastic T-cell lymphoma. Blood. 2015;126(15):1741–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rohr J, Guo S, Huo J, Bouska A, Lachel C, Li Y, Simone PD, Zhang W, Gong Q, Wang C et al. Recurrent activating mutations of CD28 in peripheral T-cell lymphomas. Leukemia. 2015.

  21. Cairns RA, Iqbal J, Lemonnier F, et al. IDH2 mutations are frequent in angioimmunoblastic T-cell lymphoma. Blood. 2012;119(8):1901–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vallois D, Dobay MP, Morin RD, et al. Activating mutations in genes related to TCR signaling in angioimmunoblastic and other follicular helper T-cell-derived lymphomas. Blood. 2016;128(11):1490–502.

    Article  CAS  PubMed  Google Scholar 

  23. Yoo HY, Kim P, Kim WS, et al. Frequent CTLA4-CD28 gene fusion in diverse types of T-cell lymphoma. Haematologica. 2016;101(6):757–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fujiwara SI, Yamashita Y, Nakamura N, et al. High-resolution analysis of chromosome copy number alterations in angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma, unspecified, with single nucleotide polymorphism-typing microarrays. Leukemia. 2008;22(10):1891–8.

    Article  CAS  PubMed  Google Scholar 

  25. Delsol G, Falini B, Muller-Hermelink HK, et al. Anaplastic large cell lymphoma, ALK-positive. In: Swerdlow S, Campo E, Harris N, Jaffe E, Pileri S, Stein H, Thiele J, Vardiman J, editors. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th ed. Lyon: International Agency for Research on Cancer; 2008. p. 312–6.

    Google Scholar 

  26. Morris SW, Kirstein MN, Valentine MB, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science. 1994;263(5151):1281–4.

    Article  CAS  PubMed  Google Scholar 

  27. Feldman AL, Vasmatzis G, Asmann YW, et al. Novel TRAF1-ALK fusion identified by deep RNA sequencing of anaplastic large cell lymphoma. Genes Chromosomes Cancer. 2013;52(11):1097–102.

    Article  CAS  PubMed  Google Scholar 

  28. • Crescenzo R, Abate F, Lasorsa E, et al. Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. Cancer Cell. 2015;27(4):516–32. Discovery of varied genetic alterations driving JAK/STAT3 activation in anaplastic large cell lymphomas.

    Article  CAS  PubMed  Google Scholar 

  29. • Parrilla Castellar ER, Jaffe ES, Said JW, et al. ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes. Blood. 2014;124(9):1473–80. Report on the prognostic significance of DUSP22 and TP63 rearrangements in ALK-negative anaplastic large cell lymphoma.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Feldman AL, Dogan A, Smith DI, et al. Discovery of recurrent t(6;7)(p25.3;q32.3) translocations in ALK-negative anaplastic large cell lymphomas by massively-parallel genomic sequencing. Blood. 2011;117(3):915–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vasmatzis G, Johnson SH, Knudson RA, et al. Genome-wide analysis reveals recurrent structural abnormalities of TP63 and other p53-related genes in peripheral T-cell lymphomas. Blood. 2012;120:2280–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Scarfo I, Pellegrino E, Mereu E, et al. Identification of a new subclass of ALK-negative ALCL expressing aberrant levels of ERBB4 transcripts. Blood. 2016;127(2):221–32.

    Article  CAS  PubMed  Google Scholar 

  33. Boi M, Rinaldi A, Kwee I, et al. PRDM1/BLIMP1 is commonly inactivated in anaplastic large T-cell lymphoma. Blood. 2013;122(15):2683–93.

    Article  CAS  PubMed  Google Scholar 

  34. Boddicker RL, Razidlo GL, Dasari S, et al. Integrated mate-pair and RNA sequencing identifies novel, targetable gene fusions in peripheral T-cell lymphoma. Blood. 2016;128(9):1234–45.

    Article  CAS  PubMed  Google Scholar 

  35. Melard P, Idrissi Y, Andrique L, Poglio S, Prochazkova-Carlotti M, Berhouet S, Boucher C, Laharanne E, Chevret E, Pham-Ledard A et al. Molecular alterations and tumor suppressive function of the DUSP22 (Dual Specificity Phosphatase 22) gene in peripheral T-cell lymphoma subtypes. Oncotarget. 2016.

  36. Jiang L, Gu ZH, Yan ZX, et al. Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma. Nat Genet. 2015;47(9):1061–6.

    Article  CAS  PubMed  Google Scholar 

  37. Koo GC, Tan SY, Tang T, et al. Janus kinase 3-activating mutations identified in natural killer/T-cell lymphoma. Cancer Discov. 2012;2(7):591–7.

    Article  CAS  PubMed  Google Scholar 

  38. Kucuk C, Jiang B, Hu X, et al. Activating mutations of STAT5B and STAT3 in lymphomas derived from gammadelta-T or NK cells. Nat Commun. 2015;6:6025.

    Article  CAS  PubMed  Google Scholar 

  39. Quintanilla-Martinez L, Kremer M, Keller G, et al. p53 Mutations in nasal natural killer/T-cell lymphoma from Mexico: association with large cell morphology and advanced disease. Am J Pathol. 2001;159(6):2095–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kucuk C, Iqbal J, Hu X, et al. PRDM1 is a tumor suppressor gene in natural killer cell malignancies. Proc Natl Acad Sci U S A. 2011;108(50):20119–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Iqbal J, Kucuk C, Deleeuw RJ, et al. Genomic analyses reveal global functional alterations that promote tumor growth and novel tumor suppressor genes in natural killer-cell malignancies. Leukemia. 2009;23(6):1139–51.

    Article  CAS  PubMed  Google Scholar 

  42. Karube K, Nakagawa M, Tsuzuki S, et al. Identification of FOXO3 and PRDM1 as tumor-suppressor gene candidates in NK-cell neoplasms by genomic and functional analyses. Blood. 2011;118(12):3195–204.

    Article  CAS  PubMed  Google Scholar 

  43. Huang Y, de Reynies A, de Leval L, et al. Gene expression profiling identifies emerging oncogenic pathways operating in extranodal NK/T-cell lymphoma, nasal type. Blood. 2010;115(6):1226–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Streubel B, Vinatzer U, Willheim M, Raderer M, Chott A. Novel t(5;9)(q33;q22) fuses ITK to SYK in unspecified peripheral T-cell lymphoma. Leukemia. 2006;20(2):313–8.

    Article  CAS  PubMed  Google Scholar 

  45. Dierks C, Adrian F, Fisch P, et al. The ITK-SYK fusion oncogene induces a T-cell lymphoproliferative disease in mice mimicking human disease. Cancer Res. 2010;70(15):6193–204.

    Article  CAS  PubMed  Google Scholar 

  46. Lemonnier F, Couronne L, Parrens M, et al. Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like features and adverse clinical parameters. Blood. 2012;120(7):1466–9.

    Article  CAS  PubMed  Google Scholar 

  47. Piccaluga PP, Tabanelli V, Pileri SA. Molecular genetics of peripheral T-cell lymphomas. Int J Hematol. 2014;99(3):219–26.

    Article  CAS  PubMed  Google Scholar 

  48. Pro B, Horwitz SM, Prince HM, Foss FM, Sokol L, Greenwood M, Caballero D, Morschhauser F, Wilhelm M, Iyer SP et al. Romidepsin induces durable responses in patients with relapsed or refractory angioimmunoblastic T-cell lymphoma. Hematol Oncol. 2016.

  49. Yoo HY, Kim P, Kim WS, et al. Author reply to Comment on: Frequent CTLA4-CD28 gene fusion in diverse types of T-cell lymphoma, by Yoo et al. Haematologica. 2016;101(6):e271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gong Q, Wang C, Rohr J, Feldman AL, Chan WC, McKeithan T. Comment on: Frequent CTLA4-CD28 gene fusion in diverse types of T-cell lymphoma, by Yoo et al. Haematologica. 2016;101(6):e269–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xing X, Feldman AL. Anaplastic large cell lymphomas: ALK positive, ALK negative, and primary cutaneous. Adv Anat Pathol. 2015;22(1):29–49.

    Article  PubMed  Google Scholar 

  52. Rimokh R, Magaud JP, Berger F, et al. A translocation involving a specific breakpoint (q35) on chromosome 5 is characteristic of anaplastic large cell lymphoma (‘Ki-1 lymphoma’). Br J Haematol. 1989;71(1):31–6.

    Article  CAS  PubMed  Google Scholar 

  53. Damm-Welk C, Klapper W, Oschlies I, et al. Distribution of NPM1-ALK and X-ALK fusion transcripts in paediatric anaplastic large cell lymphoma: a molecular-histological correlation. Br J Haematol. 2009;146(3):306–9.

    Article  CAS  PubMed  Google Scholar 

  54. Hapgood G, Savage KJ. The biology and management of systemic anaplastic large cell lymphoma. Blood. 2015;126(1):17–25.

    Article  CAS  PubMed  Google Scholar 

  55. Inghirami G, Pileri SA, European TCLSG. Anaplastic large-cell lymphoma. Semin Diagn Pathol. 2011;28(3):190–201.

    Article  PubMed  Google Scholar 

  56. Martinengo C, Poggio T, Menotti M, et al. ALK-dependent control of hypoxia-inducible factors mediates tumor growth and metastasis. Cancer Res. 2014;74(21):6094–106.

    Article  CAS  PubMed  Google Scholar 

  57. Gambacorti-Passerini C, Messa C, Pogliani EM. Crizotinib in anaplastic large-cell lymphoma. N Engl J Med. 2011;364(8):775–6.

    Article  PubMed  Google Scholar 

  58. Mosse YP, Lim MS, Voss SD, et al. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children’s Oncology Group phase 1 consortium study. Lancet Oncol. 2013;14(6):472–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gambacorti Passerini C, Farina F, Stasia A, et al. Crizotinib in advanced, chemoresistant anaplastic lymphoma kinase-positive lymphoma patients. J Natl Cancer Inst. 2014;106(2):djt378.

    Article  PubMed  Google Scholar 

  60. Savage KJ, Harris NL, Vose JM, et al. ALK- anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral T-Cell Lymphoma Project. Blood. 2008;111(12):5496–504.

    Article  CAS  PubMed  Google Scholar 

  61. Gascoyne RD, Aoun P, Wu D, et al. Prognostic significance of anaplastic lymphoma kinase (ALK) protein expression in adults with anaplastic large cell lymphoma. Blood. 1999;93(11):3913–21.

    CAS  PubMed  Google Scholar 

  62. Delsol G, Falini B, Muller-Hermelink HK, et al. Anaplastic large cell lymphoma (ALCL), ALK-positive. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri S, Stein H, Thiele J, Vardiman JW, editors. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th ed. Lyon: International Agency for Research on Cancer; 2008. p. 312–6.

    Google Scholar 

  63. Mason DY, Harris NL, Delsol G, et al. Anaplastic large cell lymphoma, ALK-negative. In: Swerdlow S, Campo E, Harris N, Jaffe E, Pileri S, Stein H, Thiele J, Vardiman J, editors. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th ed. Lyon: International Agency for Research on Cancer; 2008. p. 317–9.

    Google Scholar 

  64. Sibon D, Fournier M, Briere J, et al. Long-term outcome of adults with systemic anaplastic large-cell lymphoma treated within the Groupe d’Etude des Lymphomes de l’Adulte trials. J Clin Oncol. 2012;30(32):3939–46.

    Article  PubMed  Google Scholar 

  65. • Iqbal J, Wright G, Wang C, et al. Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma. Blood. 2014;123(19):2915–23. Major paper on the role of gene expression profiling in segregating known entities and subgroups within peripheral T-cell lymphomas, not otherwise specified.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Piva R, Agnelli L, Pellegrino E, et al. Gene expression profiling uncovers molecular classifiers for the recognition of anaplastic large-cell lymphoma within peripheral T-cell neoplasms. J Clin Oncol. 2010;28(9):1583–90.

    Article  CAS  PubMed  Google Scholar 

  67. Piccaluga PP, Fuligni F, De Leo A, et al. Molecular profiling improves classification and prognostication of nodal peripheral T-cell lymphomas: results of a phase III diagnostic accuracy study. J Clin Oncol. 2013;31(24):3019–25.

    Article  PubMed  Google Scholar 

  68. Agnelli L, Mereu E, Pellegrino E, et al. Identification of a 3-gene model as a powerful diagnostic tool for the recognition of ALK-negative anaplastic large-cell lymphoma. Blood. 2012;120(6):1274–81.

    Article  CAS  PubMed  Google Scholar 

  69. Ralfkiaer E, Willemze R, Paulli M, Kadin ME. Primary cutaneous CD30-positive T-cell lymphoproliferative disorders. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri S, Stein H, Thiele J, Vardiman JW, editors. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th ed. Lyon: International Agency for Research on Cancer; 2008. p. 300–1.

    Google Scholar 

  70. Bekkenk MW, Geelen FA, van Voorst Vader PC, et al. Primary and secondary cutaneous CD30(+) lymphoproliferative disorders: a report from the Dutch Cutaneous Lymphoma Group on the long-term follow-up data of 219 patients and guidelines for diagnosis and treatment. Blood. 2000;95(12):3653–61.

    CAS  PubMed  Google Scholar 

  71. van Kester MS, Tensen CP, Vermeer MH, et al. Cutaneous anaplastic large cell lymphoma and peripheral T-cell lymphoma NOS show distinct chromosomal alterations and differential expression of chemokine receptors and apoptosis regulators. J Invest Dermatol. 2010;130(2):563–75.

    Article  PubMed  Google Scholar 

  72. Kadin ME, Deva A, Xu H, Morgan J, Khare P, MacLeod RA, Van Natta BW, Adams WP, Jr., Brody GS, Epstein AL. Biomarkers provide clues to early events in the pathogenesis of breast implant-associated anaplastic large cell lymphoma. Aesthet Surg J. 2016.

  73. Wada DA, Law ME, Hsi ED, et al. Specificity of IRF4 translocations for primary cutaneous anaplastic large cell lymphoma: a multicenter study of 204 skin biopsies. Mod Pathol. 2011;24(4):596–605.

    Article  CAS  PubMed  Google Scholar 

  74. Velusamy T, Kiel MJ, Sahasrabuddhe AA, et al. A novel recurrent NPM1-TYK2 gene fusion in cutaneous CD30-positive lymphoproliferative disorders. Blood. 2014;124(25):3768–71.

    Article  CAS  PubMed  Google Scholar 

  75. Oschlies I, Lisfeld J, Lamant L, et al. ALK-positive anaplastic large cell lymphoma limited to the skin: clinical, histopathological and molecular analysis of 6 pediatric cases. A report from the ALCL99 study. Haematologica. 2013;98(1):50–6.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Chan JC, Quintanilla-Martinez L, Ferry JA, Peh SC. Extranodal NK/T-cell lymphoma, nasal type. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri S, Stein H, Thiele J, Vardiman JW, editors. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th ed. Lyon: International Agency for Research on Cancer; 2008. p. 285–8.

    Google Scholar 

  77. Pongpruttipan T, Sukpanichnant S, Assanasen T, et al. Extranodal NK/T-cell lymphoma, nasal type, includes cases of natural killer cell and alphabeta, gammadelta, and alphabeta/gammadelta T-cell origin: a comprehensive clinicopathologic and phenotypic study. Am J Surg Pathol. 2012;36(4):481–99.

    Article  PubMed  Google Scholar 

  78. Chaudhary RK, Bhatt VR, Vose JM. Management of extranodal natural killer/t-cell lymphoma, nasal type. Clin Lymphoma Myeloma Leuk. 2015;15(5):245–52.

    Article  PubMed  Google Scholar 

  79. Pileri S, Ralfkiaer E, Weisenburger D, et al. Peripheral T-cell lymphoma, not otherwise specified. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri S, Stein H, Thiele J, Vardiman JW, editors. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th ed. Lyon: International Agency for Research on Cancer; 2008. p. 306–8.

    Google Scholar 

  80. Wang T, Feldman AL, Wada DA, et al. GATA-3 expression identifies a high-risk subset of PTCL, NOS with distinct molecular and clinical features. Blood. 2014;123(19):3007–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. de Leval L, Rickman DS, Thielen C, et al. The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood. 2007;109(11):4952–63.

    Article  PubMed  Google Scholar 

  82. Piccaluga PP, Agostinelli C, Califano A, et al. Gene expression analysis of angioimmunoblastic lymphoma indicates derivation from T follicular helper cells and vascular endothelial growth factor deregulation. Cancer Res. 2007;67(22):10703–10.

    Article  CAS  PubMed  Google Scholar 

  83. Attygalle AD, Feldman AL, Dogan A. ITK/SYK translocation in angioimmunoblastic T-cell lymphoma. Am J Surg Pathol. 2013;37(9):1456–7.

    Article  PubMed  Google Scholar 

  84. Kataoka K, Nagata Y, Kitanaka A, et al. Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat Genet. 2015;47(11):1304–15.

    Article  CAS  PubMed  Google Scholar 

  85. Scott DW, Mottok A, Ennishi D, et al. Prognostic significance of diffuse large B-cell lymphoma cell of origin determined by digital gene expression in formalin-fixed paraffin-embedded tissue biopsies. J Clin Oncol. 2015;33(26):2848–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lazaridis KN, McAllister TM, Babovic-Vuksanovic D, et al. Implementing individualized medicine into the medical practice. Am J Med Genet C Semin Med Genet. 2014;166C(1):15–23.

    Article  PubMed  Google Scholar 

Download references

Grant Support

This work was supported by award number R01 CA177734 (ALF) from the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew L. Feldman.

Ethics declarations

Conflict of Interest

Rosalind F. Sandell, Rebecca L. Boddicker, and Andrew L. Feldman declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Lymphomas

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandell, R.F., Boddicker, R.L. & Feldman, A.L. Genetic Landscape and Classification of Peripheral T Cell Lymphomas. Curr Oncol Rep 19, 28 (2017). https://doi.org/10.1007/s11912-017-0582-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-017-0582-9

Keywords

Navigation