Skip to main content

Advertisement

Log in

MEK Inhibition in the Treatment of Advanced Melanoma

  • Melanoma (KB Kim, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

The RAS-RAF-MEK-ERK pathway is considered to be the most important signal transduction pathway in melanoma, and alterations in this pathway via various genetic mutations, such as BRAF and NRAS mutations, are known to be important drivers of melanomagenesis. As MEK is an essential intermediary kinase protein within this pathway, inhibition of MEK has been of a great interest as a molecular target therapy in melanoma. In fact, trametinib, a selective MEK inhibitor, has been shown to have a survival benefit over cytotoxic chemotherapy in patients with V600 BRAF-mutant metastatic melanoma, leading to the FDA approval for this patient population. MEK inhibitors may also be useful in treatment of advanced melanoma harboring other genetic mutations, such as NRAS and GNAQ/GNA11 mutations. Here, we review and discuss the preclinical and clinical data regarding MEK inhibitors and their role in the treatment of advanced melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Balch CM, Gershenwald JE, Soong SJ, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 2009;27:6199–206.

    Article  PubMed  Google Scholar 

  2. Hodi FS, O'Day SJ, McDermott DF, et al. improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.

    Article  PubMed  CAS  Google Scholar 

  3. •• Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–16. ••This study demonstrated the survival advantage of vemurafenib over dacarbaizine in patients with metastatic melanoma harboring a V600E BRAF mutation.

    Article  PubMed  CAS  Google Scholar 

  4. • Hauschild A, Grob JJ, Demidov LV, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380:358–65. This study demonstrated the survival advantage of dabrafenib, a selective BRAF inhibitor, over dacarbazine in patients with metastatic melanoma harboring a V600 BRAF mutation.

    Article  PubMed  CAS  Google Scholar 

  5. Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26:3279–90.

    Article  PubMed  CAS  Google Scholar 

  6. •• Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54. This is the first report demonstrating the frequency of BRAF mutations and the functional relevance of V600E BRAF mutation in cancer, including melanoma.

    Article  PubMed  CAS  Google Scholar 

  7. Curtin JA, Fridlyand J, Kageshita T, et al. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353:2135–47.

    Article  PubMed  CAS  Google Scholar 

  8. Lee JH, Choi JW, Kim YS. Frequencies of BRAF and NRAS mutations are different in histological types and sites of origin of cutaneous melanoma: a meta-analysis. Br J Dermatol. 2011;164:776–84.

    Article  PubMed  CAS  Google Scholar 

  9. McCubrey JA, Steelman LS, Chappell WH, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta (BBA) - Mol Cell Res. 2007;1773:1263–84.

    Article  CAS  Google Scholar 

  10. Sharma A, Trivedi NR, Zimmerman MA, et al. Mutant V599EB-Raf regulates growth and vascular development of malignant melanoma tumors. Cancer Res. 2005;65:2412–21.

    Article  PubMed  CAS  Google Scholar 

  11. Thomas NE. BRAF somatic mutations in malignant melanoma and melanocytic naevi. Melanoma Res. 2006;16:97–103.

    Article  PubMed  CAS  Google Scholar 

  12. Menzies AM, Haydu LE, Visintin L, et al. Distinguishing clinicopathologic features of patients with V600E and V600K BRAF-mutant metastatic melanoma. Clin Cancer Res. 2012;18:3242–9.

    Article  PubMed  CAS  Google Scholar 

  13. Garnett MJ, Marais R. Guilty as charged: B-RAF is a human oncogene. Cancer Cell. 2004;6:313–9.

    Article  PubMed  CAS  Google Scholar 

  14. Wilhelm SM, Carter C, Tang L, et al. BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64:7099–109.

    Article  PubMed  CAS  Google Scholar 

  15. Hauschild A, Agarwala SS, Trefzer U, et al. Results of a phase III, randomized, placebo-controlled study of sorafenib in combination with carboplatin and paclitaxel as second-line treatment in patients with unresectable stage III or stage IV melanoma. J Clin Oncol. 2009;27:2823–30.

    Article  PubMed  CAS  Google Scholar 

  16. Amaravadi RK, Schuchter LM, McDermott DF, et al. Phase II Trial of Temozolomide and Sorafenib in Advanced Melanoma Patients with or without Brain Metastases. Clin Cancer Res. 2009;15:7711–8.

    Article  PubMed  CAS  Google Scholar 

  17. Ott PA, Hamilton A, Min C, et al. A phase II trial of sorafenib in metastatic melanoma with tissue correlates. PLoS One. 2010;5:e15588.

    Article  PubMed  CAS  Google Scholar 

  18. Wilhelm SM, Adnane L, Newell P, et al. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther. 2008;7:3129–40.

    Article  PubMed  CAS  Google Scholar 

  19. • Bollag G, Hirth P, Tsai J, et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature. 2010;467:596–9. This is a report describing the clinical development and the mechanism of action of vemurafenib.

    Article  PubMed  CAS  Google Scholar 

  20. Chapman PB, Hauschild A, Robert C et al. Updated overall survival (OS) results for BRIM-3, a phase III randomized, open-label, multicenter trial comparing BRAF inhibitor vemurafenib (vem) with dacarbazine (DTIC) in previously untreated patients with BRAFV600E-mutated melanoma. J Clin Oncol 30, 2012 (suppl; abstr 8502). Presented at the Amercian Society of Clinical Oncology Annual Meeting. Chicago, IL, USA; June 1–5, 2012.

  21. Nazarian R, Shi H, Wang Q, et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature. 2010;468:973–7.

    Article  PubMed  CAS  Google Scholar 

  22. McArthur GA, Ribas A, P. B. Chapman et al. Molecular analyses from a phase I trial of vemurafenib to study mechanism of action (MOA) and resistance in repeated biopsies from BRAF mutation–positive metastatic melanoma patients (pts). J Clin Oncol 29: 2011 (suppl; abstr 8502) 2011.

  23. Nathanson KL, A. Martin, R. Letrero et al. Tumor genetic analyses of patients with metastatic melanoma treated with the BRAF inhibitor GSK2118436 (GSK436). J Clin Oncol 29: 2011 (suppl; abstr 8501).

  24. Heidorn SJ, Milagre C, Whittaker S, et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell. 2010;140:209–21.

    Article  PubMed  CAS  Google Scholar 

  25. Montagut C, Sharma SV, Shioda T, et al. Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res. 2008;68:4853–61.

    Article  PubMed  CAS  Google Scholar 

  26. Kaplan FM, Shao Y, Mayberry MM, Aplin AE. Hyperactivation of MEK-ERK1/2 signaling and resistance to apoptosis induced by the oncogenic B-RAF inhibitor, PLX4720, in mutant N-RAS melanoma cells. Oncogene. 2011;30:366–71.

    Article  PubMed  CAS  Google Scholar 

  27. Emery CM, Vijayendran KG, Zipser MC, et al. MEK1 mutations confer resistance to MEK and B-RAF inhibition. Proc Natl Acad Sci U S A. 2009;106:20411–6.

    Article  PubMed  CAS  Google Scholar 

  28. Johannessen CM, Boehm JS, Kim SY, et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature. 2010;468:968–72.

    Article  PubMed  CAS  Google Scholar 

  29. Trunzer K, Pavlick AC, Schuchter L, et al. Pharmacodynamic effects and mechanisms of resistance to vemurafenib in patients with metastatic melanoma. J Clin Oncol. 2013;31:1767–74.

    Article  PubMed  CAS  Google Scholar 

  30. •• Flaherty KT, Robert C, Hersey P, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 2012;367:107–14. This study demonstrated the survival advantage of trametinib over cytotoxic chemotherapeutic drugs in patients with metastatic melanoma harboring a BRAF mutation.

    Article  PubMed  CAS  Google Scholar 

  31. Lorusso PM, Adjei AA, Varterasian M, et al. Phase I and pharmacodynamic study of the oral MEK inhibitor CI-1040 in patients with advanced malignancies. J Clin Oncol. 2005;23:5281–93.

    Article  PubMed  CAS  Google Scholar 

  32. Sebolt-Leopold JS, Dudley DT, Herrera R, et al. Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat Med. 1999;5:810–6.

    Article  PubMed  CAS  Google Scholar 

  33. Allen LF, Sebolt-Leopold J, Meyer MB. CI-1040 (PD184352), a targeted signal transduction inhibitor of MEK (MAPKK). Semin Oncol. 2003;30:105–16.

    Article  PubMed  CAS  Google Scholar 

  34. Rinehart J, Adjei AA, Lorusso PM, et al. Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. J Clin Oncol. 2004;22:4456–62.

    Article  PubMed  CAS  Google Scholar 

  35. Sebolt-Leopold J, Merriman R, Omer C. The biological profile of PD-0325901: a second generation analog of CI-1040 with improved pharmaceutical potential [abstract]. Presented at the American Association for Cancer Research Annual Meeting. Orlando, FL, USA; March 27–31, 2004.

  36. Brown AP, Carlson TC, Loi CM, Graziano MJ. Pharmacodynamic and toxicokinetic evaluation of the novel MEK inhibitor, PD0325901, in the rat following oral and intravenous administration. Cancer Chemother Pharmacol. 2007;59:671–9.

    Article  PubMed  CAS  Google Scholar 

  37. LoRusso PM, Krishnamurthi SS, Rinehart JJ, et al. Phase I pharmacokinetic and pharmacodynamic study of the oral MAPK/ERK kinase inhibitor PD-0325901 in patients with advanced cancers. Clin Cancer Res. 2010;16:1924–37.

    Article  PubMed  CAS  Google Scholar 

  38. Haura EB, Ricart AD, Larson TG, et al. A phase II study of PD-0325901, an oral MEK inhibitor, in previously treated patients with advanced non-small cell lung cancer. Clin Cancer Res. 2010;16:2450–7.

    Article  PubMed  CAS  Google Scholar 

  39. Boasberg PD, Redfern CH, Daniels GA, et al. Pilot study of PD-0325901 in previously treated patients with advanced melanoma, breast cancer, and colon cancer. Cancer Chemother Pharmacol. 2011;68:547–52.

    Article  PubMed  CAS  Google Scholar 

  40. Yeh TC, Marsh V, Bernat BA, et al. Biological characterization of ARRY-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinase kinase 1/2 inhibitor. Clin Cancer Res. 2007;13:1576–83.

    Article  PubMed  CAS  Google Scholar 

  41. Haass N, Smalley K, Sproesser K et al. The novel MEK1/2 inhibitor AZD6244 (ARRY-142886) inhibits the growth of melanomas harboring the BRAFV600E mutation in vitro and in vivo. Presented at the American Association for Cancer Research Annual Meeting. Los Angeles, CA, USA; April 14–18, 2007.

  42. • Adjei AA, Cohen RB, Franklin W, et al. Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers. J Clin Oncol. 2008;26:2139–46. This study evaluated the safety of selumetinib and demonstrated the pharmacokinetic and pharmacodynamic effect of selumetinib for the first time in human.

    Article  PubMed  CAS  Google Scholar 

  43. Kirkwood JM, Bastholt L, Robert C, et al. Phase II, open-label, randomized trial of the MEK1/2 inhibitor selumetinib as monotherapy versus temozolomide in patients with advanced melanoma. Clin Cancer Res. 2012;18:555–67.

    Article  PubMed  CAS  Google Scholar 

  44. Banerji U, Camidge DR, Verheul HM, et al. The first-in-human study of the hydrogen sulfate (Hyd-sulfate) capsule of the MEK1/2 inhibitor AZD6244 (ARRY-142886): a phase I open-label multicenter trial in patients with advanced cancer. Clin Cancer Res. 2010;16:1613–23.

    Article  PubMed  CAS  Google Scholar 

  45. Patel SP, Lazar AJ, Papadopoulos NE, et al. Clinical responses to selumetinib (AZD6244; ARRY-142886)-based combination therapy stratified by gene mutations in patients with metastatic melanoma. Cancer. 2013;119:799–805.

    Article  PubMed  CAS  Google Scholar 

  46. Middleton MR, Dummer R, Gutzmer R et al. Phase II double-blind, randomized study of selumetinib (SEL) plus dacarbazine (DTIC) versus placebo (PBO) plus DTIC as first-line treatment for advanced BRAF-mutant cutaneous or unknown primary melanoma. J Clin Oncol 31, 2013 (suppl; abstr 9004).

    Google Scholar 

  47. Gilmartin AG, Bleam MR, Groy A, et al. GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition. Clin Cancer Res. 2011;17:989–1000.

    Article  PubMed  CAS  Google Scholar 

  48. • Infante JR, Fecher LA, Falchook GS, et al. Safety, pharmacokinetic, pharmacodynamic, and efficacy data for the oral MEK inhibitor trametinib: a phase 1 dose-escalation trial. Lancet Oncol. 2012;13:773–81. This article describes the safety, pharmacokinetic and pharmacodynamic data of trametinib in a phase I study.

    Article  PubMed  CAS  Google Scholar 

  49. • Falchook GS, Lewis KD, Infante JR, et al. Activity of the oral MEK inhibitor trametinib in patients with advanced melanoma: a phase 1 dose-escalation trial. Lancet Oncol. 2012;13:782–9. This article describes preliminary clinical efficacy of trametinib in patients with advanced melanoma harboring various genetic mutations.

    Article  PubMed  CAS  Google Scholar 

  50. •• Kim KB, Lewis K, Pavlick AC et al. A Phase II study of the MEK1/MEK2 inhibitor GSK1120212 in metastatic BRAF V600E or K mutant cutaneous melanoma patients previously treated with or without a BRAF inhibitor. Pigment Cell & Melanoma Research 2011; 24(5):1021 (Abst. LBA 1021–1023). This study reported that the clinical efficacy of trametinib in patients with advanced melanoma harboring V600E/K BRAF mutation who were previously treated with a BRAF inhibitor is only minimal.

  51. Curtin JA, Busam K, Pinkel D, Bastian BC. Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol. 2006;24:4340–6.

    Article  PubMed  CAS  Google Scholar 

  52. Winski S, Anderson D, Bouhana K et al. MEK162 (ARRY-162), a Novel MEK 1/2 Inhibitor, Inhibits Tumor Growth Regardless of KRas/Raf Pathway Mutations. Presented at the Proc AACR-NCI-EORTC Symposium on Molecular Targets and Cancer Therapeutics, Berlin, Germany; Nov 16–19 2010.

  53. Bendell J, Papadopoulos K, Jones S et al. A Phase 1 Dose-Escalation Study of MEK Inhibitor MEK162 (ARRY-438162) in Patients with Advanced Solid Tumors [abstr B243]. Presented at the AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics, San Francisco, CA, USA; Nov 12–15, 2011.

  54. •• Ascierto PA, Schadendorf D, Berking C, et al. MEK162 for patients with advanced melanoma harbouring NRAS or Val600 BRAF mutations: a non-randomised, open-label phase 2 study. Lancet Oncol. 2013;14:249–56. This study demonstrated the clinical efficacy of MEK162 in patients with metastatic melanoma harboring a NRAS or BRAF mutation.

    Article  PubMed  CAS  Google Scholar 

  55. Wong H, Vernillet L, Peterson A, et al. Bridging the gap between preclinical and clinical studies using pharmacokinetic-pharmacodynamic modeling: an analysis of GDC-0973, a MEK inhibitor. Clin Cancer Res. 2012;18:3090–9.

    Article  PubMed  CAS  Google Scholar 

  56. Rosen L, LoRusso P, Ma WW et al. A first-in-human phase 1 study to evaluate the MEK 1/2 inhibitor GDC-0973 administered daily in patients with advanced solid tumors [abstract 4716]. Presented at the American Association for Cancer Research Annual Meeting. Orlando, FL, USA; April 2–6, 2011.

  57. Byron SA, Loch DC, Wellens CL, et al. Sensitivity to the MEK inhibitor E6201 in melanoma cells is associated with mutant BRAF and wildtype PTEN status. Mol Cancer. 2012;11:75.

    Article  PubMed  CAS  Google Scholar 

  58. Delord J, Houede N, Awada A et al. First-in-human phase I safety, pharmacokinetic (PK), and pharmacodynamic (PD) analysis of the oral MEK-inhibitor AS703026 (two regimens [R]) in patients (pts) with advanced solid tumors [ abstr 2504]. Presented at the Amercian Society of Clinical Oncology Annual Meeting. Chicago, IL, USA; June 4–8, 2010.

  59. Infante JR, G. S. Falchook, D. P. Lawrence et al. Phase I/II study to assess safety, pharmacokinetics, and efficacy of the oral MEK 1/2 inhibitor GSK1120212 (GSK212) dosed in combination with the oral BRAF inhibitor GSK2118436 (GSK436) [abstr CRA8503]. Presented at the Amercian Society of Clinical Oncology Annual Meeting. Chicago, IL, USA; June 3–7, 2011.

  60. •• Flaherty KT, Infante JR, Daud A, et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med. 2012;367:1694–703. This article describes the reduced frequency of the development of cutaneous squamous cell carcinoma/keratoacanthoma and the superior clinical efficacy of the combination of a BRAF inhibitor and a MEK inhibitor over a BRAF inhibitor alone.

    Article  PubMed  CAS  Google Scholar 

  61. Ribas A, Lewis K, Pavlick AC et al. Results of phase 1B combined BRAF and MEK inhibition with vemurafenib (vem) and GDC-0973 in patients (pts) with BRAFV600 advanced melanoma and establishing a phase III dose. Pigment Cell Melanoma Res 25:881 (abstract). Presented at the Society for Melanoma Research 2012 Congress. Hollywood, CA, United States; November 8–11, 2012.

  62. Catalanotti F, Solit DB, Pulitzer MP et al. Phase II Trial of MEK Inhibitor Selumetinib (AZD6244, ARRY-142886) in Patients with BRAFV600E/K-Mutated Melanoma. Clin Cancer Res 2013.

  63. Meng J, Dai B, Fang B, et al. Combination treatment with MEK and AKT inhibitors is more effective than each drug alone in human non-small cell lung cancer in vitro and in vivo. PLoS One. 2010;5:e14124.

    Article  PubMed  CAS  Google Scholar 

  64. Kwong LN, Costello JC, Liu H, et al. Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma. Nat Med. 2012;18:1503–10.

    Article  PubMed  CAS  Google Scholar 

  65. Singh AD, Topham A. Incidence of uveal melanoma in the United States: 1973–1997. Ophthalmology. 2003;110:956–61.

    Article  PubMed  Google Scholar 

  66. Van Raamsdonk CD, Bezrookove V, Green G, et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature. 2009;457:599–602.

    Article  PubMed  Google Scholar 

  67. Van Raamsdonk CD, Griewank KG, Crosby MB, et al. Mutations in GNA11 in uveal melanoma. N Engl J Med. 2010;363:2191–9.

    Article  PubMed  Google Scholar 

  68. Carvajal RD, Sosman JA, Quevedo F, Milhem MM, Joshua AM, Kudchadkar RR, et al. Phase II study of selumetinib versus temozolomide in gnaq/Gna11 mutant uveal melanoma. J Clin Oncol. 2013;31 Suppl; abstr CRA9003.

Download references

Acknowledgments

The authors thank Dr. Amelia Scholtz and Ms. Diane Hackett for their editorial assistance.

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Kim has been a consultant or has held an advisory role for Roche/Genentech, Bristol Myers Squibb, and Eisai. Dr. Salama has been a consultant or has held an advisory role for Roche/Genentech and Bristol Myers Squibb, and receives research funding from Bristol Myers Squibb.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin B. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salama, A.K.S., Kim, K.B. MEK Inhibition in the Treatment of Advanced Melanoma. Curr Oncol Rep 15, 473–482 (2013). https://doi.org/10.1007/s11912-013-0336-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-013-0336-2

Keywords

Navigation