Skip to main content

Advertisement

Log in

Newly Emerging Therapies Targeting Viral-Related Lymphomas

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Gamma-(γ)-herpes virus lymphomas comprise a heterogenous group of B-cell and T-cell neoplasms most commonly associated with Epstein-Barr virus and rarely human herpes virus-8 infection. Adult T-cell leukemia/lymphoma (ATLL) is a unique disease entity caused by the human T-cell lymphotrophic virus, type 1 (HTLV-I), the only retrovirus known to cause cancer in humans. Viral lymphomas behave aggressively and disproportionally affect immunocompromised individuals and those living in underdeveloped regions. These diseases are often difficult to treat with conventional approaches. Despite recent advancements using cytotoxic, lymphoma-specific, and adoptive therapies, the long-term outcome of patients with γ-herpesvirus lymphomas occurring in severely immunocompromised patients and ATLL continues to be poor. Lytic-inducing therapies targeting NF-κB, and viral and tumor cell epigenetic mechanisms afford the advantage of exploiting the intrinsic presence of oncogenic viruses to eradicate infected tumor cells. In this review, viral-related lymphomas and newly emerging clinical approaches targeting viral latency are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Parkin DM. The global health burden of infection-associated cancers in the year 2002. Int J Cancer. 118(12):3030.

  2. IARC monographs on the evaluation of carcinogenic risks to humans. Infections with Epstein-Barr virus and human herpes viruses, vol. 70. Lyon: IARC; 1997.

    Google Scholar 

  3. • Campo E, Swerdlow SH, Harris NL, et al. The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood. 2011;Feb 7. This publication describes the inclusion of rare EBV-related lymphoproliferative diseases and diffuse large B-cell lymphoma variants as separate disease entities.

  4. •• Cesarman E, Spina M, Gloghini A, et al. HIV-associated lymphomas and gamma herpesviruses. Blood 2009;113(6):1213–24. At the time of this publication, this is the most complete and up-to-date clinical, pathologic, and biological review of EBV-related and HHV-8–related lymphomas occurring in HIV patients.

    Article  PubMed  Google Scholar 

  5. • Chadburn A, Chiu A, Lee JY, et al. Immunophenotypic analysis of AIDS-related diffuse large B-cell lymphoma and clinical implications in patients from AIDS Malignancies Consortium clinical trials 010 and 034. J Clin Oncol. 2009;27(30):5039–48. This report accurately describes the incidence of EBV and histologic or immunophenotypic characteristics of HIV-associated diffuse large B-cell lymphoma variants.

    Article  PubMed  Google Scholar 

  6. Ghobrial IM, Habermann TM, Maurer MJ, et al. Prognostic analysis for survival in adult solid organ transplant recipients with post-transplantation lymphoproliferative disorders. J Clin Oncol. 2005;23(30):7574–82.

    Article  PubMed  Google Scholar 

  7. Nelson BP, Nalesnik MA, Bahler DW, et al. Epstein-Barr virus-negative post-transplant lymphoproliferative disorders: a distinct entity? Am J Surg Pathol. 2000;24:375–85.

    Article  PubMed  CAS  Google Scholar 

  8. Poiesz BJ, Ruscetti FW, Gazdar AF, et al. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci USA. 1980;77(12):7415–9.

    Article  PubMed  CAS  Google Scholar 

  9. Yoshida M, Miyoshi I, Hinuma Y. Isolation and characterization of retrovirus from cell lines of human adult T-cell leukemia and its implication in the disease. Proc Natl Acad Sci USA. 1982;79(6):2031–5.

    Article  PubMed  CAS  Google Scholar 

  10. •• Moore PS, Chang Y. Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nat Rev Cancer 2010;10(12):878–89. This publication is a thorough review of the role of oncogenic viruses in tumorigenesis and immune evasion.

    Article  PubMed  CAS  Google Scholar 

  11. •• Matsuoka M, Jeang KT. Human T-cell leukemia virus type 1 (HTLV-1) and leukemic transformation: viral infectivity, Tax, HBZ and therapy. Oncogene 2010 Nov 29. This publication is the most up-to-date comprehensive review about the pathogenesis of HTLV-I and the molecular steps leading to transformation and adult T-cell leukemia.

  12. Yoshida M. Discovery of HTLV-1, the first human retrovirus, its unique regulatory mechanisms, and insights into pathogenesis. Oncogene. 2005;24(39):5931–7.

    Article  PubMed  CAS  Google Scholar 

  13. Sun SC, Yamaoka S. Activation of NF-kappaB by HTLV-I and implications for cell transformation. Oncogene. 2005;24(39):5952–64.

    Article  PubMed  CAS  Google Scholar 

  14. de Oliveira DE, Ballon G, Cesarman E. NF-kappaB signaling modulation by EBV and KSHV. Trends Microbiol. 2010;18(6):248–57.

    Article  PubMed  Google Scholar 

  15. Karin M, Cao Y, Greten FR, et al. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer. 2002;2:301–10.

    Article  PubMed  CAS  Google Scholar 

  16. Heslop HE, Slobod KS, Pule MA, et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood. 2010;115(5):925–35.

    Article  PubMed  CAS  Google Scholar 

  17. Snow AL, Lambert SL, Natkunam Y, et al. EBV can protect latently infected B cell lymphomas from death receptor-induced apoptosis. J Immunol. 2006;177(5):3283–93.

    PubMed  CAS  Google Scholar 

  18. Tomlinson CC, Damania B. The K1 protein of Kaposi’s sarcoma-associated herpesvirus activates the Akt signaling pathway. J Virol. 2004;78(4):1918–27.

    Article  PubMed  CAS  Google Scholar 

  19. Guasparri I, Keller SA, Cesarman E. KSHV vFLIP is essential for the survival of infected lymphoma cells. J Exp Med. 2004;199(7):993–1003.

    Article  PubMed  CAS  Google Scholar 

  20. Brown HJ, Song MJ, Deng H, et al. NF-kappaB inhibits gammaherpesvirus lytic replication. J Virol. 2003;77(15):8532–40.

    Article  PubMed  CAS  Google Scholar 

  21. Seo JS, Cho NY, Kim HR, et al. Cell cycle arrest and lytic induction of EBV-transformed B lymphoblastoid cells by a histone deacetylase inhibitor, Trichostatin A. Oncol Rep. 2008;19(1):93–8.

    PubMed  CAS  Google Scholar 

  22. Hui KF, Chiang AK. Suberoylanilide hydroxamic acid induces viral lytic cycle in Epstein-Barr virus-positive epithelial malignancies and mediates enhanced cell death. Int J Cancer. 2010;126(10):2479–89.

    PubMed  CAS  Google Scholar 

  23. Ego T, Ariumi Y, Shimotohno K. The interaction of HTLV-1 Tax with HDAC1 negatively regulates the viral gene expression. Oncogene. 2002;21(47):7241–6.

    Article  PubMed  CAS  Google Scholar 

  24. Archin NM, Espeseth A, Parker D, et al. Expression of latent HIV induced by the potent HDAC inhibitor suberoylanilide hydroxamic acid. AIDS Res Hum Retroviruses. 2009;25(2):207–12.

    Article  PubMed  CAS  Google Scholar 

  25. Araujo I, Foss HD, Bittencourt A, et al. Expression of Epstein-Barr virus-gene products in Burkitt’s lymphoma in Northeast Brazil. Blood. 1996;87(12):5279–86.

    PubMed  CAS  Google Scholar 

  26. Glaser SL, Lin RJ, Stewart SL, et al. Epstein-Barr virus-associated Hodgkin’s disease: epidemiologic characteristics in international data. Int J Cancer. 1997;70(4):375–82.

    Article  PubMed  CAS  Google Scholar 

  27. Wang D, Liebowitz D, Kieff E. An EBV membrane protein expressed in immortalised lymphocytes transforms established rodent cells. Cell. 1985;43:831–40.

    Article  PubMed  CAS  Google Scholar 

  28. Huen DS, Henderson SA, Croom-Carter D, et al. The Epstein–Barr virus latent membrane protein-1 (LMP1) mediates activation of NF-κB and cell surface phenotype via two effector regions in its carboxyterminal cytoplasmic domain. Oncogene. 1995;10:549–60.

    PubMed  CAS  Google Scholar 

  29. Arvanitakis L, Yaseen N, Sharma S. Latent membrane protein-1 induces cyclin D2 expression, pRb hyperphosphorylation, and loss of TGF-beta 1-mediated growth inhibition in EBV-positive B cells. J Immunol. 1995;155(3):1047–56.

    PubMed  CAS  Google Scholar 

  30. Moore PS, Chang Y. Molecular virology of Kaposi’s sarcoma-associated herpesvirus. Philos Trans R Soc Lond B Biol Sci. 2001;356(1408):499–516.

    Article  PubMed  CAS  Google Scholar 

  31. Rowe M, Rowe DT, Gregory CD, et al. Differences in B cell growth phenotype reflect novel patterns of Epstein-Barr virus latent gene expression in Burkitt’s lymphoma cells. EMBO J. 1987;6(9):2743–51.

    PubMed  CAS  Google Scholar 

  32. Young L, Alfieri C, Hennessy K, et al. Expression of Epstein-Barr virus transformation-associated genes in tissues of patients with EBV lymphoproliferative disease. N Engl J Med. 1989;321(16):1080–5.

    Article  PubMed  CAS  Google Scholar 

  33. Deacon EM, Pallesen G, Niedobitek G, et al. Epstein-Barr virus and Hodgkin’s disease: transcriptional analysis of virus latency in the malignant cells. J Exp Med. 1993;177(2):339–49.

    Article  PubMed  CAS  Google Scholar 

  34. Caldwell RG, Wilson JB, Anderson SJ, et al. Epstein–Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity. 1998;9:405–11.

    Article  PubMed  CAS  Google Scholar 

  35. Sharp TV, Schwemmle M, Jeffrey I, et al. Comparative analysis of the regulation of the interferon-inducible protein kinase PKR by Epstein-Barr virus RNAs EBER-1 and EBER-2 and adenovirus VAI RNA. Nucleic Acids Res. 1993;21(19):4483.

    Article  PubMed  CAS  Google Scholar 

  36. Xia T, O’Hara A, Araujo I, et al. EBV microRNAs in primary lymphomas and targeting of CXCL-11 by ebv-mir-BHRF1-3. Cancer Res. 2008;68:1436–42.

    Article  PubMed  CAS  Google Scholar 

  37. Zheng ZM. Viral oncogenes, noncoding RNAs, and RNA splicing in human tumor viruses. Int J Biol Sci. 2010;6(7):730–55.

    PubMed  CAS  Google Scholar 

  38. Li M, Lee H, Guo J, Neipel F, et al. Kaposi’s sarcoma-associated herpesvirus viral interferon regulatory factor. J Virol. 1998;72(7):5433–40.

    PubMed  CAS  Google Scholar 

  39. Sun R et al. Kinetics of Kaposi’s sarcoma-associated herpesvirus gene expression. J Virol. 1999;73:2232–42.

    PubMed  CAS  Google Scholar 

  40. • Simard EP, Pfeiffer RM, Engels EA. Cumulative incidence of cancer among individuals with acquired immunodeficiency syndrome in the United States. Cancer 2011;117(5):1089–96. This review describes the most recent trends in HIV-associated malignancies during the HAART era.

    Article  PubMed  Google Scholar 

  41. Bower M, Gazzard B, Mandalia S, et al. A prognostic index for systemic AIDS-related non-Hodgkin lymphoma treated in the era of highly active antiretroviral therapy. Ann Intern Med. 2005;143:265–73.

    PubMed  Google Scholar 

  42. Tulpule A, Sherrod A, Dharmapala D, et al. Multidrug resistance (MDR-1) expression in AIDS-related lymphomas. Leuk Res. 2002;26(2):121–7.

    Article  PubMed  CAS  Google Scholar 

  43. Little RF, Pittaluga S, Grant N, et al. Highly effective treatment of acquired immunodeficiency syndrome-related lymphoma with dose-adjusted EPOCH: impact of antiretroviral therapy suspension and tumor biology. Blood. 2003;101(12):4653–9.

    Article  PubMed  CAS  Google Scholar 

  44. Spina M, Jaeger U, Sparano JA, et al. Rituximab plus infusional cyclophosphamide, doxorubicin, and etoposide in HIV-associated non-Hodgkin lymphoma: pooled results from 3 phase 2 trials. Blood. 2005;105(5):1891–7.

    Article  PubMed  CAS  Google Scholar 

  45. Wilson WH, Teruya-Feldstein J, Fest T, et al. Relationship of p53, bcl-2, and tumor proliferation to clinical drug resistance in non-Hodgkin’s lymphomas. Blood. 1997;89:601–9

    Google Scholar 

  46. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11.

    Article  PubMed  CAS  Google Scholar 

  47. Dunleavy K, Little RF, Pittaluga S, et al. The role of tumor histogenesis, FDG-PET, and short course EPOCH with dose-dense rituximab (SC-EPOCH-RR) in HIV-associated diffuse large B-cell lymphoma. Blood 2010 Feb 3.

  48. Sparano JA, Lee JY, Kaplan LD, et al. Rituximab plus concurrent infusional EPOCH chemotherapy is highly effective in HIV-associated, B-cell non-Hodgkin’s lymphoma. Blood. 2009 Dec 29.

  49. Barta SK, Lee JY, Sparano JA, et al. Pooled analysis of AIDS Malignancy Consortium (AMC) trials evaluating rituximab plus either CHOP or infusional EPOCH chemotherapy in HIV-associated non-Hodgkin’s lymphoma (Abstract/Oral presentation 011). Presented at the 12th International Conference on Malignancies in AIDS and Other Acquired Immunodeficiencies.

  50. Mounier N, Spina M, Gabarre J, et al. AIDS-related non-Hodgkin lymphoma: final analysis of 485 patients treated with risk-adapted intensive chemotherapy. Blood. 2006;107(10):3832–40.

    Article  PubMed  CAS  Google Scholar 

  51. Noy A. Controversies in the treatment of Burkitt lymphoma in AIDS. Curr Opin Oncol. 2010;22(5):443–8.

    Article  PubMed  Google Scholar 

  52. Delecluse HJ, Anagnostopoulos I, Dallenbach F, et al. Plasmablastic lymphomas of the oral cavity: a new entity associated with the human immunodeficiency virus infection. Blood. 1997;89:1413–20.

    PubMed  CAS  Google Scholar 

  53. Hansra D, Montague N, Stefanovic A, et al. Oral and extraoral plasmablastic lymphoma: similarities and differences in clinicopathologic characteristics. Am J Clin Pathol. 2010;134(5):710–9.

    Article  PubMed  Google Scholar 

  54. Jones D, Ballestas ME, Kaye KM, et al. Primary-effusion lymphoma and Kaposi’s sarcoma in a cardiactransplant recipient. N Engl J Med. 1998;339:444–9.

    Article  PubMed  CAS  Google Scholar 

  55. Tajima K. Epidemiology, clinical features and prevention of HTLV-I infection. Cancer Sci. 2011;102(2):295–301. ISBT Science Series, Volume 4, Issue n2, pages 352–356, November 2009.

    Article  PubMed  Google Scholar 

  56. Shimoyama M. Diagnostic criteria and classification of clinical subtypes of adult T-cell leukaemia-lymphoma. A report from the Lymphoma Study Group (1984–87). Br J Haematol. 1991;79(3):428–37.

    Article  PubMed  CAS  Google Scholar 

  57. Tsukasaki K, Utsunomiya A, Fukuda H, Japan Clinical Oncology Group Study JCOG9801, et al. VCAP-AMP-VECP compared with biweekly CHOP for adult T-cell leukemia-lymphoma: Japan Clinical Oncology Group Study JCOG9801. J Clin Oncol. 2007;25(34):5458–64.

    Article  PubMed  CAS  Google Scholar 

  58. Mansouri S, Choudhary G, Sarzala PM, et al. Suppression of human T-cell leukemia virus I gene expression by pokeweed antiviral protein. J Biol Chem. 2009;284(45):31453–62.

    Article  PubMed  CAS  Google Scholar 

  59. • Bazarbachi A, Plumelle Y, Carlos Ramos J, et al. Meta-analysis on the use of zidovudine and interferon-alfa in adult T-cell leukemia/lymphoma showing improved survival in the leukemic subtypes. J Clin Oncol. 2010;28(27):4177–83. This is the first meta-analysis demonstrating the efficacy of AZT and IFNα therapy in adult T-cell leukemia-lymphoma.

    Article  PubMed  CAS  Google Scholar 

  60. • Tsukasaki K, Hermine O, Bazarbachi A, et al. Definition, prognostic factors, treatment, and response criteria of adult T-cell leukemia-lymphoma: a proposal from an international consensus meeting. J Clin Oncol. 2009;27(3):453–9. This publication describes the first international recommendation guidelines for the clinical management of adult T-cell leukemia-lymphoma.

    Article  PubMed  Google Scholar 

  61. Suzuki R. Dosing of a phase I study of KW-0761, an anti-CCR4 antibody, for adult T-cell leukemia-lymphoma and peripheral T-cell lymphoma. J Clin Oncol. 2010;28(23):e404–5.

    Article  PubMed  Google Scholar 

  62. Waldmann TA. Anti-Tac (daclizumab, Zenapax) in the treatment of leukemia, autoimmune diseases, and in the prevention of allograft rejection: a 25-year personal odyssey. J Clin Immunol. 2007;27(1):1–18.

    Article  PubMed  CAS  Google Scholar 

  63. Lairmore MD, Silverman L, Ratner L. Animal models for human T-lymphotropic virus type 1 (HTLV-1) infection and transformation. Oncogene. 2005;24(39):6005–15.

    Article  PubMed  CAS  Google Scholar 

  64. Mori N, Fujii M, Ikeda S, et al. Constitutive activation of NF-kappaB in primary adult T-cell leukemia cells. Blood. 1999;93:2360–8.

    PubMed  CAS  Google Scholar 

  65. Ramos JC, Ruiz P, Ratner L, et al. IRF-4 and c-Rel expression in antiviral therapy resistant adult T-cell leukemia/lymphoma. Blood. 2007;109:3060–8.

    Article  PubMed  CAS  Google Scholar 

  66. Ramos JC, Diaz LM, Manrique M, et al. Zidovudine blocks NF-κB activity in vivo in adult t-cell leukemia blood (American Society of Hematology Annual Meeting Abstracts), Nov 2008; 112:2524. Presented at the 2008 American Society of Hematology Annual Conference.

  67. Pise-Masison CA, Radonovich M, Dohoney K, et al. Gene expression profiling of ATL patients: compilation of disease-related genes and evidence for TCF4 involvement in BIRC5 gene expression and cell viability. Blood. 2009;113(17):4016–26.

    Article  PubMed  CAS  Google Scholar 

  68. Alizadeh AA, Bohen SP, Lossos C, et al. Expression profiles of adult T-cell leukemia-lymphoma and associations with clinical responses to zidovudine and interferon alpha. Leuk Lymphoma. 2010;51(7):1200–16.

    Article  PubMed  CAS  Google Scholar 

  69. Xu S, Lima R, J. Ramos J, et al. New genomic profile signatures revealed in Western World adult T-cell leukemia/lymphoma patients by 244 K array CGH (Abstract/Presentation; Program Number 437). Presented at the American Society of Human Genetics 2010 Annual Meeting.

  70. Tsukasaki K, Krebs J, Nagai K, et al. Comparative genomic hybridization analysis in adult T-cell leukemia/lymphoma: correlation with clinical course. Blood. 2001;97(12):3875–81.

    Article  PubMed  CAS  Google Scholar 

  71. Oshiro A, Tagawa H, Ohshima K, et al. Identification of subtype-specific genomic alterations in aggressive adult T-cell leukemia/lymphoma. Blood. 2006;107(11):4500–7.

    Article  PubMed  CAS  Google Scholar 

  72. Hesseling PB, Molyneux E, Kamiza S, et al. Rescue chemotherapy for patients with resistant or relapsed endemic Burkitt’s lymphoma. Trans R Soc Trop Med Hyg. 2008;102(6):602–7.

    Article  PubMed  CAS  Google Scholar 

  73. Evens AM, Hutchings M, Diehl V. Treatment of Hodgkin lymphoma: the past, present, and future. Nat Clin Pract Oncol. 2008;5(9):543–56.

    Article  PubMed  CAS  Google Scholar 

  74. Kohrt H, Advani R. Extranodal natural killer/T-cell lymphoma: current concepts in biology and treatment. Leuk Lymphoma. 2009;50(11):1773–84.

    Article  PubMed  CAS  Google Scholar 

  75. Flowers CR, Sinha R, Vose JM. Improving outcomes for patients with diffuse large B-cell lymphoma. CA Cancer J Clin. 2010;60(6):393–408.

    PubMed  Google Scholar 

  76. Kaplan LD, Lee JY, Ambinder RF, et al. Rituximab does not improve clinical outcome in a randomized phase 3 trial of CHOP with or without rituximab in patients with HIV-associated non-Hodgkin lymphoma: AIDS-Malignancies Consortium Trial 010. Blood. 2005;106(5):1538–43.

    Article  PubMed  CAS  Google Scholar 

  77. Ribera JM, Oriol A, Morgades M, et al. PETHEMA, GELTAMO, GELCAB and GESIDA Groups. Safety and efficacy of cyclophosphamide, adriamycin, vincristine, prednisone and rituximab in patients with human immunodeficiency virus-associated diffuse large B-cell lymphoma: results of a phase II trial. Br J Haematol. 2008;140(4):411–9.

    Article  PubMed  CAS  Google Scholar 

  78. Evens AM, Roy R, Sterrenberg D, et al. Post-transplantation lymphoproliferative disorders: diagnosis, prognosis, and current approaches to therapy. Curr Oncol Rep. 2010;12(6):383–94.

    Article  PubMed  Google Scholar 

  79. Younes A, Bartlett NL, Leonard JP, et al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med. 2010;363(19):1812–21.

    Article  PubMed  CAS  Google Scholar 

  80. Dickinson M, Ritchie D, DeAngelo DJ, et al. Preliminary evidence of disease response to the pan deacetylase inhibitor panobinostat (LBH589) in refractory Hodgkin Lymphoma. Br J Haematol. 2009;147(1):97–101.

    Article  PubMed  CAS  Google Scholar 

  81. Zou P, Kawada J, Pesnicak L, et al. Bortezomib induces apoptosis of Epstein-Barr virus (EBV)-transformed B cells and prolongs survival of mice inoculated with EBV-transformed B cells. J Virol. 2007;81(18):10029–36.

    Article  PubMed  CAS  Google Scholar 

  82. An J, Sun Y, Fisher M, et al. Antitumor effects of bortezomib (PS-341) on primary effusion lymphomas. Leukemia. 2004;18(10):1699–704.

    Article  PubMed  CAS  Google Scholar 

  83. Carraway HE, Gore SD. Addition of histone deacetylase inhibitors in combination therapy. J Clin Oncol. 2007;25(15):1955–6.

    Article  PubMed  Google Scholar 

  84. Rosato RR, Grant S. Histone deacetylase inhibitors: insights into mechanisms of lethality. Expert Opin Ther Targets. 2005;9(4):809–24.

    Article  PubMed  CAS  Google Scholar 

  85. Lehrman G, Hogue IB, Palmer S, et al. Depletion of latent HIV-1 infection in vivo: a proof-of-concept study. Lancet. 2005;366(9485):549–55.

    Article  PubMed  CAS  Google Scholar 

  86. Sanchez-Gonzalez B, Yang H, Bueso-Ramos C, et al. Antileukemia activity of the combination of an anthracycline with a histone deacetylase inhibitor. Blood. 2006;108(4):1174–82.

    Article  PubMed  CAS  Google Scholar 

  87. Shiozawa K, Nakanishi T, Tan M, et al. Preclinical studies of vorinostat (suberoylanilide hydroxamic acid) combined with cytosine arabinoside and etoposide for treatment of acute leukemias. Clin Cancer Res. 2009;15(5):1698–707.

    Article  PubMed  CAS  Google Scholar 

  88. Gustafson EA, Chillemi AC, Sage DR, et al. The Epstein-Barr virus thymidine kinase does not phosphorylate ganciclovir or acyclovir and demonstrates a narrow substrate specificity compared to the herpes simplex virus type 1 thymidine kinase. Antimicrob Agents Chemother. 1998;42(11):2923–31.

    PubMed  CAS  Google Scholar 

  89. Moore SM, Cannon JS, Tanhehco YC, et al. Induction of Epstein-Barr virus kinases to sensitize tumor cells to nucleoside analogues. Antimicrob Agents Chemother. 2001;45(7):2082–91.

    Article  PubMed  CAS  Google Scholar 

  90. Perrine SP, Hermine O, Small T, et al. A phase 1/2 trial of arginine butyrate and ganciclovir in patients with Epstein-Barr virus-associated lymphoid malignancies. Blood. 2007;109(6):2571–8.

    Article  PubMed  CAS  Google Scholar 

  91. Roychowdhury S, Peng R, Baiocchi RA, et al. Experimental treatment of Epstein-Barr virus-associated primary central nervous system lymphoma. Cancer Res. 2003;63:965–71.

    PubMed  CAS  Google Scholar 

  92. Raez L, Cabral L, Cai JP, et al. Treatment of AIDS-related primary central nervous system lymphoma with zidovudine, ganciclovir, and interleukin 2. AIDS Res Hum Retroviruses. 1999;15(8):713–9.

    Article  PubMed  CAS  Google Scholar 

  93. Kurokawa M, Ghosh SK, Ramos JC, et al. Azidothymidine inhibits NF-kappaB and induces Epstein-Barr virus gene expression in Burkitt lymphoma. Blood. 2005;106(1):235–40.

    Article  PubMed  CAS  Google Scholar 

  94. Feng WH, Hong G, Delecluse HJ, et al. Lytic induction therapy for Epstein-Barr virus-positive B-cell lymphomas. J Virol. 2004;78(4):1893–902.

    Article  PubMed  CAS  Google Scholar 

  95. Feng WH, Cohen JI, Fischer S, Li L, et al. Reactivation of latent Epstein-Barr virus by methotrexate: a potential contributor to methotrexate-associated lymphomas. J Natl Cancer Inst. 2004;96(22):

  96. Tosi P, Gherlinzoni F, Mazza P, et al. 3′-Azido 3′-deoxythymidine+methotrexate as a novel antineoplastic combination in the treatment of human immunodeficiency virus-related non-Hodgkin’s lymphomas. Blood. 1997;89(2):419–25.

    PubMed  CAS  Google Scholar 

  97. Bayraktar D, Bernal E, Cabral L, et al. The use of high-dose azidothymidine in combination with chemotherapy upfront is an effective treatment approach for gamma-herpes virus-related non-Hodgkin’s lymphomas (Abstract/Poster 032). Presented at the 12th International Conference on Malignancies in AIDS and Other Acquired Immunodeficiencies.

  98. Keller SA, Schattner EJ, Cesarman E. Inhibition of NF-kappaB induces apoptosis of KSHV-infected primary effusion lymphoma cells. Blood. 2000;96:2537–42.

    PubMed  CAS  Google Scholar 

  99. Siddiqi T, Joyce RM. A case of HIV-negative primary effusion lymphoma treated with bortezomib, pegylated liposomal doxorubicin, and rituximab. Clin Lymphoma Myeloma. 2008;8(5):300–4.

    Article  PubMed  CAS  Google Scholar 

  100. •• Sarosiek KA, Cavallin LE, Bhatt S, et al. Efficacy of bortezomib in a direct xenograft model of primary effusion lymphoma. Proc Natl Acad Sci USA. 2010;107(29):13069–74. In this study we demonstrate proof of concept of targeting viral latency using a novel commercially available biological agent for primary effusion lymphoma, an aggressive γ-herpesvirus malignancy, using an animal model.

    Article  PubMed  CAS  Google Scholar 

  101. Seegulam ME, Ratner L. Integrase inhibitors effective against human t-cell leukemia virus type 1. Antimicrob Agents Chemother. 2011 Feb 22.

  102. Lezin A, Gillet N, Olindo S, et al. Histone deacetylase mediated transcriptional activation reduces proviral loads in HTLV-1 associated myelopathy/tropical spastic paraparesis patients. Blood. 2007;110(10):3722–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

J.C.R is currently or has been recently supported by NIH grants 1-P01-CA-128115-01A2, R01-CA-112217-03 2U01CA121947-04 Sub-Project ID: 6762, Leukemia and Lymphoma Society M0901391, and Damon Runyon Cancer Research Foundation.

I.S.L. is supported by NIH grants NIH CA109335 and NIH CA122105, and the Dwoskin Family and Fidelity Foundations.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Carlos Ramos or Izidore S. Lossos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramos, J.C., Lossos, I.S. Newly Emerging Therapies Targeting Viral-Related Lymphomas. Curr Oncol Rep 13, 416–426 (2011). https://doi.org/10.1007/s11912-011-0186-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-011-0186-8

Keywords

Navigation