Skip to main content

Advertisement

Log in

Critical signaling pathways in bone sarcoma: Candidates for therapeutic interventions

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Bone sarcomas cause disproportionate morbidity and mortality and desperately need new therapies as there has been little improvement in outcomes in 20 years. Identification of critical signaling pathways, including type 1 insulin-like growth factor receptor (IGF-1R) for Ewing sarcoma and possibly osteosarcoma, and the ERBB and the Wnt signaling pathways for osteosarcoma, have emerged as receptors mediating vital signals for bone sarcoma. Akt, mammalian target of rapamycin (mTOR), phosphoinositide 3-kinases, mitogen-activated protein kinase kinase, extracellular signal-regulated kinases, and Ras pathway play key roles in at least some tumors, and inhibition of mTOR in particular will likely lead to improved survival, although clinical trials are still underway. The Notch pathway and ezrin are essential for osteosarcoma metastasis, and Fas down-regulation is necessary for survival of metastases in lungs. As little is known about chondrosarcoma signaling, more preclinical work is needed. By defining vital signaling pathways in bone sarcomas, small molecule inhibitors can be applied rationally, leading to longer survival and reducing morbidity and late effects from intensive chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Kim SY, Toretsky JA, Scher D, Helman LJ: The role of IGF-1R in pediatric malignancies. Oncologist 2009, 14:83–91.

    Article  CAS  PubMed  Google Scholar 

  2. Britten CD: Targeting ErbB receptor signaling: a pan-ErbB approach to cancer. Mol Cancer Ther 2004, 3:1335–1342.

    CAS  PubMed  Google Scholar 

  3. Ren L, Hong SH, Cassavaugh J, et al.: The actin-cytoskeleton linker protein ezrin is regulated during osteosarcoma metastasis by PKC. Oncogene 2009, 28:792–802.

    Article  CAS  PubMed  Google Scholar 

  4. Garcia JA, Danielpour D: Mammalian target of rapamycin inhibition as a therapeutic strategy in the management of urologic malignancies. Mol Cancer Ther 2008, 7:1347–1354.

    Article  CAS  PubMed  Google Scholar 

  5. Shih I-M, Wang T-L: Notch signaling, gamma-secretase inhibitors, and cancer therapy. Cancer Res 2007, 67:1879–1882.

    Article  CAS  PubMed  Google Scholar 

  6. Baron R, Rawadi G: Targeting the Wnt/beta-catenin pathway to regulate bone formation in the adult skeleton. Endocrinology 2007, 148:2635–2643.

    Article  CAS  PubMed  Google Scholar 

  7. Greil R, Anether G, Johrer K, Tinhofer I: Tracking death dealing by Fas and TRAIL in lymphatic neoplastic disorders: pathways, targets, and therapeutic tools. J Leukoc Biol 2003, 74:311–330.

    Article  CAS  PubMed  Google Scholar 

  8. Pompetti F, Rizzo P, Simon RM, et al.: Oncogene alterations in primary, recurrent, and metastatic human bone tumors. J Cell Biochem 1996, 63:37–50.

    Article  CAS  PubMed  Google Scholar 

  9. Marina N, Gebhardt M, Teot L, Gorlick R: Biology and therapeutic advances for pediatric osteosarcoma. Oncologist 2004, 9:422–441.

    Article  PubMed  Google Scholar 

  10. Toguchida J, Yamaguchi T, Dayton SH, et al.: Prevalence and spectrum of germline mutations of the p53 gene among patients with sarcoma. N Engl J Med 1992, 326:1301–1308.

    Article  CAS  PubMed  Google Scholar 

  11. Yokoyama R, Schneider-Stock R, Radig K, et al.: Clinicopathologic implications of MDM2, p53 and K-ras gene alterations in osteosarcomas: MDM2 amplification and p53 mutations found in progressive tumors. Pathol Res Pract 1998, 194:615–621.

    CAS  PubMed  Google Scholar 

  12. Kappel CC, Velez-Yanguas MC, Hirschfeld S, Helman LJ: Human osteosarcoma cell lines are dependent on insulin-like growth factor I for in vitro growth. Cancer Res 1994, 54:2803–2807.

    CAS  PubMed  Google Scholar 

  13. Kolb EA, Gorlick R, Houghton PJ, et al.: Initial testing (stage 1) of a monoclonal antibody (SCH 717454) against the IGF-1 receptor by the pediatric preclinical testing program. Pediatr Blood Cancer 2008, 50:1190–1197.

    Article  PubMed  Google Scholar 

  14. Hughes DPM, Thomas DG, Giordano TJ, et al.: Cell surface expression of epidermal growth factor receptor and Her-2 with nuclear expression of Her-4 in primary osteosarcoma. Cancer Res 2004, 64:2047–2053.

    Article  CAS  PubMed  Google Scholar 

  15. Wen YH, Koeppen H, Garcia R, et al.: Epidermal growth factor receptor in osteosarcoma: expression and mutational analysis. Hum Pathol 2007, 38:1184–1191.

    Article  CAS  PubMed  Google Scholar 

  16. Messerschmitt PJ, Rettew AN, Brookover RE, et al.: Specific tyrosine kinase inhibitors regulate human osteosarcoma cells in vitro. Clin Orthop Relat Res 2008, 466:2168–2175.

    Article  PubMed  Google Scholar 

  17. Hingorani P, Zhang W, Gorlick R, Kolb EA: Inhibition of Src phosphorylation alters metastatic potential of osteosarcoma in vitro but not in vivo. Clin Cancer Res 2009, 15:3416–3422.

    Article  CAS  PubMed  Google Scholar 

  18. Reinholz GG, Getz B, Pederson L, et al.: Bisphosphonates directly regulate cell proliferation, differentiation, and gene expression in human osteoblasts. Cancer Res 2000, 60:6001–6007.

    CAS  PubMed  Google Scholar 

  19. Ory B, Blanchard F, Battaglia S, et al.: Zoledronic acid activates the DNA S-phase checkpoint and induces osteosarcoma cell death characterized by apoptosis-inducing factor and endonuclease-G translocation independently of p53 and retinoblastoma status. Mol Pharmacol 2007, 71:333–343.

    Article  CAS  PubMed  Google Scholar 

  20. Ferrari S, Palmerini E: Adjuvant and neoadjuvant combination chemotherapy for osteogenic sarcoma. Curr Opin Oncol 2007, 19:341–346.

    Article  CAS  PubMed  Google Scholar 

  21. Yang R, Piperdi S, Gorlick R: Activation of the RAF/mitogen-activated protein/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase pathway mediates apoptosis induced by chelerythrine in osteosarcoma. Clin Cancer Res 2008, 14:6396–404.

    Article  CAS  PubMed  Google Scholar 

  22. Hall-Geryk M YY, Hughes DPM: Inhibiting farnesylation in osteosarcoma [abstract 3759]. Presented at the 99th Annual Meeting of the American Association of Cancer Research. San Diego, CA; April 12–16, 2008.

  23. Woessmann W, Chen X, Borkhardt A: Ras-mediated activation of ERK by cisplatin induces cell death independently of p53 in osteosarcoma and neuroblastoma cell lines. Cancer Chemother Pharmacol. 2002, 50:397–404.

    Article  CAS  PubMed  Google Scholar 

  24. Ory B, Moriceau G, Redini F, Heymann D: mTOR inhibitors (rapamycin and its derivatives) and nitrogen containing bisphosphonates: bi-functional compounds for the treatment of bone tumours. Curr Med Chem 2007, 14:1381–1387.

    Article  CAS  PubMed  Google Scholar 

  25. Wan X, Mendoza A, Khanna C, Helman LJ: Rapamycin inhibits ezrin-mediated metastatic behavior in a murine model of osteosarcoma. Cancer Res 2005, 65:2406–2411.

    Article  CAS  PubMed  Google Scholar 

  26. Gautreau A, Poullet P, Louvard D, Arpin M: Ezrin, a plasma membrane-microfilament linker, signals cell survival through the phosphatidylinositol 3-kinase/Akt pathway. PNAS 1999, 96:7300–7305.

    Article  CAS  PubMed  Google Scholar 

  27. Wan X, Helman LJ: The biology behind mTOR inhibition in sarcoma. Oncologist 2007, 12:1007–1018.

    Article  PubMed  Google Scholar 

  28. Zhang P, Yang Y, Zweidler-McKay PA, Hughes DPM: Critical role of Notch signaling in osteosarcoma invasion and metastasis. Clin Cancer Res 2008, 14:2962–2969.

    Article  CAS  PubMed  Google Scholar 

  29. Engin F, Bertin T, Ma O, et al.: Notch signaling contributes to the pathogenesis of human osteosarcomas. Hum Mol Genet 2009, 18:1464–1470.

    Article  CAS  PubMed  Google Scholar 

  30. Tanaka M, Setoguchi T, Hirotsu M, et al.: Inhibition of Notch pathway prevents osteosarcoma growth by cell cycle regulation. Br J Cancer 2009, 100:1957–1965.

    Article  CAS  PubMed  Google Scholar 

  31. Kikuchi A. Regulation of beta-catenin signaling in the Wnt pathway. Biochem Biophys Res Commun 2000, 268:243–248.

    Article  CAS  PubMed  Google Scholar 

  32. Hoang BH, Kubo T, Healey JH, et al.: Expression of LDL receptor-related protein 5 (LRP5) as a novel marker for disease progression in high-grade osteosarcoma. Int J Cancer 2004, 109:106–111.

    Article  CAS  PubMed  Google Scholar 

  33. Chen K, Fallen S, Abaan HO, et al.: Wnt10b induces chemotaxis of osteosarcoma and correlates with reduced survival. Pediatr Blood Cancer 2008, 51:349–355.

    Article  CAS  PubMed  Google Scholar 

  34. Lee N, Smolarz AJ, Olson S, et al.: A potential role for Dkk-1 in the pathogenesis of osteosarcoma predicts novel diagnostic and treatment strategies. Br J Cancer 2007, 97:1552–1559.

    Article  CAS  PubMed  Google Scholar 

  35. Koshkina NV, Khanna C, Mendoza A, et al.: Fas-negative osteosarcoma tumor cells are selected during metastasis to the lungs: the role of the fas pathway in the metastatic process of osteosarcoma. Mol Cancer Res 2007, 5:991–999.

    Article  CAS  PubMed  Google Scholar 

  36. Gordon N, Arndt CA, Hawkins DS, et al.: Fas expression in lung metastasis from osteosarcoma patients. J Pediatr Hematol Oncol 2005, 27:611–615.

    Article  PubMed  Google Scholar 

  37. Gordon N, Koshkina NV, Jia S-F, et al.: Corruption of the Fas pathway delays the pulmonary clearance of murine osteosarcoma cells, enhances their metastatic potential, and reduces the effect of aerosol gemcitabine. Clin Cancer Res 2007, 13:4503–4510.

    Article  CAS  PubMed  Google Scholar 

  38. Hou P, Ji M, Yang B, et al.: Quantitative analysis of promoter hypermethylation in multiple genes in osteosarcoma. Cancer 2006, 106:1602–1609.

    Article  CAS  PubMed  Google Scholar 

  39. Lim S, Yang MH, Park JH, et al.: Inactivation of the RASSF1A in osteosarcoma. Oncol Rep 2003, 10:897–901.

    CAS  PubMed  Google Scholar 

  40. Schaefer KL, Eisenacher M, Braun Y, et al.: Microarray analysis of Ewing’s sarcoma family of tumours reveals characteristic gene expression signatures associated with metastasis and resistance to chemotherapy. Eur J Cancer 2008, 44:699–709.

    CAS  PubMed  Google Scholar 

  41. Toretsky JA, Kalebic T, Blakesley V, et al.: The insulin-like growth factor-i receptor is required for EWS/FLI-1 transformation of fibroblasts. J Biol Chem 1997, 272:30822–308227.

    Article  CAS  PubMed  Google Scholar 

  42. Scotlandi K, Manara MC, Nicoletti G, et al.: Antitumor activity of the insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 in musculoskeletal tumors. Cancer Res 2005, 65:3868–3876.

    Article  CAS  PubMed  Google Scholar 

  43. Atzori F, Tabernero J, Cervantes A, et al.: A phase I, pharmacokinetic (PK) and pharmacodynamic (PD) study of weekly (qW) MK-0646, an insulin-like growth factor-1 receptor (IGF1R) monoclonal antibody (MAb) in patients (pts) with advanced solid tumors [abstract]. ASCO Meeting Abstracts 2008, 26:3519.

    Google Scholar 

  44. Kang H-G, Jenabi JM, Zhang J, et al.: E-cadherin cell-cell adhesion in Ewing tumor cells mediates suppression of anoikis through activation of the ErbB4 tyrosine kinase. Cancer Res 2007, 67:3094–3105.

    Article  CAS  PubMed  Google Scholar 

  45. Dalal S, Berry AM, Cullinane CJ, et al.: Vascular endothelial growth factor: a therapeutic target for tumors of the Ewing’s sarcoma family. Clin Cancer Res 2005, 11:2364–2378.

    Article  CAS  PubMed  Google Scholar 

  46. Reddy K, Zhou Z, Jia SF, et al.: Stromal cell-derived factor-1 stimulates vasculogenesis and enhances Ewing’s sarcoma tumor growth in the absence of vascular endothelial growth factor. Int J Cancer 2008, 123:831–837.

    Article  CAS  PubMed  Google Scholar 

  47. Zhou Z, Bolontrade MF, Reddy K, et al.: Suppression of Ewing’s sarcoma tumor growth, tumor vessel formation, and vasculogenesis following anti vascular endothelial growth factor receptor-2 therapy. Clin Cancer Res 2007, 13:4867–4873.

    Article  CAS  PubMed  Google Scholar 

  48. Uren A, Wolf V, Sun YF, et al.: Wnt/Frizzled signaling in Ewing sarcoma. Pediatr Blood Cancer 2004, 43:243–249.

    Article  PubMed  Google Scholar 

  49. Guan H, Zhou Z, Gallick GE, et al.: Targeting Lyn inhibits tumor growth and metastasis in Ewing’s sarcoma. Mol Cancer Ther 2008, 7:1807–1816.

    Article  CAS  PubMed  Google Scholar 

  50. Bovee JV, Cleton-Jansen AM, Taminiau AH, Hogendoorn PC: Emerging pathways in the development of chondrosarcoma of bone and implications for targeted treatment. Lancet Oncol 2005, 6:599–607.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis P. M. Hughes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geryk-Hall, M., Hughes, D.P.M. Critical signaling pathways in bone sarcoma: Candidates for therapeutic interventions. Curr Oncol Rep 11, 446–453 (2009). https://doi.org/10.1007/s11912-009-0061-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-009-0061-z

Keywords

Navigation