Skip to main content

Advertisement

Log in

Immunoregulatory T cells: Role and potential as a target in malignancy

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Regulatory T cells (Treg cells) are a highly specialized subset of immune cells capable of specifically suppressing autoreactive cells and thereby preventing autoimmunity. Treg cells also play an important role in limiting the immune reaction in infectious diseases. In the context of malignancies, however, accumulation of Treg cells occurs in the tumor microenvironment. Treg cells have been associated with prevention of antitumor immunity and the evasion of efficient recognition of tumor antigens. In the past few years, several approaches have been developed to target and deplete Treg cells in the context of tumors. Overall, these interventions have the potential to eliminate Treg cells and thereby help strengthen antitumor immunity by vaccination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Sakaguchi S, Sakaguchi N, Asano M, et al.: Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995, 155:1151–1164.

    PubMed  CAS  Google Scholar 

  2. Valmori D, Merlo A, Souleimanian NE, et al.: A peripheral circulating compartment of natural naive CD4 Tregs. J Clin Invest 2005, 115:1953–1962.

    Article  PubMed  CAS  Google Scholar 

  3. Beyer M, Schultze JL: CD4+CD25highFOXP3+ regulatory T cells in peripheral blood are primarily of effector memory phenotype. J Clin Oncol 2007, 25:2628–2630; author reply 2630–2622.

    Article  PubMed  Google Scholar 

  4. Williams LM, Rudensky AY: Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat Immunol 2007, 8:277–284.

    Article  PubMed  CAS  Google Scholar 

  5. Gavin MA, Rasmussen JP, Fontenot JD, et al.: Foxp3-dependent programme of regulatory T-cell differentiation. Nature 2007, 445:771–775.

    Article  PubMed  CAS  Google Scholar 

  6. Bennett CL, Christie J, Ramsdell F, et al.: The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001, 27:20–21.

    Article  PubMed  CAS  Google Scholar 

  7. Kim JM, Rasmussen JP, Rudensky AY: Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol 2007, 8:191–197.

    Article  PubMed  CAS  Google Scholar 

  8. Walker MR, Kasprowicz DJ, Gersuk VH, et al.: Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25-T cells. J Clin Invest 2003, 112:1437–1443.

    PubMed  CAS  Google Scholar 

  9. Allan SE, Crome SQ, Crellin NK, et al.: Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int Immunol 2007, 19:345–354.

    Article  PubMed  CAS  Google Scholar 

  10. Takahashi T, Tagami T, Yamazaki S, et al.: Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2000, 192:303–310.

    Article  PubMed  CAS  Google Scholar 

  11. McHugh RS, Whitters MJ, Piccirillo CA, et al.: CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoidinduced TNF receptor. Immunity 2002, 16:311–323.

    Article  PubMed  CAS  Google Scholar 

  12. Nakamura K, Kitani A, Strober W: Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 2001, 194:629–644.

    Article  PubMed  CAS  Google Scholar 

  13. Hara M, Kingsley CI, Niimi M, et al.: IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J Immunol 2001, 166:3789–3796.

    PubMed  CAS  Google Scholar 

  14. Sakaguchi S: Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 2004, 22:531–562.

    Article  PubMed  CAS  Google Scholar 

  15. Berendt MJ, North RJ: T-cell-mediated suppression of antitumor immunity. An explanation for progressive growth of an immunogenic tumor. J Exp Med 1980, 151:69–80.

    Article  PubMed  CAS  Google Scholar 

  16. Chakraborty NG, Twardzik DR, Sivanandham M, et al.: Autologous melanoma-induced activation of regulatory T cells that suppress cytotoxic response. J Immunol 1990, 145:2359–2364.

    PubMed  CAS  Google Scholar 

  17. Grauer OM, Nierkens S, Bennink E, et al.: CD4+FoxP3+ regulatory T cells gradually accumulate in gliomas during tumor growth and efficiently suppress antiglioma immune responses in vivo. Int J Cancer 2007, 121:95–105.

    Article  PubMed  CAS  Google Scholar 

  18. Yu P, Lee Y, Liu W, et al.: Intratumor depletion of CD4+ cells unmasks tumor immunogenicity leading to the rejection of late-stage tumors. J Exp Med 2005, 201:779–791.

    Article  PubMed  CAS  Google Scholar 

  19. Linehan DC, Goedegebuure PS: CD25+CD4+ regulatory T-cells in cancer. Immunol Res 2005, 32:155–168.

    Article  PubMed  CAS  Google Scholar 

  20. Valzasina B, Piconese S, Guiducci C, Colombo MP: Tumorinduced expansion of regulatory T cells by conversion of CD4+CD25-lymphocytes is thymus and proliferation independent. Cancer Res 2006, 66:4488–4495.

    Article  PubMed  CAS  Google Scholar 

  21. Elpek KG, Lacelle C, Singh NP, et al.: CD4+CD25+ T regulatory cells dominate multiple immune evasion mechanisms in early but not late phases of tumor development in a B cell lymphoma model. J Immunol 2007, 178:6840–6848.

    PubMed  CAS  Google Scholar 

  22. Peng L, Kjaergaard J, Plautz GE, et al.: Tumor-induced L-selectin-high suppressor T cells mediate potent effector T cell blockade and cause failure of otherwise curative adoptive immunotherapy. J Immunol 2002, 169:4811–4821.

    PubMed  Google Scholar 

  23. Sharma MD, Baban B, Chandler P, et al.: Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Invest 2007, 117:2570–2582.

    Article  PubMed  CAS  Google Scholar 

  24. Woo EY, Chu CS, Goletz TJ, et al.: Regulatory CD4(+)CD25(+) T cells in tumors from patients with earlystage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 2001, 61:4766–4772.

    PubMed  CAS  Google Scholar 

  25. Beyer M, Schultze JL: Regulatory T cells in cancer. Blood 2006, 108:804–811.

    Article  PubMed  CAS  Google Scholar 

  26. Liyanage UK, Moore TT, Joo HG, et al.: Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 2002, 169:2756–2761.

    Google Scholar 

  27. Curiel TJ, Coukos G, Zou L, et al.: Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004, 10:942–949.

    Article  PubMed  CAS  Google Scholar 

  28. Beyer M, Kochanek M, Darabi K, et al.: Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood 2005, 106:2018–2025.

    Article  PubMed  CAS  Google Scholar 

  29. Ishida T, Ishii T, Inagaki A, et al.: Specific recruitment of CC chemokine receptor 4-positive regulatory T cells in Hodgkin lymphoma fosters immune privilege. Cancer Res 2006, 66:5716–5722.

    Article  PubMed  CAS  Google Scholar 

  30. Beyer M, Kochanek M, Giese T, et al.: In vivo peripheral expansion of naive CD4+CD25high FOXP3+ regulatory T cells in patients with multiple myeloma. Blood 2006, 107:3940–3949.

    Article  PubMed  Google Scholar 

  31. Yang ZZ, Novak AJ, Stenson MJ, et al.: Intratumoral CD4+CD25+ regulatory T-cell-mediated suppression of infiltrating CD4+ T-cells in B-cell non-Hodgkin lymphoma. Blood 2006, 107:3639–3646.

    Article  PubMed  CAS  Google Scholar 

  32. Ghiringhelli F, Menard C, Puig PE, et al.: Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 2007, 56:641–648.

    Article  PubMed  CAS  Google Scholar 

  33. Shimizu J, Yamazaki S, Sakaguchi S: Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 1999, 163:5211–5218.

    PubMed  CAS  Google Scholar 

  34. Tanaka H, Tanaka J, Kjaergaard J, Shu S: Depletion of CD4+ CD25+ regulatory cells augments the generation of specific immune T cells in tumor-draining lymph nodes. J Immunother 2002, 25:207–217.

    Article  PubMed  CAS  Google Scholar 

  35. Prasad SJ, Farrand KJ, Matthews SA, et al.: Dendritic cells loaded with stressed tumor cells elicit long-lasting protective tumor immunity in mice depleted of CD4+CD25+ regulatory T cells. J Immunol 2005, 174:90–98.

    PubMed  CAS  Google Scholar 

  36. Simova J, Bubenik J, Bieblova J, et al.: Depletion of T(reg) cells inhibits minimal residual disease after surgery of HPV16-associated tumours. Int J Oncol 2006, 29:1567–1571.

    PubMed  CAS  Google Scholar 

  37. Kohm AP, McMahon JS, Podojil JR, et al.: Cutting edge: anti-CD25 monoclonal antibody injection results in the functional inactivation, not depletion, of CD4+CD25+ T regulatory cells. J Immunol 2006, 176:3301–3305.

    PubMed  CAS  Google Scholar 

  38. Mesel-Lemoine M, Cherai M, Le Gouvello S, et al.: Initial depletion of regulatory T cells: the missing solution to preserve the immune functions of T lymphocytes designed for cell therapy. Blood 2006, 107:381–388.

    Article  PubMed  CAS  Google Scholar 

  39. Powell DJ, Jr, Parker LL, Rosenberg SA: Large-scale depletion of CD25+ regulatory T cells from patient leukapheresis samples. J Immunother 2005, 28:403–411.

    Article  PubMed  Google Scholar 

  40. Powell DJ, Jr, de Vries CR, Allen T, et al.: Inability to mediate prolonged reduction of regulatory T cells after transfer of autologous CD25-depleted PBMC and interleukin-2 after lymphodepleting chemotherapy. J Immunother 2007, 30:438–447.

    Article  PubMed  CAS  Google Scholar 

  41. Knutson KL, Dang Y, Lu H, et al.: IL-2 immunotoxin therapy modulates tumor-associated regulatory T cells and leads to lasting immune-mediated rejection of breast cancers in neu-transgenic mice. J Immunol 2006, 177:84–91.

    PubMed  CAS  Google Scholar 

  42. Litzinger MT, Fernando R, Curiel TJ, et al.: The IL-2 immunotoxin denileukin diftitox reduces regulatory T cells and enhances vaccine-mediated T-cell immunity. Blood 2007, 110:3192–3201.

    Article  PubMed  CAS  Google Scholar 

  43. Attia P, Powell DJ, Jr, Maker AV, et al.: Selective elimination of human regulatory T lymphocytes in vitro with the recombinant immunotoxin LMB-2. J Immunother 2006, 29:208–214.

    Article  PubMed  CAS  Google Scholar 

  44. Dannull J, Su Z, Rizzieri D, et al.: Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 2005, 115:3623–3633.

    Article  PubMed  CAS  Google Scholar 

  45. Mahnke K, Schonfeld K, Fondel S, et al.: Depletion of CD4+CD25+ human regulatory T cells in vivo: kinetics of Treg depletion and alterations in immune functions in vivo and in vitro. Int J Cancer 2007, 120:2723–2733.

    Article  PubMed  CAS  Google Scholar 

  46. Attia P, Maker AV, Haworth LR, et al.: Inability of a fusion protein of IL-2 and diphtheria toxin (denileukin diftitox, DAB389IL-2, ONTAK) to eliminate regulatory T lymphocytes in patients with melanoma. J Immunother 2005, 28:582–592.

    Article  PubMed  CAS  Google Scholar 

  47. Powell DJ, Jr, Felipe-Silva A, Merino MJ, et al.: Administration of a CD25-directed immunotoxin, LMB-2, to patients with metastatic melanoma induces a selective partial reduction in regulatory T cells in vivo. J Immunol 2007, 179:4919–4928.

    PubMed  CAS  Google Scholar 

  48. Ishida T, Ishii T, Inagaki A, et al.: The CCR4 as a novelspecific molecular target for immunotherapy in Hodgkin lymphoma. Leukemia 2006, 20:2162–2168.

    Article  PubMed  CAS  Google Scholar 

  49. Ishida T, Ueda R: CCR4 as a novel molecular target for immunotherapy of cancer. Cancer Sci 2006, 97:1139–1146.

    Article  PubMed  CAS  Google Scholar 

  50. Nair S, Boczkowski D, Fassnacht M, et al.: Vaccination against the forkhead family transcription factor Foxp3 enhances tumor immunity. Cancer Res 2007, 67:371–380.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Beyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beyer, M., Schultze, J.L. Immunoregulatory T cells: Role and potential as a target in malignancy. Curr Oncol Rep 10, 130–136 (2008). https://doi.org/10.1007/s11912-008-0021-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-008-0021-z

Keywords

Navigation