Skip to main content

Advertisement

Log in

Monitoring bcr-abl by polymerase chain reaction in the treatment of chronic myeloid leukemia

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

The elucidation of the molecular biology of chronic myeloid leukemia (CML) has provided a paradigm for understanding leukemogenesis, targeted drug development, and disease monitoring at the molecular level. Minimal residual disease (MRD) monitoring by fluorescence in situ hybridization and polymerase chain reaction (PCR) has become an important tool in predicting relapse after allogeneic transplant, allowing for early intervention strategies such as donor lymphocyte infusion. MRD monitoring is important for assessment of disease status in patients who obtain a complete cytogenetic remission, and this approach is likely to play an important role in following patients to determine who will relapse on imatinib mesylate therapy. This review focuses primarily on MRD monitoring by PCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Hansen JA, Gooley TA, Martin PJ, et al.: Bone marrow transplants from unrelated donors for patients with chronic myeloid leukemia. N Engl J Med 1998, 338:962–968.

    Article  PubMed  CAS  Google Scholar 

  2. O’Brien SG, Guilhot F, Larson RA, et al.: Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 2003, 348:994–1004. This landmark paper documents the results of the IRIS trial, which randomly assigned 1106 patients to receive imatinib or interferon and Ara-C. This study documented the impressive cytogenetic results of imatinib: complete cytogenetic response in 76.2% of patients in the imatinib arm versus 14.5% for the interferon and Ara-C arm.

    Article  PubMed  CAS  Google Scholar 

  3. Druker BJ, O’Brien SG, Cortes J: Chronic myelogenous leukemia. In American Society for Hematology Education Book. Washington, DC: ASH; 2002:111–135.

    Google Scholar 

  4. Talpaz M, Silver RT, Druker BJ, et al.: Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood 2002, 99:1928–1937.

    Article  PubMed  CAS  Google Scholar 

  5. Sawyers CL, Hochhaus A, Feldman E, et al.: Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood 2002, 99:3530–3539.

    Article  PubMed  CAS  Google Scholar 

  6. Diamond J, Goldman JM, Melo JV: BCR-ABL, ABL-BCR, BCR, and ABL genes are all expressed in individual granulocyte-macrophage colony-forming unit colonies derived from blood of patients with chronic myeloid leukemia. Blood 1995, 85:2171–2175.

    PubMed  CAS  Google Scholar 

  7. Melo JV: The molecular biology of chronic myeloid leukaemia. Leukemia 1996, 10:751–756.

    PubMed  CAS  Google Scholar 

  8. Shepherd P, Suffolk R, Halsey J, Allan N: Analysis of molecular breakpoint and m-RNA transcripts in a prospective randomized trial of interferon in chronic myeloid leukaemia: no correlation with clinical features, cytogenetic response, duration of chronic phase, or survival. Br J Haematol 1995, 89:546–554.

    PubMed  CAS  Google Scholar 

  9. Faderl S, Talpaz M, Estrov Z, et al.: The biology of chronic myeloid leukemia. N Engl J Med 1999, 341:164–172.

    Article  PubMed  CAS  Google Scholar 

  10. Hermans A, Heisterkamp N, von Linden M, et al.: Unique fusion of bcr and c-abl genes in Philadelphia chromosome positive acute lymphoblastic leukemia. Cell 1987, 51:33–40.

    Article  PubMed  CAS  Google Scholar 

  11. Hochhaus A, Reiter A, Skladny H, et al.: A novel BCR-ABL fusion gene (e6a2) in a patient with Philadelphia chromosome-negative chronic myelogenous leukemia. Blood 1996, 88:2236–2240.

    PubMed  CAS  Google Scholar 

  12. van der Plas DC, Soekarman D, van Gent AM, et al.: bcr-abl mRNA lacking abl exon a2 detected by polymerase chain reaction in a chronic myelogeneous leukemia patient. Leukemia 1991, 5:457–461.

    PubMed  Google Scholar 

  13. Wang JY: Regulation of cell death by the Abl tyrosine kinase. Oncogene 2000, 19:5643–56450.

    Article  PubMed  CAS  Google Scholar 

  14. Ben-Neriah Y, Daley GQ, Mes-Masson AM, et al.: The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science 1986, 233:212–214.

    Article  PubMed  CAS  Google Scholar 

  15. Deininger MWN, Goldman JM, Melo JV: The molecular biology of chronic myeloid leukemia. Blood 2000, 96:3343–3356. An excellent review of CML covering molecular mechanisms of disease development and transformation, affected signaling pathways, and experimental models.

    PubMed  CAS  Google Scholar 

  16. Hook EB: Exclusion of chromosomal mosaicism: tables of 90%, 95% and 99% confidence limits and comments on use. Am J Hum Genet 1977, 29:94–97.

    PubMed  CAS  Google Scholar 

  17. Arthur CK, Apperley JF, Guo AP, et al.: Cytogenetic events after bone marrow transplantation for chronic myeloid leukemia in chronic phase. Blood 1988, 71:1179–1186.

    PubMed  CAS  Google Scholar 

  18. Huntly BJ, Reid AG, Bench AJ, et al.: Deletions of the derivative chromosome 9 occur at the time of the Philadelphia translocation and provide a powerful and independent prognostic indicator in chronic myeloid leukemia. Blood 2001, 98:1732–1738.

    Article  PubMed  CAS  Google Scholar 

  19. Sinclair PB, Nacheva EP, Leversha M, et al.: Large deletions at the t(9;22) breakpoint are common and may identify a poor-prognosis subgroup of patients with chronic myeloid leukemia. Blood 2000, 95:738–743.

    PubMed  CAS  Google Scholar 

  20. Seong DC, Kantarjian HM, Ro JY, et al.: Hypermetaphase fluorescence in situ hybridization for quantitative monitoring of Philadelphia chromosome-positive cells in patients with chronic myelogenous leukemia during treatment. Blood 1995, 86:2343–2349. A study of 70 double-blind bone marrow samples describing a high-resolution molecular cytogenetic method for monitoring the frequency of Ph-positive cells in CML.

    PubMed  CAS  Google Scholar 

  21. Nylund SJ, Ruutu T, Saarinen U, Knuutila S: Metaphase fluorescence in situ hybridization (FISH) in the follow-up of 60 patients with haemopoietic malignancies. Br J Haematol 1994, 88:778–783.

    PubMed  CAS  Google Scholar 

  22. Bernell P, Arvidsson I, Jacobsson B, Hast R: Fluorescence in situ hybridization in combination with morphology detects minimal residual disease in remission and heralds relapse in acute leukaemia. Br J Haematol 1996, 95:666–672.

    Article  PubMed  CAS  Google Scholar 

  23. Engel H, Drach J, Keyhani A, Jiang S, et al.: Quantitation of minimal residual disease in acute myelogenous leukemia and myelodysplastic syndromes in complete remission by molecular cytogenetics of progenitor cells. Leukemia 1999, 13:568–577.

    Article  PubMed  CAS  Google Scholar 

  24. Cotteret S, Belloc F, Boiron JM, et al.: Fluorescent in situ hybridization on flow-sorted cells as a tool for evaluating minimal residual disease or chimerism after allogenic bone marrow transplantation. Cytometry 1998, 34:216–222.

    Article  PubMed  CAS  Google Scholar 

  25. Slovak ML, Zhang F, Tcheurekdjian L, et al.: Targeting multiple genetic aberrations in isolated tumor cells by spectral fluorescence in situ hybridization. Cancer Detect Prev 2002, 26:171–179.

    Article  PubMed  CAS  Google Scholar 

  26. Heid CA, Stevens J, Livak KJ, Williams PM: Real time quantitative PCR. Genome Res 1996, 6:986–994.

    PubMed  CAS  Google Scholar 

  27. Radich JP, Gehly G, Gooley T, et al.: Polymerase chain reaction detection of BCR/ABL fusion transcript after allogeneic marrow transplantation for chronic myeloid leukemia: results and implications in 346 patients. Blood 1995, 85:2632–2638. One of the largest studies assessing the role of qualitative PCR in predicting relapse after allogeneic transplant. The Kaplan-Meier estimate of relapse for patients testing PCR-positive at 6 to 12 months was 42% versus 3% for PCR-negative patients.

    PubMed  CAS  Google Scholar 

  28. Radich JP, Gooley T, Bryant E, et al.: The significance of bcr-abl molecular detection in chronic myeloid leukemia patients ‘late’, 18 months or more after transplantation. Blood 2001, 98:1701–1707. A large study of 379 patients addressing the implication of qualitative PCR positivity 18 or more months after transplant. The hazard ratio associated with at least one positive qualitative PCR test within this period was 19. The analysis was extended to assess quantitative PCR in 85 patients and demonstrated that the kinetics of increasing bcr-abl copy number predicts relapse.

    Article  PubMed  CAS  Google Scholar 

  29. Emig M, Saussele S, Wittor H, et al.: Accurate and rapid analysis of residual disease in patients with CML using specific fluorescent hybridization probes for real time quantitative RT-PCR. Leukemia 1999, 13:1825–1832.

    Article  PubMed  CAS  Google Scholar 

  30. Roth MS, Antin JH, Ash R, et al.: Prognostic significance of Philadelphia chromosome-positive cells detected by the polymerase chain reaction after allogeneic bone marrow transplant for chronic myelogenous leukemia. Blood 1992, 79:276–282.

    PubMed  CAS  Google Scholar 

  31. Miyamura K, Tahara T, Tanimoto M, et al.: Long persistent bcr-abl positive transcript detected by polymerase chain reaction after marrow transplant for chronic myelogenous leukemia without clinical relapse: a study of 64 patients. Blood 1993, 81:1089–1093.

    PubMed  CAS  Google Scholar 

  32. Cross NC: Minimal residual disease in chronic myeloid leukaemia. Hematol Cell Ther 1998, 40:224–228.

    PubMed  CAS  Google Scholar 

  33. el-Rifai W, Ruutu T, Vettenranta K, et al.: Minimal residual disease after allogeneic bone marrow transplantation for chronic myeloid leukaemia: a metaphase-FISH study. Br J Haematol 1996, 92:365–369.

    Article  PubMed  CAS  Google Scholar 

  34. Hughes TP, Morgan GJ, Martiat P, Goldman JM: Detection of residual leukemia after bone marrow transplant for chronic myeloid leukemia: role of polymerase chain reaction in predicting relapse. Blood 1991, 77:874–878.

    PubMed  CAS  Google Scholar 

  35. Mughal TI, Yong A, Szydlo RM, et al.: Molecular studies in patients with chronic myeloid leukaemia in remission 5 years after allogeneic stem cell transplant define the risk of subsequent relapse. Br J Haematol 2001, 115:569–574.

    Article  PubMed  CAS  Google Scholar 

  36. Pichert G, Roy D-C, Gonin R, et al.: Distinct patterns of minimal residual disease associated with graft-versus-host disease after allogeneic bone marrow transplantation for chronic myelogenous leukemia. J Clin Oncol 1995, 13:1704–1713.

    PubMed  CAS  Google Scholar 

  37. Costello RT, Kirk J, Gabert J: Value of PCR analysis for long term survivors after allogeneic bone marrow transplant for chronic myelogenous leukemia: a comparative study. Leuk Lymphoma 1996, 20:239–242.

    PubMed  CAS  Google Scholar 

  38. van Rhee F, Cross NCP, Reid CDL, et al.: Detection of residual leukaemia more than 10 years after allogeneic bone marrow transplantation for chronic myelogenous leukemia. Bone Marrow Transplant 1994, 14:609–612.

    PubMed  Google Scholar 

  39. McSweeney PA, Niederwieser D, Shizuru JA, et al.: Hematopoietic cell transplantation in older patients with hematologic malignancies: replacing high-dose cytotoxic therapy with graft-versus-tumor effects. Blood 2001, 97:3390–3400.

    Article  PubMed  CAS  Google Scholar 

  40. Mackinnon S, Barnett L, Heller G: Polymerase chain reaction is highly predictive of relapse in patients following T cell-depleted allogeneic bone marrow transplantation for chronic myeloid leukemia. Bone Marrow Transplant 1996, 17:643–647.

    PubMed  CAS  Google Scholar 

  41. Lin F, van Rhee F, Goldman JM, Cross NCP: Kinetics of increasing BCR-ABL transcript numbers in chronic myeloid leukemia patients who relapse after bone marrow transplantation. Blood 1996, 87:4473–4478.

    PubMed  CAS  Google Scholar 

  42. Mensink E, van de Locht A, Schattenberg A, et al.: Quantitation of minimal residual disease in Philadelphia chromosome positive chronic myeloid leukemia patients using real-time quantitative RT-PCR. Br J Haematol 1998, 102:768–774.

    Article  PubMed  CAS  Google Scholar 

  43. Preudhomme C, Chams-Eddine L, Roumier C, et al.: Detection of BCR-ABL transcripts in chronic myeloid leukemia (CML) using an in situ RT-PCR assay. Leukemia 1999, 13:818–823.

    Article  PubMed  CAS  Google Scholar 

  44. Olavarria E, Kanfer E, Szydlo R, et al.: Early detection of BCR-ABL transcripts by quantitative reverse transcriptasepolymerase chain reaction predicts outcome after allogeneic stem cell transplantation for chronic myeloid leukemia. Blood 2001, 97:1560–1565. This large study of 138 CML patients reported the cumulative incidence of relapse associated with no, low, and high bcr-abl copy number within the first 3 to 5 months after allogeneic transplant. The results were 16.7%, 42.9%, and 86.4%, respectively.

    Article  PubMed  CAS  Google Scholar 

  45. Branford S, Hughes TP, Rudzki Z: Monitoring chronic myeloid leukaemia therapy by real-time quantitative PCR in blood is a reliable alternative to bone marrow cytogenetics. Br J Haematol 1999, 107:587–599.

    Article  PubMed  CAS  Google Scholar 

  46. Sawyers CL, Timson L, Kawasaki ES, et al.: Molecular relapse in chronic myelogenous leukemia patients after bone marrow transplantation detected by polymerase chain reaction. Proc Natl Acad Sci U S A 1990, 87:563–567.

    Article  PubMed  CAS  Google Scholar 

  47. Deininger M, Lehmann T, Krahl R, et al.: No evidence for persistence of BCR-ABL-positive cells in patients in molecular remission after conventional allogenic transplantation for chronic myeloid leukemia. Blood 2000, 96:779–780.

    PubMed  CAS  Google Scholar 

  48. Chase A, Parker S, Kaeda J, et al.: Absence of host-derived cells in the blood of patients in remission after allografting for chronic myeloid leukemia. Blood 2000, 96:777–778.

    PubMed  CAS  Google Scholar 

  49. Chomel JC, Brizard F, Veinstein A, et al.: Persistence of BCR-ABL genomic rearrangement in chronic myeloid leukemia patients in complete and sustained cytogenetic remission after interferon-alpha therapy or allogeneic bone marrow transplantation. Blood 2000, 95:404–409.

    PubMed  CAS  Google Scholar 

  50. Zhang JG, Goldman JM, Cross NC: Characterization of genomic BCR-ABL breakpoints in chronic myeloid leukaemia by PCR. Br J Haematol 1995, 90:138–146.

    PubMed  CAS  Google Scholar 

  51. Zhang JG, Lin F, Chase A, et al.: Comparison of genomic DNA and cDNA for detection of residual disease after treatment of chronic myeloid leukemia with allogeneic bone marrow transplantation. Blood 1996, 87:2588–2593.

    PubMed  CAS  Google Scholar 

  52. Kantarjian HM, O’Brien S, Cortes J, et al.: Complete cytogenetic and molecular responses to interferon-alpha-based therapy for chronic myelogenous leukemia are associated with excellent long-term prognosis. Cancer 2003, 97:1033–1041.

    Article  PubMed  CAS  Google Scholar 

  53. Hochhaus A, Lin F, Reiter A, et al.: Quantification of residual disease in chronic myelogenous leukemia patients on interferon-alpha therapy by competitive polymerase chain reaction. Blood 1996, 87:1549–1555.

    PubMed  CAS  Google Scholar 

  54. Hochhaus A, Lin F, Reiter A, et al.: Monitoring the efficiency of interferon-alpha therapy in chronic myelogenous leukemia (CML) patients by competitive polymerase chain reaction. Leukemia 1997, 11(Suppl 3):541–544.

    PubMed  Google Scholar 

  55. Kurzrock R, Estrov Z, Kantarjian H, Talpaz M: Conversion of interferon-induced, long-term cytogenetic remissions in chronic myelogenous leukemia to polymerase chain reaction negativity. J Clin Oncol 1998, 16:1526–1531.

    PubMed  CAS  Google Scholar 

  56. Hochhaus A, Lin F, Reiter A, et al.: Variable numbers of BCR-ABL transcripts persist in CML patients who achieve complete cytogenetic remission with interferon-alpha. Br J Haematol 1995, 91:126–131.

    PubMed  CAS  Google Scholar 

  57. Hughes T, Kaeda J, Branford S, et al.: Molecular responses to imatinib: (STI571) or interferon + Ara-C as initial therapy for CML: results in the IRIS study. Blood 2002, 100:93a-94a.

    Google Scholar 

  58. Kantarjian HM, Talpaz M, O’Brien S, et al.: Imatinib mesylate for Philadelphia chromosome-positive, chronic-phase myeloid leukemia after failure of interferon-alpha: follow-up results. Clin Cancer Res 2002, 8:2177–2187.

    PubMed  CAS  Google Scholar 

  59. Merx K, Muller MC, Kreil S, et al.: Early reduction of BCRABL mRNA transcript levels predicts cytogenetic response in chronic phase CML patients treated with imatinib after failure of interferon alpha. Leukemia 2002, 16:1579–1583.

    Article  PubMed  CAS  Google Scholar 

  60. Wu CJ, Neuberg D, Chillemi A, et al.: Quantitative monitoring of BCR/ABL transcript during STI-571 therapy. Leuk Lymphoma 2002, 43:2281–2289.

    Article  PubMed  CAS  Google Scholar 

  61. Bumm T, Muller C, Al-Ali HK, et al.: Emergence of clonal cytogenetic abnormalities in Ph-cells in some CML patients in cytogenetic remission to imatinib but restoration of polyclonal hematopoiesis in the majority. Blood 2003, 101:1941–1949.

    Article  PubMed  CAS  Google Scholar 

  62. O’Dwyer ME, Gatter KM, Loriaux M, et al.: Demonstration of Philadelphia chromosome negative abnormal clones in patients with chronic myelogenous leukemia during major cytogenetic responses induced by imatinib mesylate. Leukemia 2003, 17:481–487.

    Article  PubMed  CAS  Google Scholar 

  63. Kwok S, Higuchi R: Avoiding false positives with PCR. Nature 1989, 339:237–238.

    Article  PubMed  CAS  Google Scholar 

  64. Miyamoto T, Nagafuji K, Akashi K, et al.: Persistence of multipotent progenitors expressing AML1/ETO transcripts in long-term remission patients with t(8;21) acute myelogenous leukemia. Blood 1996, 87:4789–4796.

    PubMed  CAS  Google Scholar 

  65. Tobal K, Saunders MJ, Grey MR, Yin JA: Persistence of RAR alpha-PML fusion mRNA detected by reverse transcriptase polymerase chain reaction in patients in long-term remission of acute promyelocytic leukaemia. Br J Haematol 1995, 90:615–608.

    PubMed  CAS  Google Scholar 

  66. Bose S, Deininger M, Gora-Tybor J, et al.: The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessement of minimal residual disease. Blood 1998, 92:3362–3367.

    PubMed  CAS  Google Scholar 

  67. Radich JP: The detection and significance of minimal residual disease in chronic myeloid leukemia. Medicina (B Aires) 2000, 60:66–70.

    Google Scholar 

  68. Vora A, Frost L, Goodeve A, et al.: Late relapsing childhood lymphoblastic leukemia. Blood 1998, 92:2334–2337.

    PubMed  CAS  Google Scholar 

  69. Nitta M, Kato Y, Strife A, et al.: Incidence of involvement of the B and T lymphocyte lineages in chronic myelogenous leukemia. Blood 1985, 66:1053–1061.

    PubMed  CAS  Google Scholar 

  70. Kearney L, Orchard KH, Hibbin J, Goldman JM: T-cell cytogenetics in chronic granulocytic leukaemia. Lancet 1982, 1:858.

    Article  PubMed  CAS  Google Scholar 

  71. Vickers M: Estimation of the number of mutations necessary to cause chronic myeloid leukaemia from epidemiological data. Br J Haematol 1996, 94:1–4.

    PubMed  CAS  Google Scholar 

  72. Lin F, Goldman JM, Cross NC: A comparison of the sensitivity of blood and bone marrow for the detection of minimal residual disease in chronic myeloid leukemia. Br J Haematol 1994, 89:684–685.

    Google Scholar 

  73. Buno I, Wyatt WA, Zinsmeister AR, et al.: A special fluorescent in situ hybridization technique to study peripheral blood and assess the effectiveness of interferon therapy in chronic myeloid leukemia. Blood 1998, 92:2315–2321.

    PubMed  CAS  Google Scholar 

  74. Le Gouill S, Talmant P, Milpied N, et al.: Fluorescence in situ hybridization on peripheral-blood specimens is a reliable method to evaluate cytogenetic response in chronic myeloid leukemia. J Clin Oncol 2000, 18:1533–1538.

    PubMed  Google Scholar 

  75. Muhlmann J, Thaler J, Hilbe W, et al.: Fluorescence in situ hybridization (FISH) on peripheral blood smears for monitoring Philadelphia chromosome-positive chronic myeloid leukemia (CML) during interferon treatment: a new strategy for remission assessment. Genes Chromosomes Cancer 1998, 21:90–100.

    Article  PubMed  CAS  Google Scholar 

  76. Chen Z, Notohamiprodjo M, Richards PD, et al.: Some observations on fluorescence in situ hybridization evaluation of chronic myelocytic leukemia. Cancer Genet Cytogenet 1997, 98:1–3.

    Article  PubMed  CAS  Google Scholar 

  77. Akel S, Kolialexi A, Mavrou A, et al.: Efficiency of interphase fluorescence in situ hybridization for BCR/ABL on peripheral blood smears for monitoring of CML patients: a comparison with bone marrow findings. Clin Lab Haematol 2002, 24:361–367.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oehler, V.G., Radich, J.P. Monitoring bcr-abl by polymerase chain reaction in the treatment of chronic myeloid leukemia. Curr Oncol Rep 5, 426–435 (2003). https://doi.org/10.1007/s11912-003-0030-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-003-0030-x

Keywords

Navigation