Skip to main content

Advertisement

Log in

Monitoring PML-RARα in acute promyelocytic leukemia

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Acute promyelocytic leukemia (APL) is characterized by a translocation between the promyelocytic leukemia gene (PML) on chromosome 15 and the retinoic acid receptor-α (RARα) gene on chromosome 17. Reverse-transcription polymerase chain reaction (RT-PCR) amplification of PML-RARα messenger RNA can establish the diagnosis of APL, predict response to all-trans retinoic acid and arsenic trioxide, detect minimal residual disease, and predict relapse. Quantitative "real-time" RT-PCR techniques may improve residual disease assessment by facilitating more rapid and standardized results. APL provides a useful model in which therapy is targeted to an underlying genetic aberration and treatment is adapted based on monitoring of residual disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Huang ME, Ye YC, Chen SR, et al.: Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 1988, 72:567–572.

    PubMed  CAS  Google Scholar 

  2. Castaigne S, Chomienne C, Daniel MT, et al.: All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia. I. Clinical results. Blood 1990, 76:1704–1709.

    PubMed  CAS  Google Scholar 

  3. Warrell RP Jr, Frankel SR, Miller WH Jr, et al.: Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid). N Engl J Med 1991, 324:1385–1393.

    Article  PubMed  Google Scholar 

  4. Warrell RP Jr, Maslak PG, Eardley A, et al.: Treatment of acute promyelocytic leukemia with all-trans retinoic acid: an update of the New York experience. Leukemia 1994, 8:929–933.

    PubMed  Google Scholar 

  5. Tallman MS, Anderson JW, Schiffer CA, et al.: All-trans retinoic acid in acute promyelocytic leukemia. N Engl J Med 1997, 337:1021–1028.

    Article  PubMed  CAS  Google Scholar 

  6. Mandelli F, Diverio D, Avvisati G, et al.: Molecular remission in PML/RARalpha-positive acute promyelocytic leukemia by combined all-trans retinoic acid and idarubicin (AIDA) therapy. Blood 1997, 90:1014–1021.

    PubMed  CAS  Google Scholar 

  7. Fenaux P, Chastang C, Chevret S, et al.: A randomized comparison of all-trans retinoic acid (ATRA) following chemotherapy and ATRA plus chemotherapy and the role of maintenance therapy in newly diagnosed acute promyelocytic leukemia. Blood 1999, 94:1192–1200.

    PubMed  CAS  Google Scholar 

  8. Shen Z-X, Chen G-Q, Ni J-H, et al.: Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapse patients. Blood 1997, 89:3345–3360.

    Google Scholar 

  9. Soignet SL, Maslak P, Wang Z-G, et al.: Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med 1998, 339:1341–1348. One of two papers that demonstrates the marked activity of arsenic trioxide against relapsed APL, including its ability to induce molecular remissions.

    Article  PubMed  CAS  Google Scholar 

  10. Soignet SL, Frankel SR, Douer D, et al.: United States multicenter study of arsenic trioxide in relapsed acute promyelocytic leukemia. J Clin Oncol 2001, 19:3852–3860. A second paper demonstrating the marked activity of arsenic trioxide against relapsed APL.

    PubMed  CAS  Google Scholar 

  11. Estey E, Thall PF, Pierce S, et al.: Treatment of newly diagnosed acute promyelocytic leukemia without cytarabine. J Clin Oncol 1997, 15:483–490.

    PubMed  CAS  Google Scholar 

  12. Sanz MA, LoCoco F, Martín G, et al.: Definition of relapse risk and role of nonanthracycline drugs for consolidation in patients with acute promyelocytic leukemia: a joint study of the PETHEMA and GIMEMA cooperative groups. Blood 2000, 96:1247–1253.

    PubMed  CAS  Google Scholar 

  13. de Thé H, Chomienne C, Lanotte M, et al.: The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor α gene to a novel transcribed locus. Nature 1990, 347:558–561.

    Article  PubMed  Google Scholar 

  14. Miller WH Jr, Warrell RP Jr, Frankel SR, et al.: Novel retinoic acid receptor-α transcripts in acute promyelocytic leukemia responsive to all-trans retinoic acid. J Natl Cancer Inst 1990, 32:1932–1933.

    Article  Google Scholar 

  15. Kakizuka A, Miller WH Jr, Umesono K, et al.: Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR-alpha with a novel putative transcription factor, PML. Cell 1991, 66:663–674.

    Article  PubMed  CAS  Google Scholar 

  16. de Thé H, Lavau C, Marcio A, et al.: The PML-RAR-α fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 1991, 66:675–684.

    Article  PubMed  Google Scholar 

  17. Salomoni P, Pandolfi PP: The role of PML in tumor suppression. Cell 2002, 108:165–70.

    Article  PubMed  CAS  Google Scholar 

  18. Kastner P, Chan S: Function of RARα during the maturation of neutrophils. Oncogene 2001, 20:7216–7222.

    Article  CAS  Google Scholar 

  19. Miller WH Jr, Kakizuka A, Frankel SR, et al.: Reverse transcription polymerase chain reaction for the rearranged retinoic acid receptor-α clarifies diagnosis and detects minimal residual disease in acute promyelocytic leukemia. Proc Natl Acad Sci U S A 1992, 89:2694–2698.

    Article  PubMed  CAS  Google Scholar 

  20. Borrow J, Goddard AD, Gibbons B, et al.: Diagnosis of acute promyelocytic leukaemia by RT-PCR: detection of PMLRARalpha and RAR-PML fusion transcripts. Br J Haematol 1992, 82:529–540.

    PubMed  CAS  Google Scholar 

  21. Pandolfi PP, Alcalay M, Fagioli M, et al.: Genomic variability and alternative splicing generate multiple PML/RARα transcripts that encode aberrant PML proteins and PML/RARalpha isoforms in acute promyelocytic leukemia. EMBO J 1992, 11:1397–1407.

    PubMed  CAS  Google Scholar 

  22. Biondi A, Rambaldi A, Pandofi PP, et al.: Molecular monitoring of myl/RAR-alpha fusion gene in acute promyelocytic leukemia by polymerase chain reaction. Blood 1992, 80:492–97.

    PubMed  CAS  Google Scholar 

  23. Chen S-J, Zelent A, Tong J-H, et al.: Rearrangements of the retinoic acid receptor a and promyelocytic zinc finger genes resulting from t(11;17)(q23;q21) in a patients with acute promyelocytic leukemia. J Clin Invest 1993, 91:2260–2267.

    Article  PubMed  CAS  Google Scholar 

  24. Redner RL, Rush EA, Faas S, et al.: The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood 1996, 87:882–886.

    PubMed  CAS  Google Scholar 

  25. Wells RA, Catzavelos C, Kamel-Reid S. Fusion of retinoic acid receptor α to NUMA, the nuclear mitotic apparatus protein, by a variant translocation in acute promyelocytic leukemia. Nat Genet 1997, 17:109–113.

    Article  PubMed  CAS  Google Scholar 

  26. Arnould C, Philippe C, Bourdon V, et al.: The signal transducer and activator of transcription STAT5b gene is a new partner of retinoic acid receptor α in acute promyelocytic-like leukemia. Human Mol Genet 1999, 8:1741–1749.

    Article  CAS  Google Scholar 

  27. Grimwade D, Biondi A, Mozziconacci M-J, et al.: Characterization of acute promyelocytic leukemia cases lacking the classic t(15;17): results of the European Working Party. Blood 2000, 96:1297–1308. This paper describes the incidence and clinical characteristics of APL resulting from PML-RARα rearrangements due to insertions or more complex mechanisms, in addition to the fusion of RARα with alternative partner genes. The authors highlight the importance of combining morphologic, cytogenetic, and molecular analyses for optimal management of APL.

    PubMed  CAS  Google Scholar 

  28. Biondi A, Rambaldi A, Alcalay M, et al.: RAR-alpha rearrangements as a genetic marker for diagnosis and monitoring in acute promyelocytic leukemia. Blood 1991, 77:1418–1422.

    PubMed  CAS  Google Scholar 

  29. Castaigne S, Balitrand N, de Thé H, et al.: A PML/retinoic acid receptor-α fusion transcript is constantly detected by RNA-based polymerase chain reaction in acute promyelocytic leukemia. Blood 1992, 79:3110–3115.

    PubMed  CAS  Google Scholar 

  30. Burnett AK, Grimwade D, Solomon E, et al.: Presenting white blood cell count and kinetics of molecular remission predict prognosis in acute promyelocytic leukemia treated with all-trans retinoic acid: result of the randomized MRC trial. Blood 1999, 93:4131–4143. This large trial shows that kinetics of entering molecular remission are an independent prognostic factor in APL and that results of molecular monitoring after the third course of chemotherapy are correlated with risk of relapse.

    PubMed  CAS  Google Scholar 

  31. Zhang P, Wang S, Hu X, et al.: Arsenic trioxide treated 72 cases of acute promyelocytic leukemia. Chin J Hematol 1996, 17:58–62.

    Google Scholar 

  32. Gallagher R, Willman CL, Slack JL, et al.: Association of PML/ RARalpha fusion mRNA type with pre-treatment hematologic characteristics but not treatment outcome in acute promyelocytic leukemia: an intergroup molecular study. Blood 1997, 90:1656–1663. This study, based on data from 230 patients with newly diagnosed APL, suggests that the S-form (bcr-3) of the PML-RARα rearrangement is associated with higher presenting leukocyte counts and the M3v phenotype. Although patients with the S-form have shorter diseasefree survival than those expressing the L-form (bcr-1), this difference was not statistically significant after adjusting for the association of the S-form with a higher presenting leukocyte count.

    PubMed  CAS  Google Scholar 

  33. Huang W, Sun G-L, Li Z-S, et al.: Acute promyelocytic leukemia: clinical relevance of two major PML-RARalpha isoforms and detection of minimal residual disease by retrotranscriptase/ polymerase chain reaction to predict relapse. Blood 1993, 82:1264–1269.

    PubMed  CAS  Google Scholar 

  34. Jurcic JG, Nimer SD, Scheinberg DA, et al.: Prognostic significance of minimal residual disease detection and PML/RARalpha isoform type: long-term follow-up in acute promyelocytic leukemia. Blood 2001, 98:2651–2656. This paper demonstrates the prognostic significance of serial RT-PCR monitoring during consolidation and the early posttreatment period among 82 patients with a median follow-up duration exceeding 63 months.

    Article  PubMed  CAS  Google Scholar 

  35. Slack JL, Willman CL, Andersen JW, et al.: Molelcular analysis and clinical outcome of adult APL patients with the type V PML-RARalpha isoform: results from Intergroup protocol 0129. Blood 2000, 95:398–403.

    PubMed  CAS  Google Scholar 

  36. Allford S, Grimwade D, Langabeer S, et al.: Identification of the t(15;17) in AML FAB types other than M3: evaluation of the role of molecular screening for the PML-RARalpha rearrangement in newly diagnosed AML. Br J Haematol 1999, 114:551–556.

    Google Scholar 

  37. Mandelli F, Diverio D, Avvisati G, et al.: Molecular remission in PML/RARalpha-positive acute promyelocytic leukemia by combined all-trans retinoic acid and idarubicin (AIDA) therapy. Blood 1997, 90:1014–1021. This study demonstrates that induction with ATRA and idarubicin produces a significantly higher molecular remission rate than ATRA alone, and that 98% of patients become RT-PCR-negative after the completion of three courses of consolidation.

    PubMed  CAS  Google Scholar 

  38. Niu C, Yan H, Yu T, et al.: Studies on treatment of acute promyelocytic leukemia with arsenic trioxide: remission induction, follow-up, and molecular monitoring in 11 newly diagnosed and 47 relapsed acute promyelocytic leukemia patients. Blood 1999, 94:3315–3324.

    PubMed  CAS  Google Scholar 

  39. Bonnet D, Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997, 3:730–737.

    Article  PubMed  CAS  Google Scholar 

  40. Jurcic JG, DeBlasio T, Dumont L, et al.: Molecular remission induction with retinoic acid and anti-CD33 monoclonal antibody HuM95 in acute promyelocytic leukemia. Clin Cancer Res 2000, 6:372–380.

    PubMed  CAS  Google Scholar 

  41. Estey EH, Giles FJ, Beran M, et al.: Experience with gemtuzumab ozogamicin (‘Mylotarg’) and all-trans retinoic acid in untreated acute promyelocytic leukemia. Blood 2002, 99:4222–4224.

    Article  PubMed  CAS  Google Scholar 

  42. Estey EH, Giles FJ, Kantarjian H, et al.: Molecular remissions induced by liposomal-encapsulated all-trans retinoic acid in newly diagnosed acute promyelocytic leukemia. Blood 1999, 94:2230–2235.

    PubMed  CAS  Google Scholar 

  43. Lin R, Nagy L, Inoue S, et al.: Role of the histone deacetylase complex in acute promyelocytic leukemia. Nature 1998, 391:811–814.

    Article  PubMed  CAS  Google Scholar 

  44. Warrell RP, He L-Z, Ricon V, et al.: Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase. J Natl Cancer Inst 1998, 90:1621–1625.

    Article  PubMed  CAS  Google Scholar 

  45. Zhou DC, Kim SH, Ding W, et al.: Frequent mutations in the ligand-binding domain of PML-RARalpha after multiple relapses of acute promyelocytic leukemia: analysis for functional relationship to responses to all-trans retinoic acid and histone deacetylase inhibitors in vitro and in vivo. Blood 2002, 99:1356–1363.

    Article  PubMed  CAS  Google Scholar 

  46. Seale JRC, Varma S, Swirsky DM, et al.: Quantification of PML/RARα transcripts in acute promyelocytic leukaemia: explanation for lack of sensitivity of RT-PCR for the detection of minimal residual disease and induction of leukaemia-specific mRNA by alpha interferon. Br J Haematol 1996, 95:95–101.

    Article  PubMed  CAS  Google Scholar 

  47. Tobak K, Moore H, Macheta Liu Yin HA: Monitoring minimal residual disease and predicting relapse in APL by quantitating PML-RARalpha transcripts with a sensitive competitive RT-PCR method. Leukemia 2001, 15:1060–1065.

    Article  CAS  Google Scholar 

  48. Diverio D, Rossi V, Avvisati G, et al.: Early detection of relapse by prospective reverse transcriptase-polymerase chain reaction analysis of the PML/RARalpha fusion gene in patients with acute promyelocytic leukemia enrolled in the GIMEMAAIEOP multicenter ‘AIDA’ trial. Blood 1998, 92:784–789. The investigators demonstrated that, among patients with newly diagnosed APL, conversion to RT-PCR positivity during remission is predictive of relapse. This study highlights the prognostic value of stringent molecular monitoring during the early post-consolidation period.

    PubMed  CAS  Google Scholar 

  49. LoCoco F, Diverio D, Pandolfi PP, et al.: Molecular evaluation of residual disease as a predictor of relapse in acute promyelocytic leukemia. Lancet 1992, 340:1437–1438.

    Article  CAS  Google Scholar 

  50. Miller WH Jr, Levine K, DeBlasio A, et al.: Detection of minimal residual disease in acute promyelocytic leukemia by a reverse transcription polymerase chain reaction. Blood 1993, 82:1689–1694.

    PubMed  CAS  Google Scholar 

  51. Diverio D, Pandolfi PP, Biondi A, et al.: Absence of RT-PCR detectable residual disease in acute promyelocytic leukemia in long-term remission. Blood 1993, 82:3556–3559.

    PubMed  CAS  Google Scholar 

  52. Ikeda K, Sasaki K, Tasaka T, et al.: Reverse transcriptionpolymerase chain reaction for PML-RARalpha fusion transcripts in acute promyelocytic leukemia and its application to minimal residual disease detection. Leukemia 1993, 7:544–548.

    PubMed  CAS  Google Scholar 

  53. Fukutani H, Naoe T, Ohno R, et al.: Prognostic significance of the RT-PCR assay of PML-RARalpha transcripts in acute promyelocytic leukemia. Leukemia 1995, 9:588–593.

    PubMed  CAS  Google Scholar 

  54. LoCoco F, Diverio D, Avvisati G, et al.: Therapy of molecular relapse in acute promyelocytic leukemia. Blood 1999, 94:2225–2229. This pilot study indicates that early treatment of APL patients in molecular relapse improves outcome compared with treatment in overt clinical relapse.

    CAS  Google Scholar 

  55. Meloni G, Diverio D, Vignetti M, et al.: Autologous bone marrow transplantation for acute promyelocytic leukemia in second remission: prognostic relevance of pretransplant minimal residual disease assessment by reverse-transcription polymerase chain reaction of the PML/RARalpha fusion gene. Blood 1997, 90:1321–1325. This study shows that, for APL patients in second complete remission, autologous transplantation with marrow negative for the PML-RARα rearrangement is likely to result in prolonged clinical and molecular remission. In contrast, patients who remain RT-PCR-positive require alternative treatments, including allogeneic transplantation.

    PubMed  CAS  Google Scholar 

  56. Sanz MA, de la Rubia J, Bonanad S, et al.: Prolonged molecular remission after PML/RARalpha-positive autologous peripheral blood stem cell transplantation in acute promyelocytic leukemia: Is relevant pretransplant minimal residual disease in the graft? Leukemia 1998, 12:992–995.

    Article  PubMed  CAS  Google Scholar 

  57. Thomas X, Dombret H, Cordonnier C, et al.: Treatment of relapsing acute promyelocytic leukemia by all-trans retinoic acid followed by timed sequential chemotherapy and stem cell transplantation. Leukemia 2000, 14:1006–1013.

    Article  PubMed  CAS  Google Scholar 

  58. Grimwade D: The pathogenesis of acute promyelocytic leukaemia: evaluation of the role of molecular diagnosis and monitoring the management of the disease. Br J Haematol 1999, 106:591–613.

    Article  PubMed  CAS  Google Scholar 

  59. Román J, Martín C, Torres A, et al.: Absence of detectable PML-RARalpha fusion transcripts in long-term remission patients after BMT for acute promyelocytic leukemia. Bone Marrow Transplant 1997, 19:679–983.

    Article  PubMed  Google Scholar 

  60. Grimwade D, Jamal R, Goulden N, et al.: Salvage of patients with acute promyelocytic leukaemia with residual disease following ABMT performed in second complete remission using all-trans retinoic acid. Br J Haematol 1998, 103:559–562.

    Article  PubMed  CAS  Google Scholar 

  61. Fukutani H, Naoe T, Ohno R, et al.: Isoforms of PML-retinoic acid receptor alpha fused transcripts affect neither clinical features of acute promyelocytic leukemia nor prognosis after treatment with all-trans retinoic acid. Leukemia 1995, 9:1478–1482.

    PubMed  CAS  Google Scholar 

  62. Diverio D, Riccioni R, Pistilli A, et al.: Improved rapid detection of the PML/RARalpha fusion gene in acute promyelocytic leukemia. Leukemia 1996, 10:1214–1216.

    PubMed  CAS  Google Scholar 

  63. Tobal K, Liu Yin JA. RT-PCR method with increased sensitivity shows persistence of PML-RARalpha fusion transcripts in patients in long-term remission of APL. Leukemia 1998, 12:1349–1354.

    Article  PubMed  CAS  Google Scholar 

  64. Slack JL, Bi W, Livak KJ, et al.: Pre-clinical validation of a novel, highly sensitive assay to detect PML-RARalpha mRNA using real-time reverse-transcription polymerase chain reaction. J Mol Diagn 2001, 3:141–149.

    PubMed  CAS  Google Scholar 

  65. Cassinat B, Zassadowski F, Balitrand N, et al.: Quantitation of minimal residual disease in acute promyelocytic leukemia patients with t(15;17) translocation using real-time RT-PCR. Leukemia 2000, 14:324–328.

    Article  PubMed  CAS  Google Scholar 

  66. Visani G, Buonamici S, Malagola M, et al.: Pulsed ATRA as single therapy restores long-term remission in PMLRARalpha-positive acute promyelocytic leukemia patients: real time quantification of minimal disease. A pilot study. Leukemia 2001, 15:1696–1700.

    PubMed  CAS  Google Scholar 

  67. Gallagher RE, Yeap BY, Bi W, et al.: Quantitative real-time RTPCR analysis of PML-RARalpha mRNA in acute promyelocytic leukemia: assessment of prognostic significance in adult patients from intergroup protocol 0129. Blood 2003, 101:2521–2528. The results of this study indicate that quantitative real-time RT-PCR monitoring of PML-RARα in blood or bone marrow can identify APL patients at high risk of relapse.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jurcic, J.G. Monitoring PML-RARα in acute promyelocytic leukemia. Curr Oncol Rep 5, 391–398 (2003). https://doi.org/10.1007/s11912-003-0025-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-003-0025-7

Keywords

Navigation