Skip to main content

Advertisement

Log in

Fertility preservation and management of gonadal failure associated with lymphoma therapy

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Treatment with cytotoxic chemotherapy and radiotherapy is associated with significant gonadal damage in men and women. The likelihood of gonadal failure following cytotoxic chemotherapy is dependent on the drug and dose, and in women there is also an effect of age at treatment. Irradiation of the testes or ovaries, either directly or indirectly, is also a significant cause of gonadal dysfunction, and the potential to recover from damage is clearly related to the radiation dose received. Several methods of preserving gonadal function during potentially sterilizing treatment have been considered. At present, sperm banking remains the only proven method in men, although hormonal manipulation to enhance recovery of spermatogenesis and cryopreservation of testicular germ cells are possibilities for the future. Transposition of the ovaries to allow better shielding during radiotherapy is of use in some women, and the prospect of cryopreservation and reimplanation of ovarian tissue appears to be promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pryzant RM, Meistrich ML, Wilson G, et al.: Long-term reduction in sperm count after chemotherapy with and without radiation therapy for non-Hodgkin’s lymphomas. J Clin Oncol 1993, 11:239–247.

    PubMed  CAS  Google Scholar 

  2. Meistrich ML, Chawla SP, Da Cunha MF, et al.: Recovery of sperm production after chemotherapy for osteosarcoma. Cancer 1989, 63:2115–2123.

    Article  PubMed  CAS  Google Scholar 

  3. da Cunha MF, Meistrich ML, Fuller LM, et al.: Recovery of spermatogenesis after treatment for Hodgkin’s disease: limiting dose of MOPP chemotherapy. J Clin Oncol 1984, 2:571–577.

    PubMed  Google Scholar 

  4. Watson AR, Rance CP, Bain J: Long term effects of cyclophosphamide on testicular function. Br Med J (Clin Res Ed) 1985, 291:1457–1460.

    CAS  Google Scholar 

  5. Rivkees SA, Crawford JD: The relationship of gonadal activity and chemotherapy-induced gonadal damage. JAMA 1988, 259:2123–2125.

    Article  PubMed  CAS  Google Scholar 

  6. Chapman RM, Sutcliffe SB, Rees LH, et al.: Cyclical combination chemotherapy and gonadal function: retrospective study in males. Lancet 1979, 1:285–289.

    Article  PubMed  CAS  Google Scholar 

  7. Whitehead E, Shalet SM, Blackledge G, et al.: The effects of Hodgkin’s disease and combination chemotherapy on gonadal function in the adult male. Cancer 1982, 49:418–422.

    Article  PubMed  CAS  Google Scholar 

  8. Clark ST, Radford JA, Crowther D, et al.: Gonadal function following chemotherapy for Hodgkin’s disease: a comparative study of MVPP and a seven-drug hybrid regimen. J Clin Oncol 1995, 13:134–139.

    PubMed  CAS  Google Scholar 

  9. Viviani S, Santoro A, Ragni G, et al.: Gonadal toxicity after combination chemotherapy for Hodgkin’s disease: comparative results of MOPP vs ABVD. Eur J Cancer Clin Oncol 1985, 21:601–605. Demonstrates the reduced long-term gonadal toxictity of ABVD compared with MOPP.

    Article  PubMed  CAS  Google Scholar 

  10. Mackie EJ, Radford M, Shalet SM: Gonadal function following chemotherapy for childhood Hodgkin’s disease. Med Pediatr Oncol 1996, 27:74–78.

    Article  PubMed  CAS  Google Scholar 

  11. Charak BS, Gupta R, Mandrekar P, et al.: Testicular dysfunction after cyclophosphamide-vincristineprocarbazine-prednisolone chemotherapy for advanced Hodgkin’s disease: a long-term follow-up study. Cancer 1990, 65:1903–1906.

    Article  PubMed  CAS  Google Scholar 

  12. Howell SJ, Radford JA, Shalet SM: Testicular function following cytotoxic chemotherapy: evidence of Leydig cell insufficiency. J Clin Oncol 1999, 17:1493–1498.

    PubMed  CAS  Google Scholar 

  13. Bokemeyer C, Schmoll HJ, van Rhee J, et al.: Long-term gonadal toxicity after therapy for Hodgkin’s and non-Hodgkin’s lymphoma. Ann Hematol 1994, 68:105–110.

    Article  PubMed  CAS  Google Scholar 

  14. Radford JA, Clark S, Crowther D, Shalet SM: Male fertility after VAPEC-B chemotherapy for Hodgkin’s disease and non-Hodgkin’s lymphoma. Br J Cancer 1994, 69:379–381.

    PubMed  CAS  Google Scholar 

  15. Muller U, Stahel RA: Gonadal function after MACOP-B or VACOP-B with or without dose intensification and ABMT in young patients with aggressive non-Hodgkin’s lymphoma. Ann Oncol 1993, 4:399–402.

    PubMed  CAS  Google Scholar 

  16. Hill M, Milan S, Cunningham D, et al.: Evaluation of the efficacy of the VEEP regimen in adult Hodgkin’s disease with assessment of gonadal and cardiac toxicity. J Clin Oncol 1995, 13:387–395.

    PubMed  CAS  Google Scholar 

  17. Sanders JE, Hawley J, Levy W, et al.: Pregnancies following high-dose cyclophosphamide with or without high-dose busulfan or total-body irradiation and bone marrow transplantation. Blood 1996, 87:3045–3052.

    PubMed  CAS  Google Scholar 

  18. Chatterjee R, Mills W, Katz M, et al.: Germ cell failure and Leydig cell insufficiency in post-pubertal males after autologous bone marrow transplantation with BEAM for lymphoma. Bone Marrow Transplant 1994, 13:519–522.

    PubMed  CAS  Google Scholar 

  19. Monteil M, Rousseaux S, Chevret E, et al.: Increased aneuploid frequency in spermatozoa from a Hodgkin’s disease patient after chemotherapy and radiotherapy. Cytogenet Cell Genet 1997, 76:134–138.

    PubMed  CAS  Google Scholar 

  20. Robbins WA, Meistrich ML, Moore D, et al.: Chemotherapy induces transient sex chromosomal and autosomal aneuploidy in human sperm. Nat Genet 1997, 16:74–78.

    Article  PubMed  CAS  Google Scholar 

  21. Genesca A, Benet J, Caballin MR, et al.: Significance of structural chromosome aberrations in human sperm: analysis of induced aberrations. Hum Genet 1990, 85:495–499.

    Article  PubMed  CAS  Google Scholar 

  22. Robbins WA: Cytogenetic damage measured in human sperm following cancer chemotherapy. Mutat Res 1996, 355:235–252.

    PubMed  Google Scholar 

  23. Shalet SM: Effect of irradiation treatment on gonadal function in men treated for germ cell cancer. Eur Urol 1993, 23:148–151.

    PubMed  CAS  Google Scholar 

  24. Speiser B, Rubin P, Casarett G: Aspermia following lower truncal irradiation in Hodgkin’s disease. Cancer 1973, 32:692–698.

    Article  PubMed  CAS  Google Scholar 

  25. Centola GM, Keller JW, Henzler M, Rubin P: Effect of low-dose testicular irradiation on sperm count and fertility in patients with testicular seminoma. J Androl 1994, 15:608–613.

    PubMed  CAS  Google Scholar 

  26. Kinsella TJ, Trivette G, Rowland J, et al.: Long-term follow-up of testicular function following radiation therapy for earlystage Hodgkin’s disease. J Clin Oncol 1989, 7:718–724.

    PubMed  CAS  Google Scholar 

  27. Rowley MJ, Leach DR, Warner GA, Heller CG: Effect of graded doses of ionizing radiation on the human testis. Radiat Res 1974, 59:665–678. Illustrates the effects of single-dose radiation on germinal epithelial function.

    Article  PubMed  CAS  Google Scholar 

  28. Shapiro E, Kinsella TJ, Makuch RW, et al.: Effects of fractionated irradiation of endocrine aspects of testicular function. J Clin Oncol 1985, 3:1232–1239.

    PubMed  CAS  Google Scholar 

  29. Howell S, Radford J, Adams J, et al.: Randomised placebo controlled trial of testosterone replacement in men with mild Leydig cell insufficiency following cytotoxic chemotherapy. Clin Endocrinol 2001, 55:315–324.

    Article  CAS  Google Scholar 

  30. Howell SJ, Radford JA, Adams JE, Shalet SM: The impact of mild Leydig cell dysfunction following cytotoxic chemotherapy on bone mineral density (BMD) and body composition. Clin Enocrinol (Oxf) 2000, 52:609–616.

    Article  CAS  Google Scholar 

  31. Howell SJ, Radford JA, Smets EMA, Shalet SM: Fatigue, sexual function and mood following treatment for haematological malignancy: the impact of mild Leydig cell dysfunction. Br J Cancer 2000, 82:789–793.

    Article  PubMed  CAS  Google Scholar 

  32. Royere D, Barthelemy C, Hamamah S, Lansac J: Cryopreservation of spermatozoa: a 1996 review. Hum Reprod Update 1996, 2:553–559.

    Article  PubMed  CAS  Google Scholar 

  33. Chapman RM, Sutcliffe SB, Malpas JS: Male gonadal dysfunction in Hodgkin’s disease: a prospective study. JAMA 1981, 245:1323–1328.

    Article  PubMed  CAS  Google Scholar 

  34. Padron OF, Sharma RK, Thomas AJ Jr, Agarwal A: Effects of cancer on spermatozoa quality after cryopreservation: a 12-year experience. Fertil Steril 1997, 67:326–331.

    Article  PubMed  CAS  Google Scholar 

  35. Aboulghar MA, Mansour RT, Serour GI, et al.: Fertilization and pregnancy rates after intracytoplasmic sperm injection using ejaculate semen and surgically retrieved sperm. Fertil Steril 1997, 68:108–111.

    Article  PubMed  CAS  Google Scholar 

  36. Ward JA, Robinson J, Furr BJ, et al.: Protection of spermatogenesis in rats from the cytotoxic procarbazine by the depot formulation of Zoladex, a gonadotropin-releasing hormone agonist. Cancer Res 1990, 50:568–574.

    PubMed  CAS  Google Scholar 

  37. Delic JI, Bush C, Peckham MJ: Protection from procarbazineinduced damage of spermatogenesis in the rat by androgen. Cancer Res 1986, 46:1909–1914.

    PubMed  CAS  Google Scholar 

  38. Kurdoglu B, Wilson G, Parchuri N, et al.: Protection from radiation-induced damage to spermatogenesis by hormone treatment. Radiat Res 1994, 139:97–102.

    Article  PubMed  CAS  Google Scholar 

  39. Pogach LM, Lee Y, Gould S, et al.: Partial prevention of procarbazine induced germinal cell aplasia in rats by sequential GnRH antagonist and testosterone administration. Cancer Res 1988, 48:4354–4360.

    PubMed  CAS  Google Scholar 

  40. Meistrich ML, Parchuri N, Wilson G, et al.: Hormonal protection from cyclophosphamide-induced inactivation of rat stem spermatogonia. J Androl 1995, 16:334–341.

    PubMed  CAS  Google Scholar 

  41. Kangasniemi M, Wilson G, Huhtaniemi I, Meistrich ML: Protection against procarbazine-induced testicular damage by GnRH-agonist and antiandrogen treatment in the rat. Endocrinology 1995, 136:3677–3678.

    Article  PubMed  CAS  Google Scholar 

  42. Meistrich ML, Kangasniemi M: Hormone treatment after irradiation stimulates recovery of rat spermatogenesis from surviving spermatogonia. J Androl 1997, 18:80–87. Demonstrates that hormone manipulation after potentially sterilizing treatment enhances recovery of spermatogenesis in rats.

    PubMed  CAS  Google Scholar 

  43. Kangasniemi M, Huhtaniemi I, Meistrich ML: Failure of spermatogenesis to recover despite the presence of a spermatogonia in the irradiated LBNF1 rat. Biol Reprod 1996, 54:1200–1208.

    Article  PubMed  CAS  Google Scholar 

  44. Johnson DH, Linde R, Hainsworth JD, et al.: Effect of a luteinizing hormone releasing hormone agonist given during combination chemotherapy on posttherapy fertility in male patients with lymphoma: preliminary observations. Blood 1985, 65:832–836.

    PubMed  CAS  Google Scholar 

  45. Waxman JH, Ahmed R, Smith D, et al.: Failure to preserve fertility in patients with Hodgkin’s disease. Cancer Chemother Pharmacol 1987, 19:159–162.

    Article  PubMed  CAS  Google Scholar 

  46. Kreuser ED, Hetzel WD, Hautmann R, Pfeiffer EF: Reproductive toxicity with and without LHRHA administration during adjuvant chemotherapy in patients with germ cell tumors. Horm Metab Res 1990, 22:494–498.

    PubMed  CAS  Google Scholar 

  47. Brennemann W, Brensing KA, Leipner N, et al.: Attempted protection of spermatogenesis from irradiation in patients with seminoma by D-Tryptophan-6 luteinizing hormone releasing hormone. Clin Investig 1994, 72:838–842.

    Article  PubMed  CAS  Google Scholar 

  48. Ortin TT, Shostak CA, Donaldson SS: Gonadal status and reproductive function following treatment for Hodgkin’s disease in childhood: the Stanford experience. Int J Radiat Oncol Biol Phys 1990, 19:873–880.

    PubMed  CAS  Google Scholar 

  49. Das PK, Das BK, Sahu DC, et al.: Male gonadal function in Hodgkin’s disease before and after treatment. J Assoc Physicians India 1994, 42:604–605.

    PubMed  CAS  Google Scholar 

  50. Mulhall JP, Burgess CM, Cunningham D, et al.: Presence of mature sperm in testicular parenchyma of men with nonobstructive azoospermia: prevalence and predictive factors. Urology 1997, 49:91–95.

    Article  PubMed  CAS  Google Scholar 

  51. Brinster RL, Zimmermann JW: Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci U S A 1994, 91:11298–11302. Demonstrates spermatogenesis following implantation of donor germ cells into sterile mice.

    Article  PubMed  CAS  Google Scholar 

  52. Brook P, Radford J, Shalet S, et al.: Isolation of germ cells from human testicular tissue for low temperature storage and autotransplantation. Fertil Steril 2001, 75:269–274.

    Article  PubMed  CAS  Google Scholar 

  53. Louis J, Limarzi LR, Best WR: Treatment of chronic granulocytic leukaemia with Myleran. Arch Intern Med 1956, 97:299–308.

    CAS  Google Scholar 

  54. Koyama H, Wada T, Nishizawa Y, et al.: Cyclophosphamideinduced ovarian failure and its therapeutic significance in patients with breast cancer. Cancer 1977, 39:1403–1409.

    Article  PubMed  CAS  Google Scholar 

  55. Bines J, Oleske DM, Cobleigh MA: Ovarian function in premenopausal women treated with adjuvant chemotherapy for breast cancer. J Clin Oncol 1996, 14:1718–1729.

    PubMed  CAS  Google Scholar 

  56. Whitehead E, Shalet SM, Blackledge G, et al.: The effect of combination chemotherapy on ovarian function in women treated for Hodgkin’s disease. Cancer 1983, 52:988–993.

    Article  PubMed  CAS  Google Scholar 

  57. Kreuser ED, Xiros N, Hetzel WD, Heimpel H: Reproductive and endocrine gonadal capacity in patients treated with COPP chemotherapy for Hodgkin’s disease. J Cancer Res Clin Oncol 1987, 113:260–266.

    Article  PubMed  CAS  Google Scholar 

  58. Chatterjee R, Mills W, Katz M, et al.: Prospective study of pituitary-gonadal function to evaluate short-term effects of ablative chemotherapy or total body irradiation with autologous or allogenic marrow transplantation in post-menarcheal female patients. Bone Marrow Transplant 1994, 13:511–517.

    PubMed  CAS  Google Scholar 

  59. Grigg A, McLachlan R, Zaja J, Szer J: Reproductive status in long-term bone marrow transplant survivors receiving busulfan-cyclophosphamide (120 mg/kg). Bone Marrow Transplant 2000, 26:1089–1095.

    Article  PubMed  CAS  Google Scholar 

  60. Teinturier C, Hartmann O, Valteau Couanet D, et al.: Ovarian function after autologous bone marrow transplantation in childhood: high-dose busulfan is a major cause of ovarian failure. Bone Marrow Transplant 1998, 22:989–994.

    Article  PubMed  CAS  Google Scholar 

  61. Jackson GH, Wood A, Taylor PR, et al.: Early high dose chemotherapy intensification with autologous bone marrow transplantation in lymphoma associated with retention of fertility and normal pregnancies in females. Scotland and Newcastle Lymphoma Group, UK. Leuk Lymphoma 1997, 28:127–132.

    PubMed  CAS  Google Scholar 

  62. Matsumoto M, Shinohara O, Ishiguro H, et al.: Ovarian transplant after bone marrow transplantation performed before menopause. Arch Dis Child 1999, 80:452–454.

    Article  PubMed  CAS  Google Scholar 

  63. Nicosia SV, Matus Ridley M, Meadows AT: Gonadal effects of cancer therapy in girls. Cancer 1985, 55:2364–2372.

    Article  PubMed  CAS  Google Scholar 

  64. Byrne J, Fears TR, Gail MH, et al.: Early menopause in longterm survivors of cancer during adolescence. Am J Obstet Gynecol 1992, 166:788–793.

    PubMed  CAS  Google Scholar 

  65. Sorosky JI, Sood AK, Buekers TE: The use of chemotherapeutic agents during pregnancy. Obstet Gynecol Clin North Am 1997, 24:591–599.

    Article  PubMed  CAS  Google Scholar 

  66. Barnicle MM: Chemotherapy and pregnancy. Semin Oncol Nurs 1992, 8:124–132.

    Article  PubMed  CAS  Google Scholar 

  67. Faddy MJ, Gosden RG, Gougeon A, et al.: Accelerated disappearance of ovarian follicles in mid-life: implications for forecasting menopause. Hum Reprod 1992, 7:1342–1346.

    PubMed  CAS  Google Scholar 

  68. Wallace WH, Shalet SM, Hendry JH, et al.: Ovarian failure following abdominal irradiation in childhood: the radiosensitivity of the human oocyte. Br J Radiol 1989, 62:995–998.

    Article  PubMed  CAS  Google Scholar 

  69. Lushbaugh CC, Casarett GW: The effects of gonadal irradiation in clinical radiation therapy: a review. Cancer 1976, 37(suppl:2):1111–1125.

    Article  PubMed  CAS  Google Scholar 

  70. Sanders JE, Buckner CD, Amos D, et al.: Ovarian function following marrow transplantation for aplastic anemia or leukemia. J Clin Oncol 1988, 6:813–818.

    PubMed  CAS  Google Scholar 

  71. Spinelli S, Chiodi S, Bacigalupo A, et al.: Ovarian recovery after total body irradiation and allogeneic bone marrow transplantation: long-term follow up of 79 females. Bone Marrow Transplant 1994, 14:373–380.

    PubMed  CAS  Google Scholar 

  72. Bruning PF, Pit MJ, de Jong Bakker M, et al.: Bone mineral density after adjuvant chemotherapy for premenopausal breast cancer. Br J Cancer 1990, 61:308–310.

    PubMed  CAS  Google Scholar 

  73. Saarto T, Blomqvist C, Ehnholm C, et al.: Effects of chemotherapy-induced castration on serum lipids and apoproteins in premenopausal women with node-positive breast cancer. J Clin Endocrinol Metab 1996, 81:4453–4457.

    Article  PubMed  CAS  Google Scholar 

  74. Ratcliffe MA, Lanham SA, Reid DM, Dawson AA: Bone mineral density (BMD) in patients with lymphoma: the effects of chemotherapy, intermittent corticosteroids and premature menopause. Hematol Oncol 1992, 10:181–187.

    Article  PubMed  CAS  Google Scholar 

  75. Redman JR, Bajorunas DR, Wong G, et al.: Bone mineralization in women following successful treatment of Hodgkin’s disease. Am J Med 1988, 85:65–72.

    Article  PubMed  CAS  Google Scholar 

  76. Haie Meder C, Mlika Cabanne N, Michel G, et al.: Radiotherapy after ovarian transposition: ovarian function and fertility preservation. Int J Radiat Oncol Biol Phys 1993, 25:419–424.

    PubMed  CAS  Google Scholar 

  77. Ray GR, Trueblood HW, Enright LP, et al.: Oophoropexy: a means of preserving ovarian function following pelvic megavoltage radiotherapy for Hodgkin’s disease. Radiology 1970, 96:175–180.

    PubMed  CAS  Google Scholar 

  78. Williams R, Littell R, Mendenhall N: Laparoscopic oophoroplexy and ovarian function in the treatment of Hodgkin’s disease. Cancer 1999, 86:2138–2142.

    Article  PubMed  CAS  Google Scholar 

  79. Yarali H, Demirol A, Bukulmez O: Laparoscopic high lateral transposition of both ovaries before pelvic irradiation. J Am Assoc Gynecol Laparosc 2000, 7:237–239.

    Article  PubMed  CAS  Google Scholar 

  80. Bokser L, Szende B, Schally AV: Protective effects of D-Trp6-luteinising hormone-releasing hormone microcapsules against cyclophosphamide-induced gonadotoxicity in female rats. Br J Cancer 1990, 61:861–865.

    PubMed  CAS  Google Scholar 

  81. Ataya K, Rao LV, Lawrence E, and Kimmel R: Luteinizing hormone-releasing hormone agonist inhibits cyclophosphamide-induced ovarian follicular depletion in rhesus monkeys. Biol Reprod 1995, 52:365–372.

    Article  PubMed  CAS  Google Scholar 

  82. Blumenfeld Z, Avivi I, Linn S, et al.: Prevention of irreversible chemotherapy-induced ovarian damage in young women with lymphoma by a gonadotrophin-releasing hormone agonist in parallel to chemotherapy. Hum Reprod 1996, 11:1620–1626.

    PubMed  CAS  Google Scholar 

  83. Pereyra Pacheco B, Mendez Ribaz J, Milone G, et al.: Use of GnRH analogues for functional protection of the ovary and preservation of fertility during cancer treatment in adolescents: a preliminary report. Gynecol Oncol 2001, 81:391–397.

    Article  PubMed  CAS  Google Scholar 

  84. Blumenfeld Z: Ovarian rescue/protection from chemotherapeutic agents. J Soc Gynecol Investig 2001, 8(suppl:1):S60-S64.

    Article  PubMed  CAS  Google Scholar 

  85. Oktay K, Economos K, Khan M, et al.: Endocrine function and oocyte retrieval after autologous transplantation of ovarian cortical strips to the forearm. JAMA 2001, 286:1490–1493.

    Article  PubMed  CAS  Google Scholar 

  86. Oktay K, Karlikaya G: Ovarian function after transplantation of frozen, banked autologous ovarian tissue. N Engl J Med 2000, 342:1919.

    Article  PubMed  CAS  Google Scholar 

  87. Kim SS, Radford JA, Harris M, et al.: Ovarian tissue harvested from lymphoma patients to preserve fertility may be safe for autotransplantation. Hum Reprod 2001, 16:2056–2060.

    Article  PubMed  CAS  Google Scholar 

  88. Radford JA, Leiberman BA, Brison BR, et al.: Orthotopic reimplantation of cryopreserved ovarian cortical strips after highdose chemotherapy for Hodgkin’s lymphoma. Lancet 2001, 357:1172–1175. Demonstrates the potential for reimplantation of cryopreserved ovarian tissue after treatment for Hodgkin’s disease.

    Article  PubMed  CAS  Google Scholar 

  89. Clayton PE, Shalet SM, Price DA, Campbell RH: Testicular damage after chemotherapy for childhood brain tumors. J Pediatr 1988, 112:922–926.

    Article  PubMed  CAS  Google Scholar 

  90. Vilar O: Effect of cytostatic drugs on human testicular function. In Male Fertility and Sterility. Edited by Mancini RE, Martini L. London: Academic Press; 1974:423–440.

    Google Scholar 

  91. Wallace WH, Shalet SM, Crowne EC, et al.: Gonadal dysfunction due to cis-platinum. Med Pediatr Oncol 1989, 17:409–413.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howell, S.J., Shalet, S.M. Fertility preservation and management of gonadal failure associated with lymphoma therapy. Curr Oncol Rep 4, 443–452 (2002). https://doi.org/10.1007/s11912-002-0039-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-002-0039-6

Keywords

Navigation