Skip to main content

Advertisement

Log in

Transcription factors and other dysregulated proteins in melanoma prognosis

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Approximately one third of patients with cutaneous melanoma later develop a metastatic disease, having then an extremely poor rate of survival. Because of the highly unpredictable nature of melanomas, finding those patients who are likely to develop a metastatic disease and those patients who probably will survive is an ongoing challenge. The current "conventional" prognosticators, such as Breslow thickness, Clark level of invasion, and ulceration, cannot perfectly predict the clinical course of this disease at an individual level. Although the sentinel lymph node biopsy procedure and reverse transcription polymerase chain reaction techniques have significantly improved the staging of patients with melanoma, new molecular prognostic markers may help in selection of appropriate patients for strenuous adjuvant therapies and for randomized clinical trials. Furthermore, these markers also improve our basic understanding of the biology of cutaneous melanoma, potentially offering new targets for novel treatment strategies. This paper reviews the current literature on transcription factors and other dysregulated proteins involved in melanoma prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Reed JA, Albino AP: Update of diagnostic and prognostic markers in cutaneous malignant melanoma. Dermatol Clin 1999, 17:631–643. A comprehensive review of molecular markers that can be used for diagnostic and prognostic purposes in cutaneous malignant melanoma.

    Article  PubMed  CAS  Google Scholar 

  2. Hurst HC: Transcription factors as drug targets in cancer. Eur J Cancer 1996, 32A:1857–1863.

    Article  PubMed  CAS  Google Scholar 

  3. Mitchell PJ, Timmons PM, Hebert JM, et al.: Transcription factor AP-2 is expressed in neural crest cell lineages during mouse embryogenesis. Genes Dev 1991, 5:105–119.

    PubMed  CAS  Google Scholar 

  4. Zeng Y-X, Somasundaram K, El-Deiry WS: AP2 inhibits cancer cell growth and activates p21/WAF1/CIP1 expression. Nat Genet 1997, 15:78–82.

    Article  PubMed  CAS  Google Scholar 

  5. Hennig G, Löwrick O, Birchmeier W, et al.: Mechanisms identified in the transcriptional control of epithelial gene expression. J Biol Chem 1996, 271:595–602.

    Article  PubMed  CAS  Google Scholar 

  6. Williamson JA, Bosher JM, Skinner A, et al.: Chromosomal mapping of the human and mouse homologues of two new members of the AP-2 family of transcription factors. Genomics 1996, 35:262–264.

    Article  PubMed  CAS  Google Scholar 

  7. Bar-Eli M: Molecular mechanisms of melanoma metastasis. J Cell Physiol 1997, 173:275–278. This paper links the previous data on the role of proto-oncogene c-Kit and melanoma cell adhesion molecule MCAM/MUC18 in the progression of melanoma, and the role of AP-2 as a regulator of c-Kit and MCAM/MUC18. The author hypothesizes that the loss of AP-2 expression plays a crucial role in the development of malignant melanoma.

    Article  PubMed  CAS  Google Scholar 

  8. Huang S, Jean D, Luca M, et al.: Loss of AP-2 results in downregulation of c-KIT and enhancement of melanoma tumorigenicity and metastasis. EMBO J 1998, 17:4358–4369.

    Article  PubMed  CAS  Google Scholar 

  9. Jean D, Gershenwald JE, Huang S, et al.: Loss of AP-2 results in up-regulation of MCAM/MUC18 and an increase in tumor growth and metastasis of human melanoma cells. J Biol Chem 1998, 273:16501–16508.

    Article  PubMed  CAS  Google Scholar 

  10. Karjalainen JM, Kellokoski JK, Eskelinen MJ, et al.: Downregulation of transcription factor AP-2 predicts poor survival in stage I cutaneous malignant melanoma. J Clin Oncol 1998, 16:3584–3591. These authors studied the expression pattern of AP-2 in primary cutaneous melanoma and established that the loss of AP-2 expression is an independent predictor of poor survival in a large series of primary cutaneous melanoma.

    PubMed  CAS  Google Scholar 

  11. Karjalainen JM, Kellokoski JK, Mannermaa AJ, et al.: Failure in posttranscriptional processing is a possible inactivation mechanism of AP-2a in cutaneous melanoma. Br J Cancer 2000, 82:2015–2021.

    Article  PubMed  CAS  Google Scholar 

  12. Wu M, Hemesath TJ, Takemoto CM, et al.: c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes Dev 2000, 14:301–312.

    PubMed  CAS  Google Scholar 

  13. King R, Weilbaecher KN, McGill G, et al.: Microphtalmia transcription factor: a sensitive and specific melanocyte marker for melanoma diagnosis. Am J Pathol 1999, 155:731–738. This paper demonstrates the value of microphtalmia transcription factor as a highly sensitive and specific histopathologic melanocyte marker for melanoma.

    PubMed  CAS  Google Scholar 

  14. Salti GI, Manougian T, Farolan M, et al.: Microphtalmia transcription factor: a new prognostic marker in intermediatethickness cutaneous malignant melanoma. Cancer Res 2000, 60:5012–5016. This study provides the first evidence that Mitf may be a new prognostic marker in melanoma.

    PubMed  CAS  Google Scholar 

  15. Massi D, Franchi A, Borgognoni L, et al.: Osteonectin expression correlates with clinical outcome in thin cutaneous malignant melanomas. Hum Pathol 1999, 30:339–344.

    Article  PubMed  CAS  Google Scholar 

  16. Ledda F, Bravo AI, Adris S, et al.: The expression of the secreted protein acidic and rich in cysteine (SPARC) is associated with the neoplastic progression of human melanoma. J Invest Dermatol 1997, 108:210–214.

    Article  PubMed  CAS  Google Scholar 

  17. Ross DA, Wilson GD: Expression of c-myc oncoprotein represents a new prognostic marker in cutaneous melanoma. Br J Surg 1998, 85:46–51.

    Article  PubMed  CAS  Google Scholar 

  18. Grover R, Ross DA, Wilson GD, Sanders R: Measurement c-myc oncoprotein provides an independent prognostic marker for regional metastatic melanoma. Br J Plast Surg 1997, 50:478–482.

    Article  PubMed  CAS  Google Scholar 

  19. Grover R, Chana J, Grobbelaar AO, et al.: Measurement of c-myc oncogene expression provides an accurate prognostic marker for acral lentiginous melanoma. Br J Plast Surg 1999, 52:122–126.

    Article  PubMed  CAS  Google Scholar 

  20. El-Deiry WS, Tokino T, Velculescu VE, et al.: WAF1, a potential mediator of p53 tumour suppression. Cell 1993, 75:817–825.

    Article  PubMed  CAS  Google Scholar 

  21. Talve L, Kainu J, Collan Y, et al.: Immunohistochemical expression of p53 protein, mitotic index and nuclear morphometry in primary malignant melanoma of the skin. Pathol Res Pract 1996, 192:825–833.

    PubMed  CAS  Google Scholar 

  22. Akslen LA, Monstad SE, Larsen B, et al.: Frequent mutations of the p53 gene in cutaneous melanoma of the nodular type. Int J Cancer 1998, 79:91–95.

    Article  PubMed  CAS  Google Scholar 

  23. Hieken TJ, Ronan SG, Farolan M, et al.: Molecular prognostic markers in intermediate-thickness cutaneous malignant melanoma. Cancer 1999, 85:375–382.

    Article  PubMed  CAS  Google Scholar 

  24. Yamamoto M, Takahashi H, Saitoh K, et al.: Expression of the p53 protein in malignant melanomas as a prognostic indicator. Arch Dermatol Res 1995, 287:146–151.

    Article  PubMed  CAS  Google Scholar 

  25. Vogt T, Zipperer KH, Vogt A, et al.: p53-protein and Ki-67-antigen expression are both reliable biomarkers of prognosis in thick stage I nodular melanomas of the skin. Histopathology 1997, 30:57–63.

    Article  PubMed  CAS  Google Scholar 

  26. Straume O, Sviland L, Akslen LA: Loss of nuclear p16 protein expression correlates with increased tumor cell proliferation (Ki-67) and poor prognosis in patients with vertical growth phase melanoma. Clin Cancer Res 2000, 6:1845–1853. Straume et al. demonstrate that the loss of nuclear p16 protein is a strong independent marker for poor 10-year survival, strengthening the evidence for p16 being a melanoma growth suppressor. Combined with earlier studies, this report also confirms the value of proliferation marker Ki-67 antigen as a prognostic marker in cutaneous melanoma.

    PubMed  CAS  Google Scholar 

  27. Essner R, Kuo CT, Wang H, et al.: Prognostic implications of p53 overexpression in cutaneous melanoma from sunexposed and nonexposed sites. Cancer 1998, 82:309–316.

    Article  PubMed  CAS  Google Scholar 

  28. Healy E, Belgaid C, Takata M, et al.: Prognostic significance of allelic losses in primary melanoma. Oncogene 1998, 16:2213–2218.

    Article  PubMed  CAS  Google Scholar 

  29. Karjalainen JM, Eskelinen MJ, Kellokoski JK, et al.: P21WAF1/CIP1 expression in stage I cutaneous malignant melanoma: its relationship with p53, cell proliferation and survival. Br J Cancer 1999, 79:895–902.

    Article  PubMed  CAS  Google Scholar 

  30. Gartel AL, Serfas MS, Tyner AL: p21-negative regulator of the cell cycle. Proc Soc Exp Biol Med 1996, 213:138–149.

    PubMed  CAS  Google Scholar 

  31. Harada N, Gansauge S, Gansauge F, et al.: Nuclear accumulation of p53 correlates significantly with clinical features and inversely with the expression of the cyclin-dependent kinase inhibitor p21WAF1/CIP1 in pancreatic cancer. Br J Cancer 1997, 76:299–305.

    PubMed  CAS  Google Scholar 

  32. DiGiuseppe JA, Redston MS, Yeo CJ, et al.: p53-independent expression of the cyclin-dependent kinase inhibitor p21 in pancreatic carcinoma. Am J Pathol 1995, 147:884–888.

    PubMed  CAS  Google Scholar 

  33. Jiang H, Lin J, Su ZZ, et al.: The melanoma differentiationassociated gene mda-6, which encodes the cyclin-dependent kinase inhibitor p21, is differentially expressed during growth, differentiation and progression in human melanoma cells. Oncogene 1995, 10:1855–1864.

    PubMed  CAS  Google Scholar 

  34. Maelandsmo GM, Holm R, Fodstad ó, et al.: Cyclin kinase inhibitor p21WAF1/CIP1 in malignant melanoma. Am J Pathol 1996, 149:1813–1822.

    PubMed  CAS  Google Scholar 

  35. Sparrow LE, Eldon MJ, English DR, et al.: p16 and p21/WAF1 protein expression in melanocytic tumors by immunohistochemistry. Am J Dermatopathol 1998, 20:255–261.

    Article  PubMed  CAS  Google Scholar 

  36. Trotter MJ, Tang L, Tron VA: Overexpression of the cyclindependent kinase inhibitor p21WAF-1/CIP1 in human cutaneous malignant melanoma. J Cutan Pathol 1997, 24:265–271.

    Article  PubMed  CAS  Google Scholar 

  37. Morgan MB, Cowper SE: Expression of p-27 (kip1) in nevi and melanomas. Am J Dermatopathol 1999, 21:121–124.

    Article  PubMed  CAS  Google Scholar 

  38. Florenes VA, Maelandsmo GM, Kerbel RS, et al.: Protein expression of the cell cycle inhibitor p27Kip1 in malignant melanoma: inverse correlation with disease-free survival. Am J Pathol 1998, 153:305–312.

    PubMed  CAS  Google Scholar 

  39. Castellano M, Parmiani G: Genes involved in melanoma: an overview of INK4a and other loci. Melanoma Res 1999, 9:421–432.

    Article  PubMed  CAS  Google Scholar 

  40. Reed JA, Loganzo F Jr., Shea CR, et al.: Loss of expression of the p16/cyclin-dependent kinase inhibitor 2 tumor suppressor gene in melanocytic lesions correlates with invasive stage of tumor progression. Cancer Res 1995, 55:2713–2718.

    PubMed  CAS  Google Scholar 

  41. Stone CH, Lynch EF, Linden MD, et al.: Immunocytochemical evaluation of proliferating cell nuclear antigen, Ki-67 (MIB-1), and p53 in predicting survival of primary and metastatic malignant melanomas. Appl Immunohistochem 1996, 4:25–33.

    Google Scholar 

  42. Niezabitowski A, Krzysztof C, Rys J, et al.: Prognostic evaluation of cutaneous malignant melanoma: a clinicopathologic and immunohistochemical study. J Surg Oncol 1999, 70:150–160.

    Article  PubMed  CAS  Google Scholar 

  43. Woosley JT, Dietrich DR: Prognostic significance of PCNA grade in malignant melanoma. J Cutan Pathol 1993, 20:498–503.

    Article  PubMed  CAS  Google Scholar 

  44. Reddy VB, Gattuso P, Aranha G, et al.: Cell proliferation markers in predicting metastases in malignant melanoma. J Cutan Pathol 1995, 22:248–251.

    Article  PubMed  CAS  Google Scholar 

  45. Vecchiato A, Rossi CR, Montesco MC, et al.: Proliferating cell nuclear antigen (PCNA) and recurrence in patients with cutaneous melanoma. Melanoma Res 1994, 4:207–211.

    Article  PubMed  CAS  Google Scholar 

  46. van Diest PJ, Brugal G, Baak JP: Proliferation markers in tumours: interpretation and clinical value. J Clin Pathol 1998, 51:716–724.

    Article  PubMed  Google Scholar 

  47. Böni R, Doguoglu A, Burg G, et al.: MIB-1 immunoreactivity correlates with metastatic dissemination in primary thick cutaneous melanoma. J Am Acad Dermatol 1996, 35:416–418.

    Article  PubMed  Google Scholar 

  48. Ramsay JA, From L, Iscoe NA, et al.: MIB-1 proliferative activity is a significant prognostic factor in primary thick cutaneous melanomas. J Invest Dermatol 1995, 105:22–26.

    Article  PubMed  CAS  Google Scholar 

  49. Korabiowska M, Brinck U, Middel P, et al.: Proliferative activity in the progresion of pigmanted skin lesions, diagnostic and prognostic significance. Anticancer Res 2000, 20:1781–1786.

    PubMed  CAS  Google Scholar 

  50. Vlaykova T, Talve L, Hahka-Kemppinen M, et al.: MIB-1 Immunoreactivity correlates with blood vessel density and survival in disseminated malignant melanoma. Oncology 1999, 57:242–252.

    Article  PubMed  CAS  Google Scholar 

  51. Talve LA, Collan YU, Ekfors TO: Nuclear morphometry, immunohistochemical staining with Ki-67 antibody and mitotic index in the assessment of proliferative activity and prognosis of primary malignant melanomas of the skin. J Cutan Pathol 1996, 23:335–343.

    Article  PubMed  CAS  Google Scholar 

  52. Ferrer CM, van Muijen GNP, Ruiter DJ: Proteases in cutaneous melanoma. Ann Med 1998, 30:431–442.

    Google Scholar 

  53. Väisänen A, Kallioinen M, Taskinen PJ, et al.: Prognostic value of MMP-2 immunoreactive protein (72 kD type IV collagenase) in primary skin melanoma. J Pathol 1998, 186:51–58.

    Article  PubMed  Google Scholar 

  54. Johnson, JP: Cell adhesion molecules in the development and progression of malignant melanoma. Cancer Metast Rev 1999, 18:345–357. An interesting review concerning the role of cell adhesion molecules in the malignant progression of cutaneous melanoma.

    Article  CAS  Google Scholar 

  55. Elder D: Tumor progression, early diagnosis and prognosis of melanoma. Acta Oncol 1999, 38:535–547.

    Article  PubMed  CAS  Google Scholar 

  56. Hieken TJ, Ronan SG, Farolan M, et al.: Beta1 integrin expression in malignant melanoma predicts occult lymph node metastases. Surgery 1995, 118:669–75.

    Article  PubMed  CAS  Google Scholar 

  57. Natali PG, Hamby CV, Felding-Habermann B, et al.: Clinical significance of alpha(v) beta 3 integrin and intercellular adhesion molecule-1 expression in cutaneous malignant melanoma lesions. Cancer Res 1997, 57:1554–1560. This study demonstrates that avb3 integrin expression is restricted in melanomas and is a strong marker of poor survival in localized cutaneous melanoma.

    PubMed  CAS  Google Scholar 

  58. Soukka T, Salmi M, Joensuu H, et al.: Regulation of CD44v6-containing isoforms during proliferation of normal and malignant epithelial cells. Cancer Res 1997, 57:2281–2289.

    PubMed  CAS  Google Scholar 

  59. Naor D, Sionov RV, Ish-Shalom D: CD44: Structure, function, and association with the malignant process. Adv Cancer Res 1997, 71:241–319. A profound review of the molecular mechanisms and the experimental evidence of CD44 function in the development of malignant melanoma.

    Article  PubMed  CAS  Google Scholar 

  60. Harwood CA, Green MA, Cook MG: CD44 expression in melanocytic lesions: a marker of malignant progression? Br J Dermatol 1996, 135:876–882.

    Article  PubMed  CAS  Google Scholar 

  61. Dietrich A, Tanczos W, Vansceidt W, et al.: High CD44 surface expression of primary tumours of malignant melanoma correlates with increased metastatic risk and reduced survival. Eur J Cancer 1997, 33:926–930.

    Article  PubMed  CAS  Google Scholar 

  62. Karjalainen JM, Tammi RH, Tammi MI, et al.: Reduced level of CD44 and hyaluronan associated with unfavorable prognosis in clinical stage I cutaneous melanoma. Am J Pathol 157:957–965, 2000. Report from the largest series of patients investigated to examine the clinical role of CD44 in cutaneous melanoma. This study demonstrates that CD44 seems to have tumor-suppressing effect in cutaneous melanoma. In addition, it provides novel data on the expression and role of hyaluronan, ligand of CD44, in clinical cutaneous melanoma.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karjalainen, J.M. Transcription factors and other dysregulated proteins in melanoma prognosis. Curr Oncol Rep 3, 368–375 (2001). https://doi.org/10.1007/s11912-001-0091-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-001-0091-7

Keywords

Navigation