Skip to main content

Advertisement

Log in

Genetic alterations in head and neck cancer: interactions among environmental carcinogens, cell cycle control, and host DNA repair

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Head and neck squamous cell carcinomas (HNSCC) arise as a consequence of cumulative genetic changes brought about by continued exposure to carcinogens associated with tobacco and alcohol use, influenced by viral agents such as human papillomaviruses, in a background of acquired or heritable genetic susceptibility. The presence of widespread genomic instability in HNSCC, such as cytogenetic aberrations, allelic imbalance/loss of heterozygosity, and microsatellite instability, suggests that there is an imperfection in the host DNA repair machinery. Genomic instability with progressive accumulation of detrimental genetic alterations appears to be dependent upon a circuitous interaction between the environmental genotoxic insults and the host DNA repair machinery, the functional integrity of which is governed by the proper cell cycle control and host DNA repair capacity. Thus, it can be hypothesized that continued exposure to environmental carcinogens (ie, longstanding history of smoking and drinking), loss of proper cell cycle control (eg, inactivation of p53 or p16 tumor suppressor genes or amplification of the proto-oncongene cyclin D1), and impaired DNA repair capacity (both inherited and acquired) are prerequisites in head and neck carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parker SL, Tong T, Bolden S, et al.: Cancer statistics, 1996. CA Cancer J Clin 1996, 46:5–27.

    PubMed  CAS  Google Scholar 

  2. Scully C, Field JK, Tanzawa H: Genetic aberrations in oral or head and neck squamous cell carcinoma (SCCHN): 1. Carcinogen metabolism, DNA repair and cell cycle control. Oral Oncol 2000, 36:256–263. A comprehensive review on genes involved in tumor susceptibility and DNA repair in HNSCC.

    Article  PubMed  CAS  Google Scholar 

  3. Paz IB, Cook N, Odom-Maryon T, et al.: Human papillomavirus (HPV) in head and neck cancer: an association of HPV 16 with squamous cell carcinoma of Waldeyer’s tonsilar ring. Cancer 1997, 79:595–604.

    Article  PubMed  CAS  Google Scholar 

  4. Landis SH, Murray T, Bolden S, et al.: Cancer statistics. CA Cancer J Clin 1998, 48:6–29.

    PubMed  CAS  Google Scholar 

  5. Gallo O, Chiarelli I, Boddi V, et al.: Cumulative prognostic value of p53 mutations and bcl-2 protein expression in head and neck cancer treated by radiotherapy. Int J Cancer 1999, 84:573–579.

    Article  PubMed  CAS  Google Scholar 

  6. Bradford CR, Zhu S, Poore J, et al.: p53 mutation as a prognostic marker in advanced laryngeal carcinoma: Department of Veterans Affairs Laryngeal Cancer Cooperative Study Group. Arch Otolaryngol Head Neck Surg 1997, 123:605–609.

    PubMed  CAS  Google Scholar 

  7. Olshan AF, Weissler MC, Pei H, et al.: Alterations of the p16 gene in head and neck cancer: frequency and association with p53, PRAD-1 and HPV. Oncogene 1997, 14:811–818.

    Article  PubMed  CAS  Google Scholar 

  8. Haraf DJ, Nodzenski E, Brachman D, et al.: Human papilloma virus and p53 in head and neck cancer: clinical correlates and survival. Clin Cancer Res 1996, 2:755–762.

    PubMed  CAS  Google Scholar 

  9. Ahomadegbe JC, Barrois M, Foget S, et al.: High incidence of p53 alterations (mutation, deletion, overexpression) in head and neck primary tumors and metastases; absence of correlation with clinical outcome: frequent protein overexpression in normal epithelium and in early non-invasive lesions. Oncogene 1995, 10:1217–1227.

    PubMed  CAS  Google Scholar 

  10. Sauter ER, Ridge JA, Litwin S, et al.: Pretreatment p53 protein expression correlates with decreased survival in patients with end-stage head and neck cancer. Clin Cancer Res 1995, 11:1407–1412.

    Google Scholar 

  11. Sidransky D, Hollstein M: Clinical implications of the p53 gene. Ann Rev Med 1996, 47:285–301.

    Article  PubMed  CAS  Google Scholar 

  12. Eisenstadt E, Warren AJ, Porter J, et al.: Carcinogenic epoxides of benzo[a]pyrene and cyclopenta[cd]pyrene induce base substitutions via specific transversions. Proc Natl Acad Sci U S A 1982, 79:1945–1949.

    Article  PubMed  CAS  Google Scholar 

  13. Saffhill R, Margison GP, O’Connor PJ: Mechanisms of carcinogenesis induced by alkylating agents. Biochim Biophy Acta 1985, 823:115–145.

    Google Scholar 

  14. Cheng KC, Cahill DS, Kasai H, et al.: 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G—T and A—C substitutions. J Biol Chem 1992, 267:166–172.

    PubMed  CAS  Google Scholar 

  15. Ganly I, Soutar DS, Brown R, et al.: p53 alterations in recurrent squamous cell cancer of the head and neck refractory to radiotherapy. Br J Cancer 2000, 82:392–398.

    Article  PubMed  CAS  Google Scholar 

  16. Gallo O, Bianchi S, Giovannucci-Uzzielli ML, et al.: p53 oncoprotein overexpression correlates with mutagen-induced chromosome fragility in head and neck cancer patients with multiple malignancies. Br J Cancer 1995, 71:1008–1012.

    PubMed  CAS  Google Scholar 

  17. Baas IO, Mulder JR, Offerhaus GJA, et al.: An evaluation of six antibodies for immunohistochemistry of mutant p53 gene product in archival colorectal neoplasms. J Pathol 1994, 172:5–12.

    Article  PubMed  CAS  Google Scholar 

  18. Califano J, Westra WH, Meininger G, et al.: Genetic progression and clonal relationship of recurrent premalignant head and neck lesions. Clin Cancer Res 2000, 6:347–352.

    PubMed  CAS  Google Scholar 

  19. Califano J, van der Riet P, Westra W, et al.: Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res 1996, 56:2488–2492.

    PubMed  CAS  Google Scholar 

  20. Hegde PU, Brenski AC, Caldarelli DD, et al.: Tumor angiogenesis and p53 mutations. Arch Otolaryngol Head Neck Surg 1998, 124:80–85.

    PubMed  CAS  Google Scholar 

  21. Shiga H, Heath EI, Rasmussen AA, et al.: Prognostic value of p53, glutathione S-transferase, and thymidylate synthase for neoadjuvant cisplatin-based chemotherapy in head and neck cancer. Clin Cancer Res 1999, 5:4097–4104.

    PubMed  CAS  Google Scholar 

  22. Warnakulasuriya S, Jia C, Johnson N, et al.: p53 and P-glycoprotein expression are significant prognostic markers in advanced head and neck cancer treated with chemo/ radiotherapy. J Pathol 2000, 191:33–38.

    Article  PubMed  CAS  Google Scholar 

  23. Field JK, Malliri A, Butt SA, et al.: p53 over-expression in end stage squamous cell carcinomas of the head and neck: correlates with a very poor clinical outcome. Int J Oncol 1993, 3:431–435.

    Google Scholar 

  24. McKaig RG, Baric RS, Olshan AF: Human papillomavirus and head and neck cancer: epidemiology and molecular biology. Head Neck 1998, 20:250–265.

    Article  PubMed  CAS  Google Scholar 

  25. Schartz SM, Daling JR, Doody DR, et al.: Oral cancer risk in relation to sexual history and evidence of human papillomavirus infection. J Natl Cancer Inst 1998, 90:1626–1636.

    Article  Google Scholar 

  26. Smith EM, Hoffman HT, Summersgill KS, et al.: Human papillomavirus and risk of oral cancer. Laryngoscope 1998, 108:1098–1103.

    Article  PubMed  CAS  Google Scholar 

  27. Gillison ML, Koch WM, Capone RB, et al.: Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst 2000, 92:709–720. Report from the most comprehensive study on HPV infection in HNSCC, suggesting that HPV-positive tonsilar carcinomas may represent a distinct clinicopathologic entity with improved survival.

    Article  PubMed  CAS  Google Scholar 

  28. Andl T, Kahn T, Pfuhl A, et al.: Etiological involvement of oncogenic human papillomavirus in tonsilar squamous cell carcinomas lacking retinoblastoma cell cycle control. Cancer Res 1998, 58:5–13.

    PubMed  CAS  Google Scholar 

  29. Wilczynski SP, Lin BTY, Wie Y, et al.: Detection of human papillomavirus DNA and oncoprotein overexpression are associated with distinct morphological patterns of tonsilar squamous cell carcinoma. Am J Pathol 1998, 152:145–156.

    PubMed  CAS  Google Scholar 

  30. Fouret P, Monceaux G, Temam S, et al.: Human papillomavirus in head and neck squamous cell carcinomas in nonsmokers. Otolaryngol Head Neck Surg 1997, 123:513–516.

    CAS  Google Scholar 

  31. Jin YS, Heim S, Mandahl N, et al.: Unrelated chromosomal aberrations in carcinomas of the oral cavity. Genes Chromosomes Cancer 1990, 1:209–215.

    Article  PubMed  CAS  Google Scholar 

  32. Field JK: Genomic instability in squamous cell carcinoma of the head and neck. Anticancer Res 1996, 16:2421–2432.

    PubMed  CAS  Google Scholar 

  33. Arzimanoglou II, Gilbert F, Barber HR: Microsatellite instability in human solid tumors [review]. Cancer 1998, 82:1808–1820.

    Article  PubMed  CAS  Google Scholar 

  34. Cheng L, Eicher SA, Guo Z, et al.: Reduced DNA repair capacity in head and neck cancer patients. Cancer Epidemiol Biomarkers Prev 1998, 7:465–468. This population-based case-control study established a correlation between reduced DNA repair capacity and increased head and neck cancer risk.

    PubMed  CAS  Google Scholar 

  35. Wang LE, Sturgis EM, Eicher SA, et al.: Mutation sensitivity to benzo(a)pyrene diol epoxide and the risk of squamous cell carcinoma of the head and neck. Clin Cancer Res 1998, 4:1773–1778.

    PubMed  CAS  Google Scholar 

  36. Sturgis EM, Castillo EJ, Li L, et al.: Polymorphisms of DNA repair gene XRCC1 in squamous cell carcinoma of the head and neck. Carcinogenesis 1999, 20:2125–2129.

    Article  PubMed  CAS  Google Scholar 

  37. Wei Q, Eicher SA, Guan Y, et al.: Reduced expression of hMLH1 and hGTBP/hMSH6: a risk factor for head and neck cancer. Cancer Epidemiol Biomarkers Prev 1998, 7:309–314. This population-based case-control study documented a correlation between decreased expression of several mismatch DNA repair genes and increased head and neck cancer risk.

    PubMed  CAS  Google Scholar 

  38. Dizdaroglu M: Chemicaldetection of free radical-induced damage to DNA. Free Radical Biol Med 1991, 10:225–242.

    Article  CAS  Google Scholar 

  39. Hollstein M, Sidransky D, Vogelstein B, et al.: p53 mutations in human cancers. Science 1991, 253:49–53.

    Article  PubMed  CAS  Google Scholar 

  40. Blons H, Radicella P, Laccourreye O, et al.: Frequent allelic loss at chromosome 3p distinct from genetic alterations of the 8-oxoguanine DNA glycosylase 1 gene in head and neck cancer. Mol Carcinog 1999, 26:254–260.

    Article  PubMed  CAS  Google Scholar 

  41. Fan CY, Barnes EL, Swalsky PA, et al.: Deficiency of oxidative DNA damage repair due to OGG1 mutation is a common event in malignant transformation of squamous mucosa of the head and neck and is not present in reactive squamous cell hyperplasia. Mod Pathol 2000, 13:137A.

    Article  Google Scholar 

  42. Dhenaut A, Boiteux S, Radicella JP: Genomic structure and promoter characterization of the human 8-OH-guanine glycosylase gene (OGG1) gene. GenBank accession AJ 131341; 1999.

  43. Sanchez-Cespedes M, Esteller M, Wu L, et al.: Gene promoter hypermethylation in tumors and serum of head and neck cancer patients. Cancer Res 2000, 60:892–895. This article describes the presence of promoter hypermethylation in the MGMT gene, a gene responsible for repair of alkylating N-nitroso compound-induced DNA base lesion, indicative of a role of the inactivated DNA repair gene in HNSCC.

    PubMed  CAS  Google Scholar 

  44. Esteller M, Toyota M, Sanchez-Cespedes M, et al.: Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is associated with G to A mutations in K-ras in colorectal tumorigenesis. Cancer Res 2000, 60:2368–2371. This article provides evidence linking promoter hypermethylation of the MGMT gene and specific mutations in the proto-oncogene, K-ras.

    PubMed  CAS  Google Scholar 

  45. Papadopoulos N, Nicolaides NC, Wei YF, et al.: Mutation of a MutL homolog in hereditary colon cancer. Science 1994, 263:1625–1629.

    Article  PubMed  CAS  Google Scholar 

  46. Wheeler JM, Beck NE, Kim HC, et al.: Mechanisms of inactivation of mismatch repair genes in human colorectal cancer cell lines: the predominant role of hMLH1. Proc Natl Acad Sci U S A 1999, 96:10296–10301.

    Article  PubMed  CAS  Google Scholar 

  47. Suzuki H, Itoh F, Toyota M, et al.: Distinct methylation pattern and microsatellite instability in sporadic gastric cancer. Intl J Cancer 1999, 83:309–313.

    Article  CAS  Google Scholar 

  48. Strathdee G, MacKean MJ, Illand M, et al.: A role for methylation of the hMLH1 promoter in loss of hMLH1 expression and drug resistance in ovarian cancer. Oncogene 1999, 18:2335–2341.

    Article  PubMed  CAS  Google Scholar 

  49. Piccinin S, Gasparotto D, Vukosavljevic T, et al.: Microsatellite instability in squamous cell carcinomas of the head and neck related to field cancerization phenomena. Br J Cancer 1998, 78:1147–1151.

    PubMed  CAS  Google Scholar 

  50. Lo Muzio L, Nocini P, Mignogna MD, et al.: Immunocytochemical detection of hMSH2 and hMLH1 expression in oral SCC. Anticancer Res 1999, 19:933–940.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, CY. Genetic alterations in head and neck cancer: interactions among environmental carcinogens, cell cycle control, and host DNA repair. Curr Oncol Rep 3, 66–71 (2001). https://doi.org/10.1007/s11912-001-0045-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-001-0045-0

Keywords

Navigation