Skip to main content

Advertisement

Log in

Cytotoxic chemotherapy: Advances in delivery, pharmacology, and testing

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Adjuvant treatment of malignant gliomas, the most common types of primary brain tumors, with intravenous (iv) chemotherapy has not significantly improved survival for patients with these forms of cancer. A major factor in the failure of iv chemotherapy is the blood-brain barrier (BBB), a physiologic impediment to the delivery of cytotoxic chemotherapeutic drugs to the central nervous system (CNS). Intra-arterial and intrathecal infusion, blood-brain barrier disruption, high-dose chemotherapy, intratumoral administration, and convection-enhanced delivery are methods developed to overcome the BBB. Although some of these methods may increase the local concentration-time profile, improvement in clinical outcomes has yet to be definitively established. New methods for assessment of drug delivery to the brain tumor will assume increasing importance in the study of new cytotoxic chemotherapeutic drugs for these types of cancer. Pharmacokinetic studies are critical components of these clinical trials and allow assessment of drug delivery to the CNS and brain tumor. Additionally, pharmacokinetic studies will remain an important component of early clinical trials, particularly for indentifying significant drug interactions involving the various supporting medications that are typically used in this patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harras E (Ed): Cancer Rates and Risks, edn 4. Bethesda, MD: National Institutes of Health, National Cancer Institute; 1996.

    Google Scholar 

  2. Fine HA, Dear KB, Loeffler JS, et al.: Meta-analysis of radiation therapy with and without adjuvant chemotherapy for malignant gliomas in adults. Cancer 1993, 71:2585–2597.

    Article  PubMed  CAS  Google Scholar 

  3. Hochberg FH, Pruitt A: Assumptions in the radiotherapy of glioblastoma. Neurology 1980, 30:907–911.

    PubMed  CAS  Google Scholar 

  4. Levin VA, Kabra PM, Freeman-Dove MA: Pharmacokinetics of intracarotid artery 14C-BCNU in the squirrel monkey. J Neurosurg 1978, 48:587–593.

    PubMed  CAS  Google Scholar 

  5. Yamada K, Ushio Y, Hayakawa T, et al.: Distribution of radiolabeled 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea hydrochloride in rat brain tumor: intraarterial versus intravenous administration. Cancer Res 1987, 47:2123–2128.

    PubMed  CAS  Google Scholar 

  6. Bullard DE, Bigner SH, Bigner DD: Comparison of intravenous versus intracarotid therapy with 1,3-bis (2-chloroethyl)-1-nitrosourea in a rat brain tumor model. Cancer Res 1985, 45:5240–5245.

    PubMed  CAS  Google Scholar 

  7. Shapiro WR, Green SB, Burger PC, et al.: A randomized comparison of intra-arterial versus intravenous BCNU, with or without intravenous 5-fluorouracil, for newly diagnosed patients with malignant glioma. J Neurosurg 1992, 76:772–81. Report from an important multicenter, randomized phase III study of intra-arterial versus iv BCNU with or without 5-fluorouracil. No improvement was seen in the intra-arterial treatment group, and toxicity was increased.

    PubMed  CAS  Google Scholar 

  8. Tamaki M, Ohno K, Niimi Y, et al.: Parenchymal damage in the territory of the anterior choroidal artery following supraophthalmic intracarotid administration of CDDP for treatment of malignant gliomas. J Neurooncol 1997, 35:65–72.

    Article  PubMed  CAS  Google Scholar 

  9. Zlokovic BV, Apuzzo ML: Strategies to circumvent vascular barriers of the central nervous system [editorial; comment]. Neurosurgery 1998, 43:877–878.

    Article  PubMed  CAS  Google Scholar 

  10. Kroll RA, Neuwelt EA: Outwitting the blood brain barrier for therapeutic purposes: osmotic opening and other means. Neurosurgery 1998, 42:1083–1100. A comprehensive review of the physiology of the blood-brain barrier and methods that have been developed to improve delivery of drugs to brain tumors.

    Article  PubMed  CAS  Google Scholar 

  11. Gumerlock MK, Neuwelt EA: Chemotherapy of brain tumors: innovative approaches. In Brain Tumors. Edited by Morantz RA, Walsh JW. New York: Marcel Dekker 1992:763–778.

    Google Scholar 

  12. Neuwelt EA, Hourieson J, Frenkel EP, et al.: Therapeutic efficacy of multi-agent chemotherapy with drug delivery enhancement by blood brain barrier modification in glioblastomas. Neurosurgery 1986, 19:573–582.

    Article  PubMed  CAS  Google Scholar 

  13. Ford J, Osborn C, Barton T, Bleehen NM: A phase I study of intravenous RMP-7 with carboplatin in patients with progression of malignant glioma. Eur J Cancer 1998, 34:1807–1811.

    Article  PubMed  CAS  Google Scholar 

  14. Cloughesy TF, Black KL, Gobin YP, et al.: Intra-arterial Ceroport (RMP-7) and carboplatin: a dose escalation study for recurrent malignant gliomas. Neurosurgery 1999, 44:270–278.

    Article  PubMed  CAS  Google Scholar 

  15. Fine HA, Antman KH: High-dose chemotherapy with autologous bone marrow transplantation in the treatment of high grade astrocytomas in adults: therapeutic rationale and clinical experience. Bone Marrow Transplant 1992, 10:315–321.

    PubMed  CAS  Google Scholar 

  16. Fernandez-Hidalgo OA, Vanaclocha V, Vieitez JM, et al.: Highdose BCNU and autologous progenitor cell transplantation given with intra-arterial cisplatinum and simultaneous radiotherapy in the treatment of high-grade gliomas: benefit for selected patients. Bone Marrow Transplant 1996, 18:143–149.

    PubMed  CAS  Google Scholar 

  17. Mbidde EK, Selby PJ, Perren TJ, et al.: High dose BCNU chemotherapy with autologous bone marrow transplantation and full dose radiotherapy for grade IV astrocytoma. Br J Cancer 1988, 58:779–782.

    PubMed  CAS  Google Scholar 

  18. Bakhshi S, North RB: Implantable pumps for drug delivery to the brain. J Neurooncol 1995, 26:133–139.

    Article  PubMed  CAS  Google Scholar 

  19. Harbaugh RE: Novel CNS-directed drug delivery systems in Alzheimer’s disease and other neurological disorders. Neurobiol Aging 1989, 10:623–629.

    Article  PubMed  CAS  Google Scholar 

  20. Chamberlain MC, Kormanik P, Howell SB, et al.: Pharmacokinetics of intralumbar DTC-101 for the treatment of leptomeningeal metastases. Arch Neurol 1995, 52:912–917.

    PubMed  CAS  Google Scholar 

  21. Blasberg RG, Patlak C, Fenstermacher JD: Intrathecal chemotherapy: brain tissue profiles after ventriculocisternal perfusion. J Pharmacol Exp Ther 1975, 195:73–83.

    PubMed  CAS  Google Scholar 

  22. Chamberlain MC: Leptomeningeal metastases: a review of evaluation and treatment. J Neurooncol 1998, 37:271–284.

    Article  PubMed  CAS  Google Scholar 

  23. Sipos EP, Brem H: New delivery systems for brain tumor therapy. Neurol Clin 1995, 13:813–825.

    PubMed  CAS  Google Scholar 

  24. Walker WL, Cook J: Drug delivery to brain tumors. Bull Math Biol 1996, 58:1047–1074.

    Article  PubMed  CAS  Google Scholar 

  25. Brem H, Kader A, Epstein JI, et al.: Biocompatibility of a biodegradable, controlled-release polymer in the rabbit brain. Sel Cancer Ther 1989, 5:55–65.

    PubMed  CAS  Google Scholar 

  26. Leong KW, D’Amore PD, Marletta M, Langer R: Bioerodible polyanhydrides as drug-carrier matrices. II. Biocompatibility and chemical reactivity. J Biomed Mater Res 1986, 20:51–64.

    Article  PubMed  CAS  Google Scholar 

  27. Grossman SA, Reinhard C, Colvin OM, et al.: The intracerebral distribution of BCNU delivered by surgically implanted biodegradable polymers. J Neurosurg 1992, 76:640–647.

    Article  PubMed  CAS  Google Scholar 

  28. Yang MB, Tamargo RJ, Brem H: Controlled delivery of 1,3-bis(2-chloroethyl)-1-nitrosourea from ethylene-vinyl acetate copolymer. Cancer Res 1989, 49:5103–5107.

    PubMed  CAS  Google Scholar 

  29. Brem H, Piantadosi S, Burger PC, et al.: Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas: the Polymer-brain Tumor Treatment Group. Lancet 1995, 345:1008–1012.

    Article  PubMed  CAS  Google Scholar 

  30. Brem H, Mahaley MS, Jr., Vick NA, et al.: Interstitial chemotherapy with drug polymer implants for the treatment of recurrent gliomas. J Neurosurg 1991, 74:441–446.

    PubMed  CAS  Google Scholar 

  31. Brem H, Ewend MG, Piantadosi S, et al.: The safety of interstitial chemotherapy with BCNU-loaded polymer followed by radiation therapy in the treatment of newly diagnosed malignant gliomas: phase I trial. J Neurooncol 1995, 26:111–123.

    Article  PubMed  CAS  Google Scholar 

  32. Valtonen S, Timonen U, Toivanen P, et al.: Interstitial chemotherapy with carmustine-loaded polymers for high-grade gliomas: a randomized double-blind study. Neurosurgery 1997, 41:44–49.

    Article  PubMed  CAS  Google Scholar 

  33. Olivia A, Barker F, Tatter S, et al.: Results of a phase I study of interstitial BCNV admininstered via wafers to patients with recurrent glioma. [abstract] Proc ASCO 2000, 19:160a.

    Google Scholar 

  34. Groothuis DR: The blood-brain and blood-tumor barriers: a review of strategies for increasing drug delivery. Neuro-oncology Jan 2000, 2:45–59. A review of strategies for increasing drug delivery to brain tumors with an emphasis on potential barriers to drug distribution within brain parenchyma and the method of convection-enhanced delivery.

    Article  PubMed  CAS  Google Scholar 

  35. Groothuis DR, Benalcazar H, Allen CV, et al.: Comparison of cytosine arabinoside delivery to rat brain by intravenous, intrathecal, intraventricular and intraparenchymal routes of administration. Brain Res 2000, 856:281–290.

    Article  PubMed  CAS  Google Scholar 

  36. Laske DW, Youle RJ, Oldfield EH: Tumor regression with regional distribution of the targeted toxin TF-CRM 107 in patients with malignant brain tumors. Nature Med 1997, 3:1362–1368.

    Article  PubMed  CAS  Google Scholar 

  37. Greig NH. Drug delivery to the brain. In Blood-brain Barrier. Edited by Neuwelt A. New York: Plenum; 1988:322.

    Google Scholar 

  38. Donelli MG, Zucchetti M, D’Incalci M: Do anticancer agents reach the tumor target in the human brain? Cancer Chemother Pharmacol 1992, 30:251–260.

    Article  PubMed  CAS  Google Scholar 

  39. Stewart DJ: A critique of the role of the blood-brain barrier i the chemotherapy of human brain tumors. J Neurooncol 1994, 20:121–139.

    Article  PubMed  CAS  Google Scholar 

  40. de Lange EC, Danhof M, de Boer AG, et al.: Methodological considerations of intracerebral microdialysis in pharmacokinetic studies on drug transport across the blood-brain barrier. Brain Res Rev 1997, 25:27–49.

    Article  PubMed  Google Scholar 

  41. Muller M, Mader RM, Steiner B, et al.: 5-fluorouracil kinetics in the interstitial tumor space: clinical response in breast cancer patients. Cancer Res 1997, 57:2598–2601.

    PubMed  CAS  Google Scholar 

  42. Persson L, Valtysson J, Enblad P, et al.: Neurochemical monitoring using intracerebral microdialysis in patients with subarachnoid hemorrhage. J Neurosurg 1996, 84:606–616.

    Article  PubMed  CAS  Google Scholar 

  43. Devineni D, Klein-Szanto A, Gallo JM. In vivo microdialysis to characterize drug transport in brain tumors: analysis of methotrexate uptake in rat glioma-2 (RG-2)-bearing rats. Cancer Chemother Pharmacol 1996, 38:499–507.

    Article  PubMed  CAS  Google Scholar 

  44. Rudkin TM, Arnold DL: Proton magnetic resonance spectroscopy for the diagnosis and management of cerebral disorders. Arch Neurol 1999, 56:919–926.

    Article  PubMed  CAS  Google Scholar 

  45. Wolf W, Waluch V, Presant CA: Non-invasive 19F-NMRS of 5-fluorouracil in pharmacokinetics and pharmacodynamic studies. NMR Biomed 1998, 11:380–387.

    Article  PubMed  CAS  Google Scholar 

  46. Tyler JL, Yamamoto YL, Diksic M, et al.: Pharmacokinetics of superselective intra-arterial and intravenous 11C-BCNU evaluated by PET. J Nucl Med 1986, 27:775–780.

    PubMed  CAS  Google Scholar 

  47. Diksic M, Sako K, Feindel W, et al.: Pharmacokinetics of positron-labeled 1,3-bis(2-chloroethyl)nitrosourea in human brain tumors using positron emission tomography. Cancer Res 1984, 44:3120–3124.

    PubMed  CAS  Google Scholar 

  48. Ginos JZ, Cooper AJ, Dhawan V, et al.: [13N]-cisplatin PET to assess pharmacokinetics of intra-arterial versus intravenous chemotherapy for malignant brain tumors. J Nucl Med 1987, 28:1844–1852.

    PubMed  CAS  Google Scholar 

  49. Kissel J, Brix G, Bellemann ME, et al.: Pharmacokinetic analysis of 5-[18F]fluorouracil tissue concentrations measured with positron emission tomography in patients with liver metastases from colorectal adenocarcinoma. Cancer Res 1997, 57:3415–3423.

    PubMed  CAS  Google Scholar 

  50. Meikle SR, Matthews JC, Brock CS, et al.: Pharmacokinetic assessment of novel anti-cancer drugs using spectral analysis and positron emission tomography: a feasibility study. Cancer Chemother Pharmacol 1998, 42:183–193.

    Article  PubMed  CAS  Google Scholar 

  51. van Meerten E, Verweij J, Schellens JH: Antineoplastic agents: drug interactions of clinical significance. Drug Saf 1995, 12:168–182.

    PubMed  Google Scholar 

  52. McLeod HL: Clinically relevant drug-drug interactions in oncology. Br J Clin Pharmacol 1998, 45:539–544.

    Article  PubMed  CAS  Google Scholar 

  53. FetellMR, Grossman SA, Fisher JD, et al.: Preirradiation paclitaxel in glioblastoma multiforme: efficacy, pharmacology, and drug interactions: New Approaches to Brain Tumor Therapy Central Nervous System Consortium. J Clin Oncol 1997, 15:3121–3128. An original article that demonstrates an important interaction between CYP450-inducing anti-epileptic drugs and the cytotoxic chemotherapeutic agent paclitaxel.

    PubMed  CAS  Google Scholar 

  54. Grossman SA, Hochberg F, Fisher, et al.: Increased 9-aminocamptothecin dose requirements in patients on anticonvulsants. Cancer Chemother Pharmacol 1998, 42:118–126.

    Article  PubMed  CAS  Google Scholar 

  55. Villikka K, Kivisto KT, Maenpaa H, et al.: Cytochrome P450-inducing antiepileptics increase the clearance of vincristine in patients with brain tumors. Clin Pharmacol Ther 1999, 66:589–593.

    PubMed  CAS  Google Scholar 

  56. Baker DK, Relling MV, Pui CH, et al.: Increased teniposide clearance with concomitant anticonvulsant therapy. J Clin Oncol 1992, 10:311–315.

    PubMed  CAS  Google Scholar 

  57. Friedman HS, Petros WP, Friedman AH, et al.: Irinotecan therapy in adults with recurrent or progressive malignant glioma. J Clin Oncol 1999, 17:1516–1525.

    PubMed  CAS  Google Scholar 

  58. Straathof CSM, van den Bent MJ, Ma J, et al.: The effect of dexamethasone on the uptake of cisplatin in 9L glioma and the area of brain around tumor. J Neuro-Oncol 1998, 37:1–8.

    Article  CAS  Google Scholar 

  59. Straathof CSM, van den Bent, Loos WJ, et al.: The accumulation of topotecan in 9L glioma and in the brain parenchyma with and without dexamethasone administration. Neuro-Oncol 1999, 42:117–122.

    Article  CAS  Google Scholar 

  60. Brain EG, Yu LJ, Gustafsson K, et al.: Modulation of P450-dependent ifosfamide pharmacokinetics: a better understanding of drug activation in vivo. Br J Cancer 1998, 77:1768–1776.

    PubMed  CAS  Google Scholar 

  61. Anderson CD, Wang J, Kumar GN, et al.: Dexamethasone induction of taxol metabolism in the rat. Drug Metab Dispos 1995, 23:1286–1290.

    PubMed  CAS  Google Scholar 

  62. Crone C: The blood-brain barrier: a modified tight epithelium. In The Blood-Brain Barrier in Health and Disease. Edited by Suckling AJ, Rumsby MG, Bradbury MWB. Chichester, England: Ellis Horwood; 1986:17.

    Google Scholar 

  63. Fishman, RA: Cerebrospinal Fluid in Diseases of the Nervous System, edn 2. Philadelphia: WB Saunders; 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciordia, R., Supko, J., Gatineau, M. et al. Cytotoxic chemotherapy: Advances in delivery, pharmacology, and testing. Curr Oncol Rep 2, 445–453 (2000). https://doi.org/10.1007/s11912-000-0065-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-000-0065-1

Keywords

Navigation