Skip to main content

Advertisement

Log in

Updated Response Assessment in Neuro-Oncology (RANO) for Gliomas

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The response assessment in Neuro-Oncology (RANO) criteria and its versions were developed by expert opinion consensus to standardize response evaluation in glioma clinical trials. New patient-based data informed the development of updated response assessment criteria, RANO 2.0.

Recent Findings

In a recent study of patients with glioblastoma, the post-radiation brain MRI was a superior baseline MRI compared to the pretreatment MRI, and confirmation scans were only beneficial within the first 12 weeks of completion of radiation in newly diagnosed disease. Nonenhancing disease evaluation did not improve the correlation between progression-free survival and overall survival in newly diagnosed and recurrent settings.

Summary

RANO 2.0 recommends a single common response criteria for high- and low-grade gliomas, regardless of the treatment modality being evaluated. It also provides guidance on the evaluation of nonenhancing tumors and tumors with both enhancing and nonenhancing components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2016–2020. Neuro-Oncol. 2023;25(Supplement_4):iv1-99.

    Article  PubMed  Google Scholar 

  2. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.

    Article  CAS  PubMed  Google Scholar 

  3. Wen PY, Weller M, Lee EQ, Alexander BM, Barnholtz-Sloan JS, Barthel FP, et al. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro-Oncol. 2020;22(8):1073–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lamborn KR, Yung WKA, Chang SM, Wen PY, Cloughesy TF, DeAngelis LM, et al. Progression-free survival: an important end point in evaluating therapy for recurrent high-grade gliomas. Neuro-Oncol. 2008;10(2):162–70.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wong ET, Hess KR, Gleason MJ, Jaeckle KA, Kyritsis AP, Prados MD, et al. Outcomes and prognostic factors in recurrent glioma patients enrolled onto phase II clinical trials. J Clin Oncol. 1999;17(8):2572–2572.

    Article  CAS  PubMed  Google Scholar 

  6. Han K, Ren M, Wick W, Abrey L, Das A, Jin J, et al. Progression-free survival as a surrogate endpoint for overall survival in glioblastoma: a literature-based meta-analysis from 91 trials. Neuro-Oncol. 2014;16(5):696–706.

    Article  PubMed  Google Scholar 

  7. Ellingson BM, Wen PY, Chang SM, van den Bent M, Vogelbaum MA, Li G, et al. Objective response rate targets for recurrent glioblastoma clinical trials based on the historic association between objective response rate and median overall survival. Neuro-Oncol. 2023;25(6):1017–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27(28):4733–40.

    Article  CAS  Google Scholar 

  9. Thiesse P, Ollivier L, Di Stefano-Louineau D, Négrier S, Savary J, Pignard K, et al. Response rate accuracy in oncology trials: reasons for interobserver variability. Groupe Français d’Immunothérapie of the Fédération Nationale des Centres de Lutte Contre le Cancer. J Clin Oncol Off J Am Soc Clin Oncol. 1997;15(12):3507–14.

    Article  CAS  Google Scholar 

  10. Provenzale JM, Ison C, Delong D. Bidimensional measurements in brain tumors: assessment of interobserver variability. AJR Am J Roentgenol. 2009;193(6):W515–522.

    Article  PubMed  Google Scholar 

  11. Hygino da Cruz LC, Rodriguez I, Domingues RC, Gasparetto EL, Sorensen AG. Pseudoprogression and pseudoresponse: imaging challenges in the assessment of posttreatment glioma. AJNR Am J Neuroradiol. 2011;32(11):1978–85.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lin NU, Lee EQ, Aoyama H, Barani IJ, Barboriak DP, Baumert BG, et al. Response assessment criteria for brain metastases: proposal from the RANO group. Lancet Oncol. 2015;16(6):e270–8.

    Article  PubMed  Google Scholar 

  13. Alexander BM, Brown PD, Ahluwalia MS, Aoyama H, Baumert BG, Chang SM, et al. Clinical trial design for local therapies for brain metastases: a guideline by the Response Assessment in Neuro-Oncology Brain Metastases working group. Lancet Oncol. 2018;19(1):e33-42.

    Article  PubMed  Google Scholar 

  14. Camidge DR, Lee EQ, Lin NU, Margolin K, Ahluwalia MS, Bendszus M, et al. Clinical trial design for systemic agents in patients with brain metastases from solid tumours: a guideline by the Response Assessment in Neuro-Oncology Brain Metastases working group. Lancet Oncol. 2018;19(1):e20-32.

    Article  PubMed  Google Scholar 

  15. Chamberlain M, Junck L, Brandsma D, Soffietti R, Rudà R, Raizer J, et al. Leptomeningeal metastases: a RANO proposal for response criteria. Neuro Oncol. 2017;19(4):484–92.

  16. Warren KE, Vezina G, Poussaint TY, Warmuth-Metz M, Chamberlain MC, Packer RJ, et al. Response assessment in medulloblastoma and leptomeningeal seeding tumors: recommendations from the Response Assessment in Pediatric Neuro-Oncology committee. Neuro-Oncol. 2018;20(1):13–23.

    Article  CAS  PubMed  Google Scholar 

  17. Levin VA, Crafts DC, Norman DM, Hoffer PB, Spire JP, Wilson CB. Criteria for evaluating patients undergoing chemotherapy for malignant brain tumors. J Neurosurg. 1977;47(3):329–35.

    Article  CAS  PubMed  Google Scholar 

  18. Cairncross JG, Macdonald DR, Pexman JH, Ives FJ. Steroid-induced CT changes in patients with recurrent malignant glioma. Neurology. 1988;38(5):724–6.

    Article  CAS  PubMed  Google Scholar 

  19. Miller AB, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. Cancer. 1981;47(1):207–14.

    Article  CAS  PubMed  Google Scholar 

  20. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New Guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst. 2000;92(3):205–16.

  21. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.

    Article  CAS  PubMed  Google Scholar 

  22. Macdonald DR, Cascino TL, Schold SC, Cairncross JG. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol. 1990;8(7):1277–80.

    Article  CAS  PubMed  Google Scholar 

  23. Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010;28(11):1963–72. This paper reports RANO-HGG, the most widely used response assessment criteria in high-grade gliomas.

    Article  PubMed  Google Scholar 

  24. Norden AD, Young GS, Setayesh K, Muzikansky A, Klufas R, Ross GL, et al. Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology. 2008;70(10):779–87.

    Article  CAS  PubMed  Google Scholar 

  25. Norden AD, Drappatz J, Wen PY. Novel anti-angiogenic therapies for malignant gliomas. Lancet Neurol. 2008;7(12):1152–60.

    Article  CAS  PubMed  Google Scholar 

  26. Nowosielski M, Wiestler B, Goebel G, Hutterer M, Schlemmer HP, Stockhammer G, et al. Progression types after antiangiogenic therapy are related to outcome in recurrent glioblastoma. Neurology. 2014;82(19):1684–92.

    Article  CAS  PubMed  Google Scholar 

  27. Hagiwara A, Schlossman J, Shabani S, Raymond C, Tatekawa H, Abrey LE, et al. Incidence, molecular characteristics, and imaging features of “clinically-defined pseudoprogression” in newly diagnosed glioblastoma treated with chemoradiation. J Neurooncol. 2022;159(3):509–18.

    Article  PubMed  Google Scholar 

  28. Youssef G, Rahman R, Bay C, Wang W, Lim-Fat MJ, Arnaout O, et al. Evaluation of standard response assessment in neuro-oncology, modified response assessment in neuro-oncology, and immunotherapy response assessment in neuro-oncology in newly diagnosed and recurrent glioblastoma. J Clin Oncol. 2023;41(17):3160–71. Evaluation of standard response assessment in neuro-oncology, modified response assessment in neuro-oncology, and immunotherapy response assessment in neuro-oncology in newly diagnosed and recurrent glioblastoma.

    Article  CAS  PubMed  Google Scholar 

  29. Wen PY, Chang SM, Van den Bent MJ, Vogelbaum MA, Macdonald DR, Lee EQ. Response assessment in neuro-oncology clinical trials. J Clin Oncol. 2017;35(21):2439–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. van den Bent MJ, Wefel JS, Schiff D, Taphoorn MJB, Jaeckle K, Junck L, et al. Response assessment in neuro-oncology (a report of the RANO group): assessment of outcome in trials of diffuse low-grade gliomas. Lancet Oncol. 2011;12(6):583–93.

    Article  PubMed  Google Scholar 

  31. Avila EK, Chamberlain M, Schiff D, Reijneveld JC, Armstrong TS, Ruda R, et al. Seizure control as a new metric in assessing efficacy of tumor treatment in low-grade glioma trials. Neuro-Oncol. 2017;19(1):12–21.

    Article  PubMed  Google Scholar 

  32. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369(2):134–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wolchok JD, Hoos A, O’Day S, Weber JS, Hamid O, Lebbé C, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15(23):7412–20.

    Article  CAS  PubMed  Google Scholar 

  35. Okada H, Kalinski P, Ueda R, Hoji A, Kohanbash G, Donegan TE, et al. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(3):330–6.

    Article  CAS  Google Scholar 

  36. Pollack IF, Jakacki RI, Butterfield LH, Hamilton RL, Panigrahy A, Potter DM, et al. Antigen-specific immune responses and clinical outcome after vaccination with glioma-associated antigen peptides and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in children with newly diagnosed malignant brainstem and nonbrainstem gliomas. J Clin Oncol Off J Am Soc Clin Oncol. 2014;32(19):2050–8.

    Article  CAS  Google Scholar 

  37. Sampson JH, Heimberger AB, Archer GE, Aldape KD, Friedman AH, Friedman HS, et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(31):4722–9.

    Article  Google Scholar 

  38. Cloughesy TF, Mochizuki AY, Orpilla JR, Hugo W, Lee AH, Davidson TB, et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med. 2019;25(3):477–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Okada H, Weller M, Huang R, Finocchiaro G, Gilbert MR, Wick W, et al. Immunotherapy response assessment in neuro-oncology: a report of the RANO working group. Lancet Oncol. 2015;16(15):e534–42.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ellingson BM, Wen PY, Cloughesy TF. Modified criteria for radiographic response assessment in glioblastoma clinical trials. Neurotherapeutics. 2017;14(2):307–20.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ellingson BM, Sampson J, Achrol AS, Aghi MK, Bankiewicz K, Wang C, et al. Modified RANO, immunotherapy RANO, and standard RANO response to convection-enhanced delivery of IL4R-targeted immunotoxin MDNA55 in recurrent glioblastoma. Clin Cancer Res. 2021;27(14):3916–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Huang RY, Rahman R, Ballman KV, Felten SJ, Anderson SK, Ellingson BM, et al. The impact of T2/FLAIR evaluation per RANO criteria on response assessment of recurrent glioblastoma patients treated with bevacizumab. Clin Cancer Res. 2016;22(3):575–81.

    Article  CAS  PubMed  Google Scholar 

  43. Perez-Larraya JG, Lahutte M, Petrirena G, Reyes-Botero G, Gonzalez-Aguilar A, Houillier C, et al. Response assessment in recurrent glioblastoma treated with irinotecan-bevacizumab: comparative analysis of the Macdonald, RECIST, RANO, and RECIST + F criteria. Neuro-Oncol. 2012;14(5):667–73.

    Article  CAS  PubMed Central  Google Scholar 

  44. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro-Oncol. 2021;23(8):1231–51. This paper reports on the most recent WHO classification of CNS tumors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Arrillaga-Romany I, Kurz S, Tarapore R, Lu G, Sumrall A, Butowski N, et al. LTBK-05. clinical efficacy of ONC201 in recurrent H3 K27M-mutant diffuse midline glioma patients. Neuro-Oncol. 2021;23(Supplement_6):230.

    Google Scholar 

  46. Wen PY, van den Bent M, Youssef G, Cloughesy TF, Ellingson BM, Weller M, et al. RANO 2.0: update to the response assessment in neuro-oncology criteria for high- and low-grade gliomas in adults. J Clin Oncol Off J Am Soc Clin Oncol. 2023;41(33):5187–99. This paper presents the updated response assessment criteria that should be used in future clinical trials for gliomas.

    Article  Google Scholar 

  47. Wen PY, van den Bent M, Vogelbaum MA, Chang SM. RANO 2.0: The revised Response Assessment in Neuro-Oncology (RANO) criteria for high- and low-grade glial tumors in adults designed for the future. Neuro-Oncol. 2023;noad189. Online ahead of print.

  48. Ellingson BM, Kim GHJ, Brown M, Lee J, Salamon N, Steelman L, et al. Volumetric measurements are preferred in the evaluation of mutant IDH inhibition in non-enhancing diffuse gliomas: evidence from a phase I trial of ivosidenib. Neuro-Oncol. 2022;24(5):770–8. This paper highlights the importance of volumetric assessment in IDH-mutant nonenhancing gliomas.

    Article  CAS  PubMed  Google Scholar 

  49. Shah GD, Kesari S, Xu R, Batchelor TT, O’Neill AM, Hochberg FH, et al. Comparison of linear and volumetric criteria in assessing tumor response in adult high-grade gliomas1. Neuro-Oncol. 2006;8(1):38–46.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gahrmann R, van den Bent M, van der Holt B, Vernhout RM, Taal W, Vos M, et al. Comparison of 2D (RANO) and volumetric methods for assessment of recurrent glioblastoma treated with bevacizumab-a report from the BELOB trial. Neuro-Oncol. 2017;19(6):853–61.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wen P, Mellinghoff I, van den Bent M, Blumenthal D, Touat M, Peters K, et al. LTBK-06. impact of vorasidenib treatment on mutant IDH1 or IDH2 diffuse glioma tumor growth rate: results from the randomized, double-blind, phase 3 indigo study. Neuro-Oncol. 2023;25(Supplement_5):v310-1.

    Article  Google Scholar 

  52. Peng J, Kim DD, Patel JB, Zeng X, Huang J, Chang K, et al. Deep learning-based automatic tumor burden assessment of pediatric high-grade gliomas, medulloblastomas, and other leptomeningeal seeding tumors. Neuro-Oncol. 2022;24(2):289–99.

    Article  PubMed  Google Scholar 

  53. Chang K, Beers AL, Bai HX, Brown JM, Ly KI, Li X, et al. Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement. Neuro-Oncol. 2019;21(11):1412–22.

    Article  PubMed  PubMed Central  Google Scholar 

  54. JayachandranPreetha C, Meredig H, Brugnara G, Mahmutoglu MA, Foltyn M, Isensee F, et al. Deep-learning-based synthesis of post-contrast T1-weighted MRI for tumour response assessment in neuro-oncology: a multicentre, retrospective cohort study. Lancet Digit Health. 2021;3(12):e784–94.

    Article  CAS  Google Scholar 

  55. Kickingereder P, Isensee F, Tursunova I, Petersen J, Neuberger U, Bonekamp D, et al. Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. Lancet Oncol. 2019;20(5):728–40.

    Article  PubMed  Google Scholar 

  56. Fu R, Szidonya L, Barajas RF, Ambady P, Varallyay C, Neuwelt EA. Diagnostic performance of DSC perfusion MRI to distinguish tumor progression and treatment-related changes: a systematic review and meta-analysis. Neuro-Oncol Adv. 2022;4(1):vdac027.

    Article  Google Scholar 

  57. Galldiks N, Langen KJ. Amino acid PET in neuro-oncology: applications in the clinic. Expert Rev Anticancer Ther. 2017;17(5):395–7.

    Article  CAS  PubMed  Google Scholar 

  58. Soni N, Ora M, Mohindra N, Menda Y, Bathla G. Diagnostic performance of PET and perfusion-weighted Imaging in differentiating tumor recurrence or progression from radiation necrosis in posttreatment gliomas: a review of literature. AJNR Am J Neuroradiol. 2020;41(9):1550–57.

  59. Strauss SB, Meng A, Ebani EJ, Chiang GC. Imaging glioblastoma posttreatment: progression, pseudoprogression, pseudoresponse, radiation necrosis. Neuroimaging Clin N Am. 2021;31(1):103–20.

    Article  PubMed  Google Scholar 

  60. Nayak L, DeAngelis LM, Brandes AA, Peereboom DM, Galanis E, Lin NU, et al. The Neurologic Assessment in Neuro-Oncology (NANO) scale: a tool to assess neurologic function for integration into the Response Assessment in Neuro-Oncology (RANO) criteria. Neuro-Oncol. 2017;19(5):625–35.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Arvold ND, Armstrong TS, Warren KE, Chang SM, DeAngelis LM, Blakeley J, et al. Corticosteroid use endpoints in neuro-oncology: Response Assessment in Neuro-Oncology Working Group. Neuro-Oncol. 2018;20(7):897–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dirven L, Armstrong TS, Taphoorn MJB. Health-related quality of life and other clinical outcome assessments in brain tumor patients: challenges in the design, conduct and interpretation of clinical trials. Neuro-Oncol Pract. 2015;2(1):2–5.

    Article  Google Scholar 

  63. Vera E, Christ A, Grajkowska E, Briceno N, Choi A, Crandon SK, et al. Relationship between RANO-PRO Working Group standardised priority constructs and disease progression among malignant glioma patients: a retrospective cohort study. EClinicalMedicine. 2023;55: 101718.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The editors would like to thank Dr. John Brust for taking the time to review this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Y. Wen.

Ethics declarations

Conflict of Interest

Gilbert Youssef declares no potential conflicts of interest. Patrick Y. Wen has received nonfinancial support and serves on advisory board and consultant for Astra Zeneca, Black Diamond, Chimetrix, Merck, Novartis, Servier, VBI Vaccines, Anheart, Celularity, Day One Bio, Genenta, Glaxo Smith Kline, Kintara, Mundipharma, Novartis, Novocure, Prelude Therapeutics, Sagimet, Sapience, Symbio, and Tango, and Telix. Dr. Wen has also received nonfinancial support from Bristol Meyers Squibb, Eli Lily, Erasca, Global Coalition for Adaptive Research, Kazia, Medicinova, and Quadriga.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuro-Oncology

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youssef, G., Wen, P.Y. Updated Response Assessment in Neuro-Oncology (RANO) for Gliomas. Curr Neurol Neurosci Rep 24, 17–25 (2024). https://doi.org/10.1007/s11910-023-01329-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-023-01329-4

Keywords

Navigation