Skip to main content

Advertisement

Log in

A Practical Approach to Imaging of the Supplementary Motor Area and Its Subcortical Connections

  • Behavior (H.S. Kirshner, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

First, an anatomical and functional review of these cortical areas and subcortical connections with T-fMRI and tractography techniques; second, to demonstrate the value of this approach in neurosurgical planning in a series of patients with tumors close to the SMA.

Recent Findings

Implications in language and cognitive networks with a clear hemispheric lateralization of these SMA/pre-SMA. The recommendation of the use of the advanced neuroimaging studies for surgical planning and preservation of these areas.

Summary

The SMA/pre-SMA and their subcortical connections are functional areas to be taken into consideration in neurosurgical planning. These areas would be involved in the control/inhibition of movement, in verbal expression and fluency and in tasks of cognitive control capacity. Its preservation is key to the patient’s postsurgical cognitive and functional evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bizzi A, Blasi V, Falini A, Ferroli P, Cadioli M, Danesi U, et al. Presurgical functional MR imaging of language and motor functions: validation with intraoperative electrocortical mapping. Radiology. 2008;248:579–89.

    PubMed  Google Scholar 

  2. Talos I, O’Donnell L, Westin C, Warfield S, Wells W, Yoo S et al. Diffusion tensor and functional MRI fusion with anatomical MRI for image-guided neurosurgery. In: Proceedings of the Sixth International Conference on Medical Image Computing and Computer-Assisted Intervention MICCAI’03: Lecture Notes in Computer Science, Montréal 2003; 2878:407–415.

  3. Castellano A, Cirillo S, Bello L, Riva M, Falini A. Functional MRI for surgery of gliomas. Curr Treat Options Neurol. 2017;19:34.

    PubMed  Google Scholar 

  4. Kleiser R, Staempfli P, Valavanis A, Boesiger P, Kollia S. Impact of fMRI-guided advanced DTI fiber tracking techniques on their clinical applications in patients with brain tumors. Neuroradiology. 2010;52:37–46.

    PubMed  Google Scholar 

  5. • Essayed W, Zhang F, Unadkat P, Cosgrove G, Golby A, O’Donnell L. White matter tractography for neurosurgical planning: a topography-based review of the current state of the art. Neuroimage Clinl. 2017;15:659–72 A review of the literature in the field of tractography in neurosurgery where the authors discuss its multiple applications and its implications in clinical care.

    Google Scholar 

  6. • Wang H, Tong E, Zaharchuk W, Zeineh M, Goldstein-Piekarski BA, Liao C, et al. Resting-state functional MRI: everything that nonexperts have always wanted to know. AJNR Am J Neuroradiol. 2018;39:1390–9 An article for familiarizing the neuroradiologist with Resting State fMRI, facilitating the use in neurologic and psychiatric conditions.

    PubMed  PubMed Central  Google Scholar 

  7. Barnett A, Audrain S, McAndrews M. Applications of resting-state functional MR imaging to epilepsy. Neuroimaging Clin N Am. 2017;27:697–708.

    PubMed  Google Scholar 

  8. Agarwal S, Sai H, Pillai J. Limitations of resting-state functional MR imaging in the setting of focal brain lesions. Neuroimaging Clin N Am. 2017;27:645–61.

    PubMed  Google Scholar 

  9. Billings J, Eder M, Flood W, Singh Dhami D, Natarajan S, Whitlow C. Machine learning applications to resting-state functional MR imaging analysis. Neuroimaging Clin N Am. 2017;27:609–20.

    PubMed  Google Scholar 

  10. Gil-Robles S, Carvallo A, Jimenez M, Gomez Caicoya A, Martinez R, Ruiz-Ocaña C, et al. Double dissociation between visual recognition and picture naming: a study of the visual language connectivity using tractography and brain stimulation. Neurosurgery. 2013;72(4):678–86.

    PubMed  Google Scholar 

  11. Jiménez Peña MM, Gil Robles S, Cano Alonso R, Recio Rodríguez M, Carrascoso Arranz J, Ruiz-Ocaña C, et al. Essential subcortical tracts in language and reading. 3D-tractography for clinical practice and anatomic correlation with intraoperative subcortical electrostimulation. Clin Neuroradiol. 2015;27:81–9.

    PubMed  Google Scholar 

  12. Rostomily RC, Berger MS, Ojemann GA, Lettich E. Postoperative deficits and functional recovery following removal of tumors involving the dominant hemisphere supplementary motor area. J Neurosurg. 1991;75:62–8.

    CAS  PubMed  Google Scholar 

  13. Krainik A, Lehéricy S, Duffau H, et al. Role of the supplementary motor area in motor deficit following medial frontal lobe surgery. Neurology. 2001;57:871–8.

    CAS  PubMed  Google Scholar 

  14. Martino J, Gabarrós A, Deus J, Juncadella M, Acebes JJ, Torres A, et al. Intrasurgical mapping of complex motor function in the superior frontal gyrus. Neuroscience. 2011;179:131–42.

    CAS  PubMed  Google Scholar 

  15. Ford A, McGregor KM, Case K, et al. Structural connectivity of Broca’s area and medial frontal cortex. Neuroimage. 2010;52:1230–7.

    PubMed  PubMed Central  Google Scholar 

  16. Bizzi A, Nava S, Ferré F, et al. Aphasia induced by gliomas growing in the ventrolateral frontal region: assessment with diffusion MR tractography, functional MR imaging and neuropsychology. Cortex. 2012;48:255–72.

    PubMed  Google Scholar 

  17. Catani M, Mesulam MM, Jakobsen E, Malik F, Martersteck A, Wieneke C, et al. A novel frontal pathway underlies verbal fluency in primary progressive aphasia. Brain. 2013;136:2619–28.

    PubMed  PubMed Central  Google Scholar 

  18. • Puglisi G, Sciortino T, Rossi M, Leonetti A, Fornia L, Conti Nibali M, et al. Preserving executive functions in non-dominant frontal lobe glioma surgery: an intraoperative tool. J Neurosurg. 2018;28:1–7 The authors evaluated the accuracy of the intraoperative version of the Stroop task to reduce the postoperative deficits in the executive functions, of right frontal gliomas.

    Google Scholar 

  19. Rossi M, Fornia L, Puglisi G, Leonetti A, Zuccon G, Fava E, et al. Assessment of the praxis circuit in glioma surgery to reduce the incidence of postoperative and long-term apraxia: a new intraoperative test. J Neurosurg. 2018;23:1–11.

    Google Scholar 

  20. Thiebaut de Schotten M, Dell’Acqua F, Forkel SJ, Simmons A, Vergani F, Murphy DGM, et al. A lateralized brain network for visuospatial attention. Nat Neurosci. 2011;14:1245–6.

    CAS  PubMed  Google Scholar 

  21. Aron AR, Herz DM, Brown P, Forstmann BU, Zaghloul K. Frontosubthalamic circuits for control of action and cognition. J Neurosci. 2016;36:11489–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Martino J, de Lucas EM, Ibáñez-Plágaro FJ, Valle-Folgueral JM, Vázquez-Barquero A. Foix-Chavany-Marie syndrome caused by a disconnection between the right pars opercularis of the inferior frontal gyrus and the supplementary motor area. J Neurosurg. 2012;117:844–50.

    PubMed  Google Scholar 

  23. • Black D, Vachha B, Mian A, Faro S, Maheshwari M, Sair H, et al. American society of functional neuroradiology recommended fMRI paradigm algorithms for presurgical language assessment. Am J Neuroradiol. 2017;38:65–73 The ASFNR proposes fMRI languages paradigm algorithms as standard clinical practice, that provide a common information to compare across the institutions the fMRI data.

    Google Scholar 

  24. Zentner J, Hufnagel A, Pechstein U, Wolf HK, Schramm J. Functional results after resective procedures involving the supplementary motor area. J Neurosurg. 1996;85:542–9.

    CAS  PubMed  Google Scholar 

  25. Pai MC. Supplementary motor area aphasia: a case report. Clin Neurol Neurosurg. 1999;101:29–32.

    CAS  PubMed  Google Scholar 

  26. Chung G, Han Y, Jeong S, Clifford R. Functional heterogeneity of the supplementary motor area. AJNR Am J Neuroradiol. 2005;26:1819–23.

    PubMed  Google Scholar 

  27. •• Wongsripuemtet J, Tyan A, Carass A, Agarwal S, Gujar S, Pillai J, et al. Preoperative mapping of the supplementary motor area in patients with brain tumor using resting-state fMRI with seed-based analysis. AJNR Am J Neuroradiol. 2018;39:1493–8 Authors demonstrate that the use of the resting state fMRI in the surgical planning of glioma of the SMA is an effective and reliable method.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sanvito F, Caverzasi E, Riva M, Jordan KM, Blasi V, Scifo P, et al. F-MRI-targeted high angular resolution diffusion MR-Tractography to identify functional language tracts in healthy controls and glioma patients. Front Neurosci. 2020;31:14–225.

    Google Scholar 

  29. Bizzi A. Presurgical mapping of verbal language in brain tumors with functional MR imaging and MR tractography. Neuroimaging Clin N Am. 2009;19:573–96.

    PubMed  Google Scholar 

  30. Northoff G, Richter A, Gessner M, Schlagenhauf F, Fell J, Baumgart F, et al. Functional dissociation between medial and lateral prefrontal cortical spatiotemporal activation in negative and positive emotions: a combined fMRI/MEG study. Cereb Cortex. 2000;10:93–107.

    CAS  PubMed  Google Scholar 

  31. Oliveri M, Babiloni C, Filippi MM, Caltagirone C, Babiloni F, Cicinelli P, et al. Influence of the supplementary motor area on primary motor cortex excitability during movements triggered by neutral or emotionally unpleasant visual cues. Exp Brain Res. 2003;149:214–2.

    CAS  PubMed  Google Scholar 

  32. •• Dick A, Garic D, Graziano P, Tremblay P. The frontal aslant tract and its role in speech, language and executive function. Cortex. 2019;111:148–63 This article provide an exquisite review of the anatomy and laterality function of the frontal aslant tract.

    PubMed  Google Scholar 

  33. Catani M, Dell’acqua F, Vergani F, Malik F, Hodge H, Roy P, et al. Short frontal lobe connections of the human brain. Cortex. 2012;48:273–91.

    PubMed  Google Scholar 

  34. Vergani F, Lacerda L, Martino J, Attems J, Morris C, Mitchell P, et al. White matter connections of the supplementary motor area in humans. J Neurol Neurosurg Psychiatry. 2014;85:1377–85.

    PubMed  Google Scholar 

  35. Martino J, De Lucas E. Subcortical anatomy of the lateral association fascicles of the brain: a review. Clin Anat. 2014;27:563–9.

    PubMed  Google Scholar 

  36. Ingham R, Ingham J, Euler H, Neumann K. Stuttering treatment and brain research in adults: a still unfolding relationship. J Fluen Disord. 2017. https://doi.org/10.1016/j.jfludis.2017.02.003.

  37. Tremblay P, Gracco VL. Contribution of the pre-SMA to the production of words and non-speech oral motor gestures, as revealed by repetitive transcranial magnetic stimulation (rTMS). Brain Res. 2009;1268:112–24.

    CAS  PubMed  Google Scholar 

  38. Tremblay P, Gracco VL. On the selection of words and oral motor responses: evidence of a response-independent fronto-parietal network. Cortex. 2010;46:15–28.

    PubMed  Google Scholar 

  39. Aron A, Monsell S, Sahakian B, Robbins T. A componential analysis of task-switching deficits associated with lesions of left and right frontal cortex. Brain. 2004;127:1561–73.

    PubMed  Google Scholar 

  40. Aron A, Robbins T, Poldrack R. Inhibition and the right inferior frontal cortex: one decade on. Trends Cogn Sci. 2014;18:177–85.

    PubMed  Google Scholar 

  41. Van Wouwe NC, Pallavaram S, Phibbs FT, Martinez-Ramirez D, Neimat JS, Dawant BM, et al. Focused stimulation of dorsal subthalamic nucleus improves reactive inhibitory control of action impulses. Neuropsychologia. 2017;99:37–47.

    PubMed  PubMed Central  Google Scholar 

  42. Baker CM, Burks JD, Briggs RG, Smitherman AD, Glenn CA, Conner AK, et al. Crossed frontal aslant tract: a possible pathway involved in the recovery of supplementary motor area syndrome. Brain Behav. 2018. https://doi.org/10.1002/brb3.926.

  43. Lehéricy S, Ducros M, Krainik A, Francois C, van de Moortele P, Ugurbil K, et al. 3-D diffusion tensor axonal tracking shows distinct SMA and pre-SMA projections to the human striatum. Cereb Cortex. 2004;14:1302–9.

    PubMed  Google Scholar 

  44. Liston C, Watts R, Tottenham N, Davidson M, Niogi S, Ulug A, et al. Frontostriatal microstructure modulates efficient recruitment of cognitive control. Cereb Cortex. 2006;16:553–60.

    PubMed  Google Scholar 

  45. Laplane D, Talairach J, Meininger V, Bancaud J, Orgogozo J. Clinical consequences of corticectomies involving the supplementary motor area in man. J Neurol Sci. 1977;34:301–14.

    CAS  PubMed  Google Scholar 

  46. Fontaine D, Capelle L, Duffau H. Somatotopy of the supplementary motor area: evidence from correlation of the extent of surgical resection with the clinical patterns of deficit. Neurosurgery. 2002;50:297–303.

    PubMed  Google Scholar 

  47. Russell S, Kelly P. Incidence and clinical evolution of postoperative deficits after volumetric stereotactic resection of glial neoplasms involving the supplementary motor area. Neurosurgery. 2003;52:506–16.

    PubMed  Google Scholar 

  48. Rosenberg K, Nossek E, Liebling R, Fried I, Shapira-Lichter I, Hendler T, et al. Prediction of neurological deficits and recovery after surgery in the supplementary motor area: a prospective study in 26 patients. J Neurosurg. 2010;113:1152–63.

    PubMed  Google Scholar 

  49. Mendez M. Aphemia-like syndrome from a right supplementary motor area lesion. Clin Neurol Neurosurg. 2004;106:337–9.

    PubMed  Google Scholar 

  50. Swanberg M, Nasreddine Z, Mendez M, Cummings J. Speech and language. In: Goetz C, editor. Text book of clinical neurology. Philadelphia: Saunders Elsevier; 2007.

    Google Scholar 

  51. Puglisi G, Howells H, Sciortino T, Leonetti A, Rossi M, Conti Nibali M, et al. Frontal pathways in cognitive control: direct evidence from intraoperative stimulation and diffusion tractography. Brain. 2019;142:2451–65.

    PubMed  PubMed Central  Google Scholar 

  52. Nambu A, Tokuno H, Takada M. Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci Res. 2002;43:111–7.

    PubMed  Google Scholar 

  53. Gerloff C, Bushara K, Sailer A, Wassermann E, Chen R, Matsuoka T, et al. Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain. 2006;129:791–808.

    PubMed  Google Scholar 

  54. Park C, Chang W, Ohn S, Kim S, Bang O, et al. Longitudinal changes of resting-state functional connectivity during motor recovery after stroke. Stroke. 2011;42:1357–62.

    PubMed  PubMed Central  Google Scholar 

  55. Rehme A, Fink G, von Cramon D, Grefkes C. The role of the contralesional motor cortex for motor recovery in the early days after stroke assessed with longitudinal FMRI. Cereb Cortex. 2011;21:756–68.

    PubMed  Google Scholar 

  56. Sharma N, Baron J, Rowe J. Motor imagery after stroke: relating outcome to motor network connectivity. Ann Neurol. 2009;66:604–16.

    PubMed  PubMed Central  Google Scholar 

  57. Grefkes C, Nowak D, Eickhoff S, Dafotakis M, Kust J, Karbe H, et al. Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann Neurol. 2008;63:236–46.

    PubMed  Google Scholar 

  58. Lotze M, Beutling W, Loibl M, Domin M, Platz T, Schminke U, et al. Contralesional motor cortex activation depends on ipsilesional corticospinal tract integrity in well-recovered subcortical stroke patients. Neurorehabil Neural Repair. 2011;26:594–603.

    PubMed  Google Scholar 

  59. Robles SG, Gatignol P, Lehericy S, Duffau H. Long-term brain plasticity allowing a multistage surgical approach to World Health Organization grade II gliomas in eloquent areas. J Neurosurg. 2008;109:615–24.

    PubMed  Google Scholar 

  60. Rosenberg K, Liebling R, Avidan G, Perry D, Siman-Tov T, Andelman F, et al. Language related reorganization in adult brain with slow growing glioma: fMRI prospective case-study. Neurocase. 2008;14:465–73.

    PubMed  Google Scholar 

  61. Tombari D, Loubinoux I, Pariente J, Gerdelat A, Albucher J, Tardy J, et al. A longitudinal fMRI study: in recovering and then in clinically stable subcortical stroke patients. Neuroimage. 2004;23:827–39.

    PubMed  Google Scholar 

  62. Kielar A, Deschamps T, Jokel R, Meltzer J. Functional reorganization of language networks for semantics and syntax in chronic stroke: evidence from MEG. Hum Brain Mapp. 2016;37:2869–93.

    PubMed  PubMed Central  Google Scholar 

  63. Saur D, Lange R, Baumgaertner A, Schraknepper V, Willmes K, Rijntjes M, et al. Dynamics of language reorganization after stroke. Brain. 2006;129(6):1371–84.

    PubMed  Google Scholar 

  64. Deverdun J, van Dokkum L, Le Bars E, et al. Language reorganization after resection of low-grade gliomas: an fMRI task based connectivity study. Brain Imaging Behav. 2019. https://doi.org/10.1007/s11682-019-00114-7.

  65. Duffau H. Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity. Lancet Neurol. 2005;4:476–86.

    PubMed  Google Scholar 

  66. Vassal M, Charroud C, Deverdun J. Recovery of functional connectivity of the sensorimotor network after surgery for diffuse low-grade gliomas involving the supplementary motor area. J Neurosurg. 2017;126:1181–90.

    PubMed  Google Scholar 

  67. Ghinda C, Duffau H. Network plasticity and intraoperative mapping for personalized multimodal management of diffuse low-grade gliomas. Front Surg. 2017;31(4):3. https://doi.org/10.3389/fsurg.2017.00003.

    Article  Google Scholar 

  68. • Liu H, Cai W, Xu L, Li W, Qin W. Differential reorganization of SMA subregions after stroke: a subregional level resting-state functional connectivity study. Front Hum Neurosci. 2020;13:468. https://doi.org/10.3389/fnhum.2019.00468The authors evidence the different cortical reorganization of the SMA proper and the pre-SMA with the use of resting state fMRI, suggesting that these two subregions exhibit completely different within the motor network.

    Article  PubMed  PubMed Central  Google Scholar 

  69. • Chivukula S, Pikul B, Black K, Pouratian N, Bookheimer S. Contralateral functional reorganization of the speech supplementary motor area following neurosurgical tumor resection. Lang. 2018;183:41–6 Authors identify functional reorganization of the speech SMA observing a migration of speech SMA function from the dominant hemisphere to contralateral homologous region, parallel to the clinical recovery.

    Google Scholar 

  70. Acioly MA, Cunha AM, Parise M, Rodrigues E, Tovar-Moll F. Recruitment of contralateral supplementary motor area in functional recovery following medial frontal lobe surgery: an fMRI case study. J Neurol Surg Part A Central Eur Neurosurg. 2015;76:508–12.

    Google Scholar 

  71. Riecker A, Wildgruber D, Grodd W, Ackermann H. Reorganization of speech production at the motor cortex and cerebellum following capsular infarction: a follow-up functional magnetic resonance imaging study. Neurocase. 2002;8:417–23.

    PubMed  Google Scholar 

  72. Winhuisen L, Thiel A, Schumacher B, Kessler J, Rudolf J, Haupt WF, et al. Role of the contralateral inferior frontal gyrus in recovery of language function in poststroke aphasia: a combined repetitive transcranial magnetic stimulation and positron emission tomography study. Stroke. 2005;36:1759–63.

    PubMed  Google Scholar 

  73. Hung Y, Gaillard SL, Yarmak P, Arsalidou M. Dissociations of cognitive inhibition, response inhibition, and emotional interference: voxelwise ALE meta-analyses of fMRI studies. Hum Brain Mapp. 2018;39:4065–82.

    PubMed  PubMed Central  Google Scholar 

  74. Banich MT, Milham MP, Atchley R, Cohen NJ, Webb A, Wszalek T, et al. fMRI studies of stroop tasks reveal unique roles of anterior and posterior brain systems in attentional selection. J Cogn Neurosci. 2000;12:988–1000.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Caroline Coope for her support in proofreading this article and Pablo García-Polo and Juan Bachiller for their technical counselling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mar Jiménez de la Peña.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of Topical Collection on Behavior

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Peña, M.J., Gil-Robles, S., de Vega, V.M. et al. A Practical Approach to Imaging of the Supplementary Motor Area and Its Subcortical Connections. Curr Neurol Neurosci Rep 20, 50 (2020). https://doi.org/10.1007/s11910-020-01070-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-020-01070-2

Keywords

Navigation