Skip to main content

Advertisement

Log in

The Role of Arachnoid Granulations and the Glymphatic System in the Pathophysiology of Idiopathic Intracranial Hypertension

  • Neuro-Ophthalmology (R. Mallery, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Idiopathic intracranial hypertension (IIH) is a disorder characterized by long-standing elevated intracranial pressure (ICP). As the name applies, no uniform cause has been identified. IIH is typically characterized by headaches, pulsatile tinnitus, and visual deterioration.

Recent Findings

Anomalies in cerebrospinal fluid (CSF) absorption are implicated in the pathophysiology of IIH. Non-invasive imaging of the brain parenchyma and the cerebral venous sinus has improved, and research has gained a better understanding of the role of cerebral venous sinus stenosis. Both have led to a better delineation of the role of arachnoid granulations (AG) and the glymphatic system in the development of IIH.

Summary

IIH may occur as a result of restrictions of CSF absorption from the venous system, and or the congestion and overflow of the glymphatic system. Elucidating these mechanisms will lead to greater understanding of its underlying pathophysiologic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

IIH:

Idiopathic intracranial hypertension

ICP:

Intracranial pressure

CSF:

Cerebrospinal fluid

AG:

Arachnoid granulations

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Mollan SP, et al. Evolving evidence in adult idiopathic intracranial hypertension: pathophysiology and management. J Neurol Neurosurg Psychiatry. 2016;87(9):982–92. https://doi.org/10.1136/jnnp-2015-311302.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Batra R, Sinclair A. Idiopathic intracranial hypertension; research Progress and emerging themes. J Neurol. 2013;261:3451–60. https://doi.org/10.1007/s00415-013-7019-7.

    Article  Google Scholar 

  3. Farb RI, et al. Idiopathic intracranial hypertension: the prevalence and morphology of sinovenous stenosis. Neurology. 2003;60(9):1418–24. https://doi.org/10.1212/01.wnl.0000066683.34093.e2.

    Article  CAS  PubMed  Google Scholar 

  4. Markey KA, et al. Understanding idiopathic intracranial hypertension: mechanisms, management, and future directions. Lancet Neurol. 2016;15(1):78–91. https://doi.org/10.1016/s1474-4422(15)00298-7.

    Article  PubMed  Google Scholar 

  5. •• Dinkin M. et al, Diagnosis and Management of Cerebral Venous Diseases in Neuro-Ophthalmology: Ongoing Controversies. Asia Pac J Ophthalmol. 2019. https://doi.org/10.22608/apo.2018239. This article highlights the role of venous sinus stenosis in IIH.

  6. •• Lenck S, et al. Idiopathic intracranial hypertension. Neurology. 2018;91(11):515–22. https://doi.org/10.1212/wnl.0000000000006166. This review provides a thorough description of both the venous and glymphatic pathway in regards to IIH.

    Article  PubMed  Google Scholar 

  7. Bezerra MLDS, et al. Pseudotumor cerebri and glymphatic dysfunction. Front Neurol. 2018;8:8. https://doi.org/10.3389/fneur.2017.00734.

    Article  Google Scholar 

  8. Maralani PJ, et al. Accuracy of brain imaging in the diagnosis of idiopathic intracranial hypertension. Clin Radiol. 2012;67(7):656–63. https://doi.org/10.1016/j.crad.2011.12.002.

    Article  CAS  PubMed  Google Scholar 

  9. Fargen KM. Idiopathic Intracranial Hypertension Is Not Idiopathic: Proposal for a New Nomenclature and Patient Classification. J Neurointerv Surg. 2019;12(2):110–4. https://doi.org/10.1136/neurintsurg-2019-015498.

    Article  PubMed  Google Scholar 

  10. Dinkin M, Oliveira C. Men are from Mars, idiopathic intracranial hypertension is from venous: the role of venous sinus stenosis and stenting in idiopathic intracranial hypertension. Semin Neurol. 2019;39:6692–703. https://doi.org/10.1055/s-0039-3399506.

    Article  Google Scholar 

  11. Watane GV, et al. The significance of arachnoid granulation in patients with idiopathic intracranial hypertension. J Comput Assist Tomogr. 2018;42(2):282–5. https://doi.org/10.1097/rct.0000000000000668.

    Article  PubMed  Google Scholar 

  12. Ekizoglu E. An Update on the Pathophysiology of Idiopathic Intracranial Hypertension Alias Pseudotumor Cerebri. Ağrı. 2015. https://doi.org/10.5505/agri.2015.22599.

  13. Alimajstorovic Z, et al. Guide to preclinical models used to study the pathophysiology of idiopathic intracranial hypertension. Eye. 2020. https://doi.org/10.1038/s41433-019-0751-1.

  14. Bidot S, et al. Brain imaging in idiopathic intracranial hypertension. J Neuroophthalmol. 2015;35(4):400–11. https://doi.org/10.1097/wno.0000000000000303.

    Article  PubMed  Google Scholar 

  15. Kilgore KP, et al. Re-evaluating the incidence of idiopathic intracranial hypertension in an era of increasing obesity. Ophthalmology. 2017;124(52):697–700. https://doi.org/10.1016/j.ophtha.2017.01.006.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Oluwaseun AO, et al. Anatomy, head and neck, cerebrospinal fluid. StatPearls Publishing LLC. 2019.

  17. Javed K, et al. Neuroanatomy, Choroid Plexus. StatPearls Publishing LLC. 2019.

  18. Cipolla MJ. Chapter 6: barriers of the CNS. The Cerebral Circulation. Morgan & Claypool Life Sciences. 2010.

  19. Weed LH. The theories of drainage of cerebro-spinal fluid with an analysis of the methods of investigation. Studies on Cerebro-Spinal Fluid. No. II. J Med Res. 1914:21–49.

  20. Sharma S, et al. Intracranial hypertension. StatPearls Publishing LLC. 2019.

  21. Murtha LA, et al. Cerebrospinal fluid is drained primarily via the spinal canal and olfactory route in young and aged spontaneously hypertensive rats. Fluids Barriers CNS. 2014;11(1):12. https://doi.org/10.1186/2045-8118-11-12.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rodrigues JR, Santos GR. Brain herniation into giant arachnoid granulation: an unusual case. Case Rep Radiol. 2017:1–4. https://doi.org/10.1155/2017/8532074.

  23. Aspelund A, et al. A dural lymphatic vascular system that drains Brain interstitial fluid and macromolecules. J Exp Med. 2015;212(7):991–9. https://doi.org/10.1084/jem.20142290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Iliff JJ, et al. Implications of the discovery of brain lymphatic pathways. Lancet Neurol. 2015;14(10):977–9. https://doi.org/10.1016/s1474-4422(15)00221-5.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Holman DW, et al. Cerebrospinal fluid dynamics in the human cranial subarachnoid space: an overlooked mediator of cerebral disease. II. In Vitro Arachnoid Outflow Model. J R Soc Interface. 2010;7(49):1205–18. https://doi.org/10.1098/rsif.2010.0032.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yamashima T. On arachnoid villi and meningiomas: functional implication of ultrastructure, cell adhesion mechanisms, and extracellular matrix composition. Pathol Oncol Res. 1996;2(3):144–9. https://doi.org/10.1007/bf02903517.

    Article  CAS  PubMed  Google Scholar 

  27. Bayot ML, Zabel MK. Neuroanatomy, dural venous sinuses. StatPearls. 2019.

  28. Rafael J. Cerebrospinal fluid clinical methods: the history, physical, and laboratory examinations: Butterworths; 1990.

  29. De Keyzer B, et al. Giant arachnoid granulations mimicking pathology. Neuroradiol J. 2014;27(3):316–21. https://doi.org/10.15274/nrj-2014-10047.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Miyajima M, Arai H. Evaluation of the production and absorption of cerebrospinal fluid. Neurol Med Chir. 2015;55:8647–56. https://doi.org/10.2176/nmc.ra.2015-0003.

    Article  Google Scholar 

  31. Morton D, Albertine K. Scalp, skull, and meninges. The Big Picture: Gross Anatomy, Medical Course and Step 1 Review McGraw-Hill Education. 2019.

  32. Le Gros Clark WE. On the Pacchionian bodies. J Anat. 1920.

  33. Mamourian AC, Towfighi J. MR of Giant arachnoid granulation, a normal variant presenting as a mass within the dural venous sinus. Am J Neurol. 1995.

  34. Upton ML, Weller RO. The Morphology of cerebrospinal fluid drainage pathways in human arachnoid granulations. J Neurosurg. 1985;63(6):867–75. https://doi.org/10.3171/jns.1985.63.6.0867.

    Article  CAS  PubMed  Google Scholar 

  35. Kan P, et al. Incidental Giant arachnoid granulation. Am J Neurol. 2006.

  36. Absinta M, Ha S-K, Nair G, Sati P, Luciano NJ, Palisoc M, et al. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. ELife. 2017;6. https://doi.org/10.7554/elife.29738.

  37. Mascagni P, Bellini GB. Historia Completa Dei Vasi Linfatici. 1816.

  38. Sakka L, et al. Anatomy and physiology of cerebrospinal fluid. Eur Ann Otorhinolaryngol Head Neck Dis. 2011;128(6):309–16. https://doi.org/10.1016/j.anorl.2011.03.002.

    Article  CAS  PubMed  Google Scholar 

  39. Ringstad G, et al. Glymphatic MRI in idiopathic normal pressure hydrocephalus. Brain. 2017;140(10):2691–705. https://doi.org/10.1093/brain/awx191.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Strahle J, et al. Mechanisms of hydrocephalus after neonatal and adult intraventricular hemorrhage. Transl Stroke Res. 2012;3(1):25–38. https://doi.org/10.1007/s12975-012-0182-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sokołowski W, et al. Lymphatic drainage of cerebrospinal fluid in mammals – are arachnoid granulations the main route of cerebrospinal fluid outflow? Biologia. 2018;73(6):563–8. https://doi.org/10.2478/s11756-018-0074-x.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Johnston M, et al. Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res. 2004;1(1):2. https://doi.org/10.1186/1743-8454-1-2.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Arjona A. Intracranial hypertension secondary to giant arachnoid granulations. J Neurol Neurosurg Psychiatry. 2003;74(4):418. https://doi.org/10.1136/jnnp.74.4.418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. •• Patsalides A, et al. Venous sinus stenting lowers the intracranial pressure in patients with idiopathic intracranial hypertension. J Neurointerv Surg. 2018;11(2):175–8. https://doi.org/10.1136/neurintsurg-2018-014032. This paper describes cerebrospinal fluid opening pressure changes after venous sinus stenting.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sinclair AJ, et al. Low energy diet and intracranial pressure in women with idiopathic intracranial hypertension: prospective cohort study. Bmj. 2010;341(2):c2701. https://doi.org/10.1136/bmj.c2701.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tabassi A, et al. Serum and CSF vitamin A concentrations in idiopathic intracranial hypertension. Neurology. 2005;64(11):1893–6. https://doi.org/10.1212/01.wnl.0000163556.31080.98.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Mondejar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuro-Ophthalmology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondejar, V., Patsalides, A. The Role of Arachnoid Granulations and the Glymphatic System in the Pathophysiology of Idiopathic Intracranial Hypertension. Curr Neurol Neurosci Rep 20, 20 (2020). https://doi.org/10.1007/s11910-020-01044-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-020-01044-4

Keywords

Navigation