Skip to main content

Advertisement

Log in

Congenital Myasthenic Syndromes in 2018

  • Nerve and Muscle (L H Weimer, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Summarize features of the currently recognized congenital myasthenic syndromes (CMS) with emphasis on novel findings identified in the past 6 years.

Recent Findings

Since the last review of the CMS in this journal in 2012, several novel CMS were identified. The identified disease proteins are SNAP25B, synaptotagmin 2, Munc13-1, synaptobrevin-1, GFPT1, DPAGT1, ALG2, ALG14, Agrin, GMPPB, LRP4, myosin 9A, collagen 13A1, the mitochondrial citrate carrier, PREPL, LAMA5, the vesicular ACh transporter, and the high-affinity presynaptic choline transporter.

Summary

Exome sequencing has provided a powerful tool for identifying novel CMS. Identifying the disease genes is essential for determining optimal therapy. The landscape of the CMS is still unfolding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CMS:

Congenital myasthenic syndrome(s)

EP:

Endplate

EPP:

Endplate potential

MEPP:

Miniature endplate potential

3,4-DAP:

3,4-Diaminopyridine

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. Selcen D, Juel VC, Hobson-Webb LD, Smith EC, Stickler DE, Bite AV, et al. Myasthenic syndrome caused by plectinopathy. Neurology. 2011;76:327–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Tsujino A, Maertens C, Ohno K, Shen XM, Fukuda T, Harper CM, et al. Myasthenic syndrome caused by mutation of the SCN4A sodium channel. Proc Natl Acad Sci U S A. 2003;100:7377–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Shen XM, Selcen D, Brengman J, Engel AG. Mutant SNAP25B causes myasthenia, cortical hyperexcitability, ataxia, and intellectual disability. Neurology. 2014;83:2247–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Herrmann DN, Horvath R, Snowden JE, Gonzales M, Sanchez-Mejias A, Guan Z, et al. Synaptotagmin 2 mutations cause an autosomal-dominant form of Lambert-Eaton myasthenic syndrome and nonprogressive motor neuropathy. Am J Hum Genet. 2014;95:332–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. •• Engel AG, Selcen D, Shen XM, Milone M, Harper CM. Loss of MUNC13-1 function causes microcephaly, cortical hyperexcitability, and fatal myasthenia. Neurol Genet. 2016;2:e105. Loss of Munc13-1 function consigns Syntaxin 1B to a nonfunctional closed state; this inhibits cholinergic transmission at the neuromuscular junction and glutamatergic transmission in the brain. Inactivation of syntaxin 1B causes cortical hyperexcitability and microcepaly because syntaxin 1B is required for normal brain development.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. •• Shen XM, Scola RH, Lorenzoni PJ, Kay CS, Werneck LC, Brengman J, et al. Novel synaptobrevin-1 (VAMP1) mutation causes fatal congenital myasthenic syndrome. Ann Clin Transl Neurol. 2017;4:130–8. A mutation in the C-terminal end of synatobrevin-1 elongates the intravesicular segment of the transcript which hinders vesicle exocytosis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. •• Salpietro V, Lin W, Delle Vedove A, Storbeck M, Liu Y, Efthymiou S, et al. Homozygous mutations in VAMP1 cause a presynaptic congenital myasthenic syndrome. Ann Neurol. 2017;81(4):597–603. This publication identifies mutations in VAMP-1 in two kinships and analyzes the pathologic effects of the mutation in VAMP-1 null mice.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Senderek J, Muller JS, Dusl M, Strom TM, Guerggueltcheva V, Diepolder I, et al. Hexosamine biosynthetic pathway mutations cause neuromuscular transmission defect. Am J Hum Genet. 2011;88:162–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Selcen D, Shen XM, Milone M, Brengman J, Ohno K, Deymeer F, et al. GFPT1-myasthenia: clinical, structural, and electrophysiologic heterogeneity. Neurology. 2013;23:370–8.

    Article  CAS  Google Scholar 

  10. Belaya K, Finlayson S, Slater C, Cossins J, Liu WW, Maxwell S, et al. Mutations in DPAGT1 cause a limb-girdle congenital myasthenic syndrome with tubular aggregates. Am J Hum Genet. 2012;91:1–9.

    Article  CAS  Google Scholar 

  11. Huze C, Bauche S, Richard P, Chevessier F, Goillot E, Gaudon K, et al. Identification of an agrin mutation that causes congenital myasthenia and affects synapse function. Am J Hum Genet. 2009;85:155–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Maselli RA, Fernandez JM, Arredondo J, Navarro C, Ngo M, Beeson D, et al. LG2 agrin mutation causing severe congenital myasthenic syndrome mimics functional characteristics of non-neural agrin (z-) agrin. Hum Genet (Berlin). 2012;131:1123–35.

    Article  CAS  Google Scholar 

  13. Nicole S, Chaouch A, Torbergsen T, Bauche S, de Bruyckere E, Fontenille MJ, et al. Agrin mutations lead to a congenital myasthenic syndrome with distal muscle weakness and atrophy. Brain. 2014;137(Pt 9):2429–43.

    Article  PubMed  Google Scholar 

  14. Cossins J, Belaya K, Hicks D, Salih MA, Finlayson S, Carboni M, et al. Congenital myasthenic syndromes due to mutations in ALG2 and ALG14. Brain. 2013;136:944–56.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Belaya K, Rodriguez Cruz PM, Liu WW, Maxwell S, McGowan S, Farrugia ME, et al. Mutations in GMPPB cause congenital myasthenic syndrome and bridge myasthenic disorders with dystroglycanopathies. Brain. 2015;138(Pt 9):2493–504.

    Article  PubMed  PubMed Central  Google Scholar 

  16. •• Selcen D, Ohkawara B, Shen XM, McEvoy K, Ohno K, Engel AG. Impaired synaptic development, maintenance, and neuromuscular transmission in LRP4-related myasthenia. JAMA Neurol. 2015;72:889–96. Report of a CMS caused by impaired interaction of LRP4 with MusK and agrin which hinders endplate evelopment.

    Article  PubMed  PubMed Central  Google Scholar 

  17. • O'Connor E, Topf A, Muller JS, Cox D, Evangelista T, Colomer J, et al. Identification of mutations in the MYO9A gene in patients with congenital myasthenic syndrome. Brain. 2016;139:2143–53. The pathogenic effects of the identified mutation were not fully understood at first. A recent article (PMID:29462312) Shows that MYO9A deficiency in motor neurons reduces agrin secretion.

    Article  PubMed  PubMed Central  Google Scholar 

  18. •• Logan CV, Cossins J, Rodriguez Cruz PM, Parry DA, Maxwell S, Martinez-Martinez P, et al. Congenital myasthenic syndrome type 19 is caused by mutations in COL13A1, encoding the the atypical non-fibrillar collagen type XIII aplha1 chain. Am J Hum Genet. 2015;97:1–8. This article highlights the crucial role of collagen XIII in the formation and maintenance of the neuromuscular junction.

    Article  CAS  Google Scholar 

  19. Chaouch A, Porcelli V, Cox DM, Edvardson S, Scarcia P, de Grassi A, et al. Mutations in the mitochondrial citrate carrier SLC25A1 are associated with impaired neuromuscular transmission. J Neuromuscul Dis. 2014;1:75–90.

    PubMed  PubMed Central  Google Scholar 

  20. Regal L, Shen XM, Selcen D, Verhille C, Meulemans S, Creemers JW, et al. PREPL deficiency with or without cystinuria causes a novel myasthenic syndrome. Neurology. 2014;82:1254–60.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Maselli RA, Arredondo J, Vázquez J, Chong JX. Presynaptic congenital myasthenic syndrome with a homozygous sequence variant in LAMA5 combines myopia, facial tics, and failure of neuromuscular transmission. Am J Med Genet A. 2017;173:2240–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. •• O'Grady GL. Variants in SLC18A3, vesicular acetylcholine transporter, cause congenital myasthenic syndrome. Neurolgy. 2016;87:1442–8. This syndrome, like endplate choline acetyltransferase deficiency results in episodes of apnea.

    Article  CAS  Google Scholar 

  23. •• Aran A, Segel R, Kaneshige K, Gulsuner S, Renbaum P, Oliphant S, et al. Vesicular acetylcholine transporter defect underlies devastating congenital myasthenia syndrome. Neurology. 2017;88:1021–8. In References 22 and 23 two independent groups identify a CMS causing episodes of apnea resembling defects in choline acetyltransferase deficiency.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Walls TJ, Engel AG, Nagel AS, Harper CM, Trastek VF. Congenital myasthenic syndrome associated with paucity of synaptic vesicles and reduced quantal release. Ann N Y Acad Sci. 1993;681:461–8.

    Article  PubMed  CAS  Google Scholar 

  25. Ohno K, Tsujino A, Shen XM, Brengman J, Harper CM, Bajzer Z, et al. Choline acetyltransferase mutations cause myasthenic syndrome associated with episodic apnea in humans. Proc Natl Acad Sci U S A. 2001;98:2017–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Shen XM, Crawford TO, Brengman J, Acsadi G, Iannaconne S, Karaca E, et al. Functional consequences and structural interpretation of mutations in human choline acetyltransferase. Hum Mutat. 2011;32:1259–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Whittaker RG, Herrmann DN, Bansagi B, Hasan BA, Lofra RM, Logigian EL, et al. Electrophysiologic features of SYT2 mutations causing a treatable neuromuscular syndrome. Neurology. 2015;85:1964–71.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ohno K, Brengman JM, Milone M, Shen XM, Tsujino A, Anlar B, et al. Congenital endplate acetylcholinesterase deficiency: novel missense and null mutations in the collagen-like tail subunit of the asymmetric enzyme. Am J Hum Genet. 1998;63:A377.

    Google Scholar 

  29. Kimbell LM, Ohno K, Engel AG, Rotundo RL. C-terminal and heparin-binding domains of collagenic tail subunit are both essential for anchoring acetylcholinesterase at the synapse. J Biol Chem. 2004;279:10997–1005.

    Article  PubMed  CAS  Google Scholar 

  30. Engel AG, Lambert EH, Gomez MR. A new myasthenic syndrome with end-plate acetylcholinesterase deficiency, small nerve terminals, and reduced acetylcholine release. Ann Neurol. 1977;1:315–30.

    Article  PubMed  CAS  Google Scholar 

  31. Bestue-Cardiel M, de-Cabazon-Alvarez AS, Capablo-Liesa JL, Lopez-Pison J, Pena-Segura JL, Martin-Martinez J, et al. Congenital endplate acetylcholinesterase deficiency responsive to ephedrine. Neurology. 2005;65:144–6.

    Article  PubMed  CAS  Google Scholar 

  32. Mihaylova V, Muller JS, Vilchez JJ, Salih MA, et al. Clinical and molecular genetic findings in COLQ-mutant congenital myasthenic syndromes. Brain. 2008;131:747–59.

    Article  PubMed  Google Scholar 

  33. Liewluck T, Selcen D, Engel AG. Beneficial effects of albuterol in congenital endplate acetylcholinesterase deficiency and DOK-7 myasthenia. Muscle Nerve. 2011;44:789–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Maselli RA, Ng JJ, Andreson JA, Cagney O, Arredondo J, Williams C, et al. Mutations in LAMB2 causing a severe form of synaptic congenital myasthenic syndrome. J Med Genet. 2009;46:203–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Latvanlehto A, Fox MA, Sormunen R, Tu H, Oikarainen T, Koski A, et al. Muscle-derived collagen XIII regulates maturation of the skeletal neuromuscular junction. J Neurosci. 2010;30:12230–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Engel AG, Ohno K, Bouzat C, Sine SM, Griggs RG. End-plate acetylcholine receptor deficiency due to nonsense mutations in the ε subunit. Ann Neurol. 1996;40:810–7.

    Article  PubMed  CAS  Google Scholar 

  37. Ohno K, Quiram P, Milone M, Wang HL, Harper CM, Pruitt JN, et al. Congenital myasthenic syndromes due to heteroallelic nonsense/missense mutations in the acetylcholine receptor ε subunit gene: identification and functional characterization of six new mutations. Hum Mol Genet. 1997;6:753–66.

    Article  PubMed  CAS  Google Scholar 

  38. Harper CM, Engel AG. Treatment of 31 congenital myasthenic syndrome patients with 3,4-diaminopyridine. Neurology. 2000;54(Suppl 3):A395.

    Google Scholar 

  39. Sadeh M, Shen XM, Engel AG. Beneficial effect of albuterol in congenital myasthenic syndrome with ε subunit mutations. Muscle Nerve. 2011;44:289–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Engel AG, Ohno K, Sine SM. Sleuthing molecular targets for neurological diseases at the neuromuscular junction. Nat Rev Neurosci. 2003;4:339–52.

    Article  PubMed  CAS  Google Scholar 

  41. Sine SM, Engel AG. Recent advances in Cys-loop receptor structure and function. Nature. 2006;440:448–55.

    Article  PubMed  CAS  Google Scholar 

  42. Engel AG, Lambert EH, Mulder DM, Torres CF, Sahashi K, Bertorini TE, et al. A newly recognized congenital myasthenic syndrome attributed to a prolonged open time of the acetylcholine-induced ion channel. Ann Neurol. 1982;11:553–69.

    Article  PubMed  CAS  Google Scholar 

  43. Harper CM, Engel AG. Quinidine sulfate therapy for the slow-channel congenital myasthenic syndrome. Ann Neuro. 1998;43:480–4.

    Article  CAS  Google Scholar 

  44. Harper CM, Fukudome T, Engel AG. Treatment of slow channel congenital myasthenic syndrome with fluoxetine. Neurology. 2003;60:1710–3.

    Article  PubMed  CAS  Google Scholar 

  45. Wang HL, Milone M, Ohno K, Shen XM, Tsujino A, Batocchi AP, et al. Acetylcholine receptor M3 domain: stereochemical and volume contributions to channel gating. Nat Neurosci. 1999;2:226–33.

    Article  PubMed  CAS  Google Scholar 

  46. Ohno K, Wang HL, Milone M, Bren N, Brengman JM, Nakano S, et al. Congenital myasthenic syndrome caused by decreased agonist binding affinity due to a mutation in the acetylcholine receptor î subunit. Neuron. 1996;17:157–70.

    Article  PubMed  CAS  Google Scholar 

  47. Milone M, Wang HL, Ohno K, Prince RJ, Shen XM, Brengman JM, et al. Mode switching kinetics produced by a naturally occurring mutation in the cytoplasmic loop of the human acetylcholine receptor epsilon subunit. Neuron. 1998;20:575–88.

    Article  PubMed  CAS  Google Scholar 

  48. Shen XM, Ohno K, Brengman JM, Fukuda T, Illa I, Engel AG. Congenital myasthenic syndrome associated with three missense mutations in the extracellular domain of the AChR delta subunit. Neurology. 2003;60(Suppl 1):A420.

    Google Scholar 

  49. •• Burden SJ, Huijbers MG, Remedio L. Fundamental molecules and mechanisms for forming and maintaining neuromuscular synapses. Int J Mol Sci. 2018;19:E490. A clear summary of the role of proteins involved in endplate maintenance and development.

    Article  PubMed  Google Scholar 

  50. Kim N, Stiegler AL, Cameron TO, Hallock PT, Gomez AM, Huang JH, et al. LRP4 is a receptor for agrin and forms a complex with MuSK. Cell. 2008;135:334–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Chevessier F, Faraut B, Ravel-Chapuis A, Richard P, Gaudon K, Bauche S, et al. MUSK, a new target for mutations causing congenital myasthenic syndrome. Hum Mol Genet. 2004;13:3229–40.

    Article  PubMed  CAS  Google Scholar 

  52. Mihaylova V, Salih MA, Mukhtar MM, Abuzeid HA, El-Sadig SM, von der Hagen M, et al. Refinement of the clinical phenotype in MUSK-related congenital myasthenic syndromes. Neurology. 2009;73:1926–8.

    Article  PubMed  CAS  Google Scholar 

  53. Maselli R, Arredondo J, Cagney O, Ng JJ, Anderson JA, Williams C, et al. Mutations in MUSK causing congenital myasthenic syndrome impair MuSK-Dok-7 interaction. Hum Mol Genet. 2010;19:2370–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Ohkawara B, Cabrera-Serrano M, Nakat T, Milone M, Asai N, Ito K, et al. LRP4 third β-propeller domain mutations cause novel congenital myasthenic syndrome by compromising agrin-mediated MuSK signalling in a position-specific manner. Hum Mol Genet. 2014;23:1856–68.

    Article  PubMed  CAS  Google Scholar 

  55. Beeson D, Higuchi O, Palace J, Cossins J, Spearman H, Maxwell S, et al. Dok-7 mutations underlie a neuromuscular junction synaptopathy. Science. 2006;313:1975–8.

    Article  PubMed  CAS  Google Scholar 

  56. Selcen D, Milone M, Shen XM, Harper CM, Stans AA, Wieben ED, et al. Dok-7 myasthenia: phenotypic and molecular genetic studies in 16 patients. Ann Neurol. 2008;64:71–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Lashley D, Palace J, Jayawant S, Robb S, Beeson D. Ephedrine treatment in congenital myasthenic syndrome due to mutations in DOK7. Neurology. 2010;74:1517–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Milone M, Shen XM, Selcen D, Ohno K, Brengman J, Iannaconne ST, et al. Myasthenic syndrome due to defects in rapsyn: clinical and molecular findings in 39 patients. Neurology. 2009;73:228–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Slater CR, Fawcett PRW, Walls TJ, Lyons PR, Bailey SJ, Beeson D, et al. Pre- and postsynaptic abnormalities associated with impaired neuromuscular transmission in a group of patients with 'limb-girdle myasthenia'. Brain. 2006;127:2061–76.

    Article  Google Scholar 

  60. Ohno K, Engel AG, Shen XM, Selcen D, Brengman JM, Harper CM, et al. Rapsyn mutations in humans cause endplate acetylcholine receptor deficiency and myasthenic syndrome. Am J Hum Genet. 2002;70:875–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Ohno K, Sadeh M, Blatt I, Brengman JM, Engel AG. E-box mutations in RAPSN promoter region in eight cases with congenital myasthenic syndrome. Hum Mol Genet. 2003;12:739–48.

    Article  PubMed  CAS  Google Scholar 

  62. Cossins J, Burke G, Maxwell S, Spearman H, Man S, Kuks J, et al. Diverse molecular mechanisms involved in AChR deficiency due to rapsyn mutations. Brain. 2006;129:2773–83.

    Article  PubMed  Google Scholar 

  63. Maselli RA, Dris H, Schnier J, Cockrell JL, Wollmann RL. Congenital myasthenic syndrome caused by two non-N88K rapsyn mutations. Clin Genet. 2007;72:63–5.

    Article  PubMed  CAS  Google Scholar 

  64. Freeze HH, Eklund EA, Ng BG, Patterson MC. Neurology of inherited glycosylation disorders. Lancet Neurol. 2012;11:453–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Selcen D, Shen XM, Li Y, Stans AA, Wieben E, Engel AG. DPAGT1 myasthenia and myopathy. Genetic, phenotypic, and expression studies. Neurology. 2014;82:1822–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Soboloff J, Rothberg BS, Madesh M, Gill DL. STIM proteins: dynamic calcium signal transducers. Nat Rev Mol Cell Biol. 2012;13:549–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Arnold WD, Feldman DH, Ramirez S, He L, Kassar D, Quick A, et al. Defective fast inactivation recovery of Nav 1.4 in congenital myasthenic syndrome. Ann Neurol. 2015;77(5):840–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Habbout K. A recessive Nav1.4 mutation underlies congenital myasthenic syndrome with periodic paralysis. Neurology. 2016;86:161–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Banwell BL, Russel J, Fukudome T, Shen XM, Stilling G, Engel AG. Myopathy, myasthenic syndrome, and epidermolysis bullosa simplex due to plectin deficiency. J Neuropath. Exp Neurol. 1999;58:832–46.

    CAS  Google Scholar 

  70. Claeys KG, Maisonobe T, Bohm J, Laporte J, Hezode M, Romero NB, et al. Phenotype of a patient with recessive centronuclear myopathy and a novel BIN1 mutation. Neurology. 2010;74:519–21.

    Article  PubMed  CAS  Google Scholar 

  71. Robb SA, Sewry CA, Dowling JJ, Feng L, Cullup S, Lillis S, et al. Impaired neuromuscular transmission and response to acetylcholinesterase inhibitors in centronuclear myopathy. Neuromuscul Disord. 2011;21:379–86.

    Article  PubMed  Google Scholar 

  72. Gibbs EM, Clarke NF, Rose K, Oates EC, Webster R, Feldman EL, et al. Neuromuscular junction abnormalities in DNM2-related centronuclear myopathy. J Mol Med (Berl). 2013;91:727–37.

    Article  CAS  Google Scholar 

  73. Munot P, Lashley D, Jungbluth H, Pitt M, Robb SA, Palace J, et al. Congenital fibre type disproportion associated with mutations in the tropomyosin 3 (TPM3) gene mimicking congenital myasthenia. Neuromuscul Disord. 2010;20:796–800.

    Article  PubMed  CAS  Google Scholar 

  74. Illingsworth MA, Main M, Pitt M, et al. RYR1-related congenital myopathy with fatigable weakness, responding to pyridostigmine. Neuromuscul Disord. 2014;24:707–12.

    Article  Google Scholar 

  75. Liewluck T, Shen XM, Milone M, Engel AG. Endplate structure and parameters of neuromuscular transmission in sporadic centronuclear myopathy associated with myasthenia. Neuromuscul Disord. 2011;21:387–95.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Durmus H, Ayhan O, Cirak S, Deymeer F, Parman Y, Franke A, et al. Neuromuscular endplate pathology in recessive desminopathies: lessons from man and mice. Neurology. 2016;87:799–805.

    Article  PubMed  Google Scholar 

  77. Hesselmans LFGM, Jennekens FGI, Vand Den Oord CJM, Veldman H, Vincent A. Development of innervation of skeletal muscle fibers in man: relation to acetylcholine receptors. Anat Rec. 1993;236:553–62.

    Article  PubMed  CAS  Google Scholar 

  78. Hoffmann K, Muller JS, Stricker S, et al. Escobar syndrome is a prenatal myasthenia caused by disruption of the acetylcholine receptor fetal gamma subunit. Am J Hum Genet. 2006;79:303–12.

  79. Morgan NV, Brueton LA, Cox P, et al. Mutations in the embryonal subunit of the acetylcholine receptor (CHNRG) cause lethal and Escobar variants of the multiple pterygium syndrome. Am J Hum Genet. 2006;79:390–5.

  80. Oskoui M, Jacobson L, Chung WK, Haddad J, Vincent A, Kaufmann P, et al. Fetal acetylcholine receptor inactivation syndrome and maternal myasthenia gravis. Neurology. 2008;71:2010–2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Morgan NV, Brueton LA, Cox P, Greally MT, Tolmie J, Pasha S, et al. Mutations in the embryonal subunit of the acetylcholine receptor (CHNRG) cause lethal and Escobar variants of the multiple pterygium syndrome. Am J Hum Genet. 2006;79:390–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Michalk A, Stricker S, Becker J, Rupps R, Pantzar T, Miertus J, et al. Acetylcholine receptor pathway mutations explain various fetal akinesia deformation sequence disorders. Am J Hum Genet. 2008;82:464–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Vogt J, Harrison BJ, Spearman H, ten Cate LN, Morgan NV, Beeson D, et al. Mutation analysis of CHRNA1, CHRNB1, CHRND, and RAPSN genes in multiple pterygium syndrome/fetal akinesia patients. Am J Hum Genet. 2008;82:222–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Vogt J, Morgan NV, Marton T, Maxwell S, Harrison BJ, Beeson D, et al. Germline mutation in DOK7 associated with fetal akinesia deformation sequence. J Med Genet. 2009;46:338–40.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work done in the authors laboratory was supported by NIH Grant NS6277.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew G. Engel.

Ethics declarations

Conflict of Interest

Andrew G. Engel declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Nerve and Muscle

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engel, A.G. Congenital Myasthenic Syndromes in 2018. Curr Neurol Neurosci Rep 18, 46 (2018). https://doi.org/10.1007/s11910-018-0852-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-018-0852-4

Keywords

Navigation