Skip to main content

Advertisement

Log in

Neurogenesis in the Hippocampus of Patients with Temporal Lobe Epilepsy

  • Epilepsy (C. W. Bazil, Section Editors)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

The mobilization of endogenous neural stem cells in order to substitute lost neurons in the adult brain may reduce the negative effects of patients with chronic neurodegenerative diseases. However, abnormal neurogenesis may be harmful and could lead to the worsening of patients’ symptoms. In the brains of patients and animal models with temporal lobe epilepsy (TLE), increased newly generated neurons in the subgranular zone (SGZ) at early stages after brain insults have been speculated to be involved in epileptogenesis. However, this argument is unsupported by evidence showing that (1) hippocampal neurogenesis is reduced at chronic stages of intractable TLE, (2) decreased neurogenesis is involved in epileptogenesis, and (3) spontaneous recurrent seizures occur before newly generated neurons are integrated into hippocampal neural pathways. Therefore, the hypothesis of increased neurogenesis in epileptogenesis may need to be re-evaluated. In this paper, we systemically reviewed brain neurogenesis and relevant molecules in the regulation of neurogenesis in SGZ. We aimed to update researchers and epileptologists on current progresses on pathophysiological changes of neurogenesis at different stages of TLE in patients and animal models of TLE. The interactions among neurogenesis, epileptogenesis and cognitive impairment, and molecules’ mechanism involved in neurogenesis would also be discussed. Future research directions are proposed at the end of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Altman J. Are new neurons formed in the brains of adult mammals? Science. 1962;135(3509):1127–8.

    Article  CAS  PubMed  Google Scholar 

  2. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4(11):1313–7.

    Article  CAS  PubMed  Google Scholar 

  3. Ramony CS. Degeneration and regeneration of the nervous system. London: Oxford University Press; 1913.

    Google Scholar 

  4. Rikani AA, Choudhry Z, Choudhry AM, Zenonos G, Tariq S, Mobassarah NJ. Spatially regulated adult neurogenesis. Ann Neurosci. 2013;20(2):67–70.

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Seri B, Garcia-Verdugo JM, McEwen BS, Alvarez-Buylla A. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci. 2001;21(18):7153–60.

    CAS  PubMed  Google Scholar 

  6. van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH. Functional neurogenesis in the adult hippocampus. Nature. 2002;415(6875):1030–4.

    Article  PubMed  CAS  Google Scholar 

  7. Ge S, Goh EL, Sailor KA, Kitabatake Y, Ming GL, Song H. GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature. 2006;439(7076):589–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Ramirez-Amaya V, Marrone DF, Gage FH, Worley PF, Barnes CA. Integration of new neurons into functional neural networks. J Neurosci. 2006;26(47):12237–41.

    Article  CAS  PubMed  Google Scholar 

  9. Hastings NB, Gould E. Rapid extension of axons into the CA3 region by adult-generated granule cells. J Comp Neurol. 1999;413(1):146–54.

    Article  CAS  PubMed  Google Scholar 

  10. Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol. 2000;425(4):479–94.

    Article  CAS  PubMed  Google Scholar 

  11. Ma DK, Ming GL, Song H. Glial influences on neural stem cell development: cellular niches for adult neurogenesis. Curr Opin Neurobiol. 2005;15(5):514–20.

    Article  CAS  PubMed  Google Scholar 

  12. Alvarez-Buylla A, Lim DA. For the long run: maintaining germinal niches in the adult brain. Neuron. 2004;41(5):683–6.

    Article  CAS  PubMed  Google Scholar 

  13. Johansson CB, Svensson M, Wallstedt L, Janson AM, Frisen J. Neural stem cells in the adult human brain. Exp Cell Res. 1999;253(2):733–6.

    Article  CAS  PubMed  Google Scholar 

  14. Kukekov VG, Laywell ED, Suslov O, Davies K, Scheffler B, Thomas LB, et al. Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain. Exp Neurol. 1999;156(2):333–44.

    Article  CAS  PubMed  Google Scholar 

  15. Roy NS, Wang S, Jiang L, Kang J, Benraiss A, Harrison-Restelli C, et al. In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nat Med. 2000;6(3):271–7.

    Article  CAS  PubMed  Google Scholar 

  16. Hermann A, Maisel M, Liebau S, Gerlach M, Kleger A, Schwarz J, et al. Mesodermal cell types induce neurogenesis from adult human hippocampal progenitor cells. J Neurochem. 2006;98(2):629–40.

    Article  CAS  PubMed  Google Scholar 

  17. Walton NM, Sutter BM, Chen HX, Chang LJ, Roper SN, Scheffler B, et al. Derivation and large-scale expansion of multipotent astroglial neural progenitors from adult human brain. Development. 2006;133(18):3671–81.

    Article  CAS  PubMed  Google Scholar 

  18. Weickert CS, Kittell DA, Saunders RC, Herman MM, Horlick RA, Kleinman JE, et al. Basic fibroblast growth factor and fibroblast growth factor receptor-1 in the human hippocampal formation. Neuroscience. 2005;131(1):219–33.

    Article  CAS  PubMed  Google Scholar 

  19. Waterhouse EG, An JJ, Orefice LL, Baydyuk M, Liao GY, Zheng K, et al. BDNF promotes differentiation and maturation of adult-born neurons through GABAergic transmission. J Neurosci. 2012;32(41):14318–30.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Kawai T, Takagi N, Mochizuki N, Besshoh S, Sakanishi K, Nakahara M, et al. Inhibitor of vascular endothelial growth factor receptor tyrosine kinase attenuates cellular proliferation and differentiation to mature neurons in the hippocampal dentate gyrus after transient forebrain ischemia in the adult rat. Neuroscience. 2006;141(3):1209–16.

    Article  CAS  PubMed  Google Scholar 

  21. Lee C, Agoston DV. Vascular endothelial growth factor is involved in mediating increased de novo hippocampal neurogenesis in response to traumatic brain injury. J Neurotrauma. 2010;27(3):541–53.

    Article  PubMed  Google Scholar 

  22. Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A, et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature. 2005;437(7063):1370–5.

    Article  CAS  PubMed  Google Scholar 

  23. Kirikoshi H, Katoh M. Expression of WNT7A in human normal tissues and cancer, and regulation of WNT7A and WNT7B in human cancer. Int J Oncol. 2002;21(4):895–900.

    CAS  PubMed  Google Scholar 

  24. Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature. 2006;442(7104):823–6.

    Article  CAS  PubMed  Google Scholar 

  25. Soen Y, Mori A, Palmer TD, Brown PO. Exploring the regulation of human neural precursor cell differentiation using arrays of signaling microenvironments. Mol Syst Biol. 2006;2:37.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Urban N, Guillemot F. Neurogenesis in the embryonic and adult brain: same regulators, different roles. Front Cell Neurosci. 2014;8:396.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Bhattacharyya BJ, Banisadr G, Jung H, Ren D, Cronshaw DG, Zou Y, et al. The chemokine stromal cell-derived factor-1 regulates GABAergic inputs to neural progenitors in the postnatal dentate gyrus. J Neurosci. 2008;28(26):6720–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Jiao J, Chen DF. Induction of neurogenesis in nonconventional neurogenic regions of the adult central nervous system by niche astrocyte-produced signals. Stem Cells. 2008;26(5):1221–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Cai W, Carlson SW, Brelsfoard JM, Mannon CE, Moncman CL, Saatman KE, et al. Rit GTPase signaling promotes immature hippocampal neuronal survival. J Neurosci. 2012;32(29):9887–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Jing X, Miwa H, Sawada T, Nakanishi I, Kondo T, Miyajima M, et al. Ephrin-A1-mediated dopaminergic neurogenesis and angiogenesis in a rat model of Parkinson’s disease. PLoS One. 2012;7(2):e32019.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Palazuelos J, Ortega Z, Diaz-Alonso J, Guzman M, Galve-Roperh I. CB2 cannabinoid receptors promote neural progenitor cell proliferation via mTORC1 signaling. J Biol Chem. 2012;287(2):1198–209.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Wang Y, Lin L, Lai H, Parada LF, Lei L. Transcription factor Sox11 is essential for both embryonic and adult neurogenesis. Dev Dyn. 2013;242(6):638–53.

    Article  CAS  PubMed  Google Scholar 

  33. Thiel G. How Sox2 maintains neural stem cell identity. Biochem J. 2013;450(3):e1–2.

    Article  CAS  PubMed  Google Scholar 

  34. Nacher J, Varea E, Miguel Blasco-Ibanez J, Gomez-Climent MA, Castillo-Gomez E, Crespo C, et al. N-methyl-d-aspartate receptor expression during adult neurogenesis in the rat dentate gyrus. Neuroscience. 2007;144(3):855–64.

    Article  CAS  PubMed  Google Scholar 

  35. Xiao XL, Ma DL, Wu J, Tang FR. Metabotropic glutamate receptor 5 (mGluR5) regulates proliferation and differentiation of neuronal progenitors in the developmental hippocampus. Brain Res. 2013;1493:1–12.

    Article  CAS  PubMed  Google Scholar 

  36. Xu Z, Gao Y, Xu F. Deficits of peripheral olfactory inputs reduce cell proliferation in the adult subventricular and subgranular zones. Neurosci Lett. 2013;541:269–74.

    Article  CAS  PubMed  Google Scholar 

  37. Andersen J, Urban N, Achimastou A, Ito A, Simic M, Ullom K, et al. A transcriptional mechanism integrating inputs from extracellular signals to activate hippocampal stem cells. Neuron. 2014;83(5):1085–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Li E, Kim Y, Kim S, Sato T, Kojima M, Park S. Ghrelin stimulates proliferation, migration and differentiation of neural progenitors from the subventricular zone in the adult mice. Exp Neurol. 2014;252:75–84.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang J, Ji F, Liu Y, Lei X, Li H, Ji G, et al. Ezh2 regulates adult hippocampal neurogenesis and memory. J Neurosci. 2014;34(15):5184–99.

    Article  PubMed  CAS  Google Scholar 

  40. Kempermann G, Gage FH. Genetic influence on phenotypic differentiation in adult hippocampal neurogenesis. Brain Res Dev Brain Res. 2002;134(1–2):1–12.

    Article  CAS  PubMed  Google Scholar 

  41. Hagg T. Molecular regulation of adult CNS neurogenesis: an integrated view. Trends Neurosci. 2005;28(11):589–95.

    Article  CAS  PubMed  Google Scholar 

  42. Faigle R, Song H. Signaling mechanisms regulating adult neural stem cells and neurogenesis. Biochim Biophys Acta. 2013;1830(2):2435–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Cameron HA, Gould E. Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. Neuroscience. 1994;61(2):203–9.

    Article  CAS  PubMed  Google Scholar 

  44. Kuhn HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci. 1996;16(6):2027–33.

    CAS  PubMed  Google Scholar 

  45. Cameron HA, McKay RD. Restoring production of hippocampal neurons in old age. Nat Neurosci. 1999;2(10):894–7.

    Article  CAS  PubMed  Google Scholar 

  46. Kempermann G. Regulation of adult hippocampal neurogenesis—implications for novel theories of major depression. Bipolar Disord. 2002;4(1):17–33.

    Article  PubMed  Google Scholar 

  47. Brown J, Cooper-Kuhn CM, Kempermann G, Van Praag H, Winkler J, Gage FH, et al. Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. Eur J Neurosci. 2003;17(10):2042–6.

    Article  PubMed  Google Scholar 

  48. Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature. 1997;386(6624):493–5.

    Article  CAS  PubMed  Google Scholar 

  49. Nilsson M, Perfilieva E, Johansson U, Orwar O, Eriksson PS. Enriched environment increases neurogenesis in the adult rat dentate gyrus and improves spatial memory. J Neurobiol. 1999;39(4):569–78.

    Article  CAS  PubMed  Google Scholar 

  50. van Praag H, Christie BR, Sejnowski TJ, Gage FH. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A. 1999;96(23):13427–31.

    Article  PubMed Central  PubMed  Google Scholar 

  51. van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci. 1999;2(3):266–70.

    Article  PubMed  Google Scholar 

  52. Fabel K, Tam B, Kaufer D, Baiker A, Simmons N, Kuo CJ, et al. VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur J Neurosci. 2003;18(10):2803–12.

    Article  PubMed  Google Scholar 

  53. Cao L, Jiao X, Zuzga DS, Liu Y, Fong DM, Young D, et al. VEGF links hippocampal activity with neurogenesis, learning and memory. Nat Genet. 2004;36(8):827–35.

    Article  CAS  PubMed  Google Scholar 

  54. Pereira AC, Huddleston DE, Brickman AM, Sosunov AA, Hen R, McKhann GM, et al. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci U S A. 2007;104(13):5638–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Gould E, Beylin A, Tanapat P, Reeves A, Shors TJ. Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci. 1999;2(3):260–5.

    Article  CAS  PubMed  Google Scholar 

  56. Leuner B, Mendolia-Loffredo S, Kozorovitskiy Y, Samburg D, Gould E, Shors TJ. Learning enhances the survival of new neurons beyond the time when the hippocampus is required for memory. J Neurosci. 2004;24(34):7477–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Rausch R. Epilepsy surgery within the temporal lobe and its short-term and long-term effects on memory. Curr Opin Neurol. 2002;15(2):185–9.

    Article  PubMed  Google Scholar 

  58. Duman RS, Malberg J, Nakagawa S. Regulation of adult neurogenesis by psychotropic drugs and stress. J Pharmacol Exp Ther. 2001;299(2):401–7.

    CAS  PubMed  Google Scholar 

  59. Fuchs E, Gould E. Mini-review: in vivo neurogenesis in the adult brain: regulation and functional implications. Eur J Neurosci. 2000;12(7):2211–4.

    Article  CAS  PubMed  Google Scholar 

  60. Eisch AJ, Barrot M, Schad CA, Self DW, Nestler EJ. Opiates inhibit neurogenesis in the adult rat hippocampus. Proc Natl Acad Sci U S A. 2000;97(13):7579–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Crews FT, Miller MW, Ma W, Nixon K, Zawada WM, Zakhari S. Neural stem cells and alcohol. Alcohol Clin Exp Res. 2003;27(2):324–35.

    Article  CAS  PubMed  Google Scholar 

  62. Blumcke I, Schewe JC, Normann S, Brustle O, Schramm J, Elger CE, et al. Increase of nestin-immunoreactive neural precursor cells in the dentate gyrus of pediatric patients with early-onset temporal lobe epilepsy. Hippocampus. 2001;11(3):311–21.

    Article  CAS  PubMed  Google Scholar 

  63. Mathern GW, Leiphart JL, De Vera A, Adelson PD, Seki T, Neder L, et al. Seizures decrease postnatal neurogenesis and granule cell development in the human fascia dentata. Epilepsia. 2002;43 Suppl 5:68–73.

    Article  PubMed  Google Scholar 

  64. Thom M, Martinian L, Williams G, Stoeber K, Sisodiya SM. Cell proliferation and granule cell dispersion in human hippocampal sclerosis. J Neuropathol Exp Neurol. 2005;64(3):194–201.

    Article  PubMed  Google Scholar 

  65. Crespel A, Rigau V, Coubes P, Rousset MC, de Bock F, Okano H, et al. Increased number of neural progenitors in human temporal lobe epilepsy. Neurobiol Dis. 2005;19(3):436–50.

    Article  CAS  PubMed  Google Scholar 

  66. Liu YW, Curtis MA, Gibbons HM, Mee EW, Bergin PS, Teoh HH, et al. Doublecortin expression in the normal and epileptic adult human brain. Eur J Neurosci. 2008;28(11):2254–65.

    Article  CAS  PubMed  Google Scholar 

  67. Fahrner A, Kann G, Flubacher A, Heinrich C, Freiman TM, Zentner J, et al. Granule cell dispersion is not accompanied by enhanced neurogenesis in temporal lobe epilepsy patients. Exp Neurol. 2007;203(2):320–32.

    Article  PubMed  Google Scholar 

  68. Engel T, Schindler CK, Sanz-Rodriguez A, Conroy RM, Meller R, Simon RP, et al. Expression of neurogenesis genes in human temporal lobe epilepsy with hippocampal sclerosis. Int J Physiol Pathophysiol Pharmacol. 2011;3(1):38–47.

    PubMed Central  CAS  PubMed  Google Scholar 

  69. D’Alessio L, Konopka H, Escobar E, Acuña A, Oddo S, Solís P, et al. Dentate gyrus expression of nestin-immunoreactivity in patients with drug-resistant temporal lobe epilepsy and hippocampal sclerosis. Seizure. 2015;27:75–9. In the hippocampal sections of 16 patients with hippocampal sclerosis and drug-resistant temporal lobe epilepsy, D’Alessio et al. showed reduced expression of nestin (an intermediate filament protein expressed by newly formed cells)-immunoreactivity (IR) in granular cell layers of hippocampal tissue extirpated during epilepsy surgical procedure, suggesting reduced neurogenesis in intractable epilepsy.

  70. Parent JM, Tada E, Fike JR, Lowenstein DH. Inhibition of dentate granule cell neurogenesis with brain irradiation does not prevent seizure-induced mossy fiber synaptic reorganization in the rat. J Neurosci. 1999;19(11):4508–19.

    CAS  PubMed  Google Scholar 

  71. Covolan L, Ribeiro LT, Longo BM, Mello LE. Cell damage and neurogenesis in the dentate granule cell layer of adult rats after pilocarpine- or kainate-induced status epilepticus. Hippocampus. 2000;10(2):169–80.

    Article  CAS  PubMed  Google Scholar 

  72. Scharfman HE, Goodman JH, Sollas AL. Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: functional implications of seizure-induced neurogenesis. J Neurosci. 2000;20(16):6144–58.

    CAS  PubMed  Google Scholar 

  73. Auvergne R, Lere C, El Bahh B, Arthaud S, Lespinet V, Rougier A, et al. Delayed kindling epileptogenesis and increased neurogenesis in adult rats housed in an enriched environment. Brain Res. 2002;954(2):277–85.

    Article  CAS  PubMed  Google Scholar 

  74. Faverjon S, Silveira DC, Fu DD, Cha BH, Akman C, Hu Y, et al. Beneficial effects of enriched environment following status epilepticus in immature rats. Neurology. 2002;59(9):1356–64.

    Article  CAS  PubMed  Google Scholar 

  75. Gray WP, Sundstrom LE. Kainic acid increases the proliferation of granule cell progenitors in the dentate gyrus of the adult rat. Brain Res. 1998;790(1–2):52–9.

    Article  CAS  PubMed  Google Scholar 

  76. Kralic JE, Ledergerber DA, Fritschy JM. Disruption of the neurogenic potential of the dentate gyrus in a mouse model of temporal lobe epilepsy with focal seizures. Eur J Neurosci. 2005;22(8):1916–27.

    Article  PubMed  Google Scholar 

  77. Jiang W, Wan Q, Zhang ZJ, Wang WD, Huang YG, Rao ZR, et al. Dentate granule cell neurogenesis after seizures induced by pentylenetrazol in rats. Brain Res. 2003;977(2):141–8.

    Article  CAS  PubMed  Google Scholar 

  78. Bengzon J, Kokaia Z, Elmer E, Nanobashvili A, Kokaia M, Lindvall O. Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures. Proc Natl Acad Sci U S A. 1997;94(19):10432–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Parent JM, Janumpalli S, McNamara JO, Lowenstein DH. Increased dentate granule cell neurogenesis following amygdala kindling in the adult rat. Neurosci Lett. 1998;247(1):9–12.

    Article  CAS  PubMed  Google Scholar 

  80. Scott BW, Wang S, Burnham WM, De Boni U, Wojtowicz JM. Kindling-induced neurogenesis in the dentate gyrus of the rat. Neurosci Lett. 1998;248(2):73–6.

    Article  CAS  PubMed  Google Scholar 

  81. Nakagawa E, Aimi Y, Yasuhara O, Tooyama I, Shimada M, McGeer PL, et al. Enhancement of progenitor cell division in the dentate gyrus triggered by initial limbic seizures in rat models of epilepsy. Epilepsia. 2000;41(1):10–8.

    Article  CAS  PubMed  Google Scholar 

  82. Scott BW, Wojtowicz JM, Burnham WM. Neurogenesis in the dentate gyrus of the rat following electroconvulsive shock seizures. Exp Neurol. 2000;165(2):231–6.

    Article  CAS  PubMed  Google Scholar 

  83. Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS, Lowenstein DH. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci. 1997;17(10):3727–38.

    CAS  PubMed  Google Scholar 

  84. Jessberger S, Zhao C, Toni N, Clemenson Jr GD, Li Y, Gage FH. Seizure-associated, aberrant neurogenesis in adult rats characterized with retrovirus-mediated cell labeling. J Neurosci. 2007;27(35):9400–7.

    Article  CAS  PubMed  Google Scholar 

  85. Hattiangady B, Rao MS, Shetty AK. Chronic temporal lobe epilepsy is associated with severely declined dentate neurogenesis in the adult hippocampus. Neurobiol Dis. 2004;17(3):473–90.

    Article  CAS  PubMed  Google Scholar 

  86. Heinrich C, Nitta N, Flubacher A, Muller M, Fahrner A, Kirsch M, et al. Reelin deficiency and displacement of mature neurons, but not neurogenesis, underlie the formation of granule cell dispersion in the epileptic hippocampus. J Neurosci. 2006;26(17):4701–13.

    Article  CAS  PubMed  Google Scholar 

  87. Tang FR, Chia SC, Jiang FL, Ma DL, Chen PM, Tang YC. Calcium binding protein containing neurons in the gliotic mouse hippocampus with special reference to their afferents from the medial septum and the entorhinal cortex. Neuroscience. 2006;140(4):1467–79.

    Article  CAS  PubMed  Google Scholar 

  88. Hattiangady B, Shetty AK. Decreased neuronal differentiation of newly generated cells underlies reduced hippocampal neurogenesis in chronic temporal lobe epilepsy. Hippocampus. 2010;20(1):97–112.

    PubMed Central  PubMed  Google Scholar 

  89. Sadgrove MP, Chad JE, Gray WP. Kainic acid induces rapid cell death followed by transiently reduced cell proliferation in the immature granule cell layer of rat organotypic hippocampal slice cultures. Brain Res. 2005;1035(2):111–9.

    Article  CAS  PubMed  Google Scholar 

  90. Smith PD, McLean KJ, Murphy MA, Turnley AM, Cook MJ. Seizures, not hippocampal neuronal death, provoke neurogenesis in a mouse rapid electrical amygdala kindling model of seizures. Neuroscience. 2005;136(2):405–15.

    Article  CAS  PubMed  Google Scholar 

  91. Mohapel P, Ekdahl CT, Lindvall O. Status epilepticus severity influences the long-term outcome of neurogenesis in the adult dentate gyrus. Neurobiol Dis. 2004;15(2):196–205.

    Article  PubMed  Google Scholar 

  92. Deisseroth K, Singla S, Toda H, Monje M, Palmer TD, Malenka RC. Excitation-neurogenesis coupling in adult neural stem/progenitor cells. Neuron. 2004;42(4):535–52.

    Article  CAS  PubMed  Google Scholar 

  93. Cheng CM, Cohen M, Tseng V, Bondy CA. Endogenous IGF1 enhances cell survival in the postnatal dentate gyrus. J Neurosci Res. 2001;64(4):341–7.

    Article  CAS  PubMed  Google Scholar 

  94. Jin K, Mao XO, Sun Y, Xie L, Jin L, Nishi E, et al. Heparin-binding epidermal growth factor-like growth factor: hypoxia-inducible expression in vitro and stimulation of neurogenesis in vitro and in vivo. J Neurosci. 2002;22(13):5365–73.

    CAS  PubMed  Google Scholar 

  95. Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci U S A. 2002;99(18):11946–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Lee J, Duan W, Mattson MP. Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J Neurochem. 2002;82(6):1367–75.

    Article  CAS  PubMed  Google Scholar 

  97. Lichtenwalner RJ, Forbes ME, Bennett SA, Lynch CD, Sonntag WE, Riddle DR. Intracerebroventricular infusion of insulin-like growth factor-I ameliorates the age-related decline in hippocampal neurogenesis. Neuroscience. 2001;107(4):603–13.

    Article  CAS  PubMed  Google Scholar 

  98. Yoshimura S, Takagi Y, Harada J, Teramoto T, Thomas SS, Waeber C, et al. FGF-2 regulation of neurogenesis in adult hippocampus after brain injury. Proc Natl Acad Sci U S A. 2001;98(10):5874–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Yoshimura S, Teramoto T, Whalen MJ, Irizarry MC, Takagi Y, Qiu J, et al. FGF-2 regulates neurogenesis and degeneration in the dentate gyrus after traumatic brain injury in mice. J Clin Invest. 2003;112(8):1202–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Hagihara H, Hara M, Tsunekawa K, Nakagawa Y, Sawada M, Nakano K. Tonic-clonic seizures induce division of neuronal progenitor cells with concomitant changes in expression of neurotrophic factors in the brain of pilocarpine-treated mice. Brain Res Mol Brain Res. 2005;139(2):258–66.

    Article  CAS  PubMed  Google Scholar 

  101. Rai KS, Hattiangady B, Shetty AK. Enhanced production and dendritic growth of new dentate granule cells in the middle-aged hippocampus following intracerebroventricular FGF-2 infusions. Eur J Neurosci. 2007;26(7):1765–79.

    Article  PubMed  Google Scholar 

  102. Radley JJ, Jacobs BL. 5-HT1A receptor antagonist administration decreases cell proliferation in the dentate gyrus. Brain Res. 2002;955(1–2):264–7.

    Article  CAS  PubMed  Google Scholar 

  103. Gould E. Serotonin and hippocampal neurogenesis. Neuropsychopharmacology. 1999;21(2 Suppl):46S–51.

    Article  CAS  PubMed  Google Scholar 

  104. Scharfman H, Goodman J, Macleod A, Phani S, Antonelli C, Croll S. Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp Neurol. 2005;192(2):348–56.

    Article  CAS  PubMed  Google Scholar 

  105. Pirttila TJ, Lukasiuk K, Hakansson K, Grubb A, Abrahamson M, Pitkanen A. Cystatin C modulates neurodegeneration and neurogenesis following status epilepticus in mouse. Neurobiol Dis. 2005;20(2):241–53.

    Article  PubMed  CAS  Google Scholar 

  106. Pirttila TJ, Manninen A, Jutila L, Nissinen J, Kalviainen R, Vapalahti M, et al. Cystatin C expression is associated with granule cell dispersion in epilepsy. Ann Neurol. 2005;58(2):211–23.

    Article  CAS  PubMed  Google Scholar 

  107. Radley JJ, Jacobs BL. Pilocarpine-induced status epilepticus increases cell proliferation in the dentate gyrus of adult rats via a 5-HT1A receptor-dependent mechanism. Brain Res. 2003;966(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  108. Mazarati A, Lu X, Kilk K, Langel U, Wasterlain C, Bartfai T. Galanin type 2 receptors regulate neuronal survival, susceptibility to seizures and seizure-induced neurogenesis in the dentate gyrus. Eur J Neurosci. 2004;19(12):3235–44.

    Article  PubMed  Google Scholar 

  109. Young SZ, Taylor MM, Bordey A. Neurotransmitters couple brain activity to subventricular zone neurogenesis. Eur J Neurosci. 2011;33(6):1123–32.

    Article  PubMed Central  PubMed  Google Scholar 

  110. Crespel A, Coubes P, Rousset MC, Alonso G, Bockaert J, Baldy-Moulinier M, et al. Immature-like astrocytes are associated with dentate granule cell migration in human temporal lobe epilepsy. Neurosci Lett. 2002;330(1):114–8.

    Article  CAS  PubMed  Google Scholar 

  111. Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O. Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci U S A. 2003;100(23):13632–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Monje ML, Palmer T. Radiation injury and neurogenesis. Curr Opin Neurol. 2003;16(2):129–34.

    Article  PubMed  Google Scholar 

  113. Bonde S, Ekdahl CT, Lindvall O. Long-term neuronal replacement in adult rat hippocampus after status epilepticus despite chronic inflammation. Eur J Neurosci. 2006;23(4):965–74.

    Article  PubMed  Google Scholar 

  114. Shetty AK, Zaman V, Shetty GA. Hippocampal neurotrophin levels in a kainate model of temporal lobe epilepsy: a lack of correlation between brain-derived neurotrophic factor content and progression of aberrant dentate mossy fiber sprouting. J Neurochem. 2003;87(1):147–59.

    Article  CAS  PubMed  Google Scholar 

  115. Chen Y, Ai Y, Slevin JR, Maley BE, Gash DM. Progenitor proliferation in the adult hippocampus and substantia nigra induced by glial cell line-derived neurotrophic factor. Exp Neurol. 2005;196(1):87–95.

    Article  CAS  PubMed  Google Scholar 

  116. Kobayashi T, Ahlenius H, Thored P, Kobayashi R, Kokaia Z, Lindvall O. Intracerebral infusion of glial cell line-derived neurotrophic factor promotes striatal neurogenesis after stroke in adult rats. Stroke. 2006;37(9):2361–7.

    Article  CAS  PubMed  Google Scholar 

  117. Kanter-Schlifke I, Georgievska B, Kirik D, Kokaia M. Seizure suppression by GDNF gene therapy in animal models of epilepsy. Mol Ther. 2007;15(6):1106–13.

    CAS  PubMed  Google Scholar 

  118. Busceti CL, Biagioni F, Aronica E, Riozzi B, Storto M, Battaglia G, et al. Induction of the Wnt inhibitor, Dickkopf-1, is associated with neurodegeneration related to temporal lobe epilepsy. Epilepsia. 2007;48(4):694–705.

    Article  CAS  PubMed  Google Scholar 

  119. Yin J, Ma Y, Yin Q, Xu H, An N, Liu S, et al. Involvement of over-expressed BMP4 in pentylenetetrazol kindling-induced cell proliferation in the dentate gyrus of adult rats. Biochem Biophys Res Commun. 2007;355(1):54–60.

    Article  CAS  PubMed  Google Scholar 

  120. Shu Y, Xiao B, Wu Q, Liu T, Du Y, Tang H, et al. The Ephrin-A5/EphA4 interaction modulates neurogenesis and angiogenesis by the p-Akt and p-ERK pathways in a mouse model of TLE. Mol Neurobiol. 2014.

  121. Raol YH, Lund IV, Bandyopadhyay S, Zhang G, Roberts DS, Wolfe JH, et al. Enhancing GABA(A) receptor alpha 1 subunit levels in hippocampal dentate gyrus inhibits epilepsy development in an animal model of temporal lobe epilepsy. J Neurosci. 2006;26(44):11342–6.

    Article  CAS  PubMed  Google Scholar 

  122. Goffin K, Nissinen J, Van Laere K, Pitkanen A. Cyclicity of spontaneous recurrent seizures in pilocarpine model of temporal lobe epilepsy in rat. Exp Neurol. 2007;205(2):501–5.

    Article  CAS  PubMed  Google Scholar 

  123. Jung S, Jones TD, Lugo Jr JN, Sheerin AH, Miller JW, D’Ambrosio R, et al. Progressive dendritic HCN channelopathy during epileptogenesis in the rat pilocarpine model of epilepsy. J Neurosci. 2007;27(47):13012–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Bumanglag AV, Sloviter RS. Minimal latency to hippocampal epileptogenesis and clinical epilepsy after perforant pathway stimulation-induced status epilepticus in awake rats. J Comp Neurol. 2008;510(6):561–80.

    Article  PubMed Central  PubMed  Google Scholar 

  125. Liwnicz BH, Leach JL, Yeh HS, Privitera M. Pericyte degeneration and thickening of basement membranes of cerebral microvessels in complex partial seizures: electron microscopic study of surgically removed tissue. Neurosurgery. 1990;26(3):409–20.

    Article  CAS  PubMed  Google Scholar 

  126. Jiang FL, Tang YC, Chia SC, Jay TM, Tang FR. Anticonvulsive effect of a selective mGluR8 agonist (S)-3,4-dicarboxyphenylglycine (S-3,4-DCPG) in the mouse pilocarpine model of status epilepticus. Epilepsia. 2007;48(4):783–92.

    Article  CAS  PubMed  Google Scholar 

  127. Sloviter RS. Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. Science. 1987;235(4784):73–6.

    Article  CAS  PubMed  Google Scholar 

  128. Liu S, Wang J, Zhu D, Fu Y, Lukowiak K, Lu YM. Generation of functional inhibitory neurons in the adult rat hippocampus. J Neurosci. 2003;23(3):732–6.

    PubMed  Google Scholar 

  129. Freund TF, Buzsaki G. Interneurons of the hippocampus. Hippocampus. 1996;6(4):347–470.

    Article  CAS  PubMed  Google Scholar 

  130. Kobayashi M, Buckmaster PS. Reduced inhibition of dentate granule cells in a model of temporal lobe epilepsy. J Neurosci. 2003;23(6):2440–52.

    CAS  PubMed  Google Scholar 

  131. Morimoto K, Fahnestock M, Racine RJ. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol. 2004;73(1):1–60.

    Article  CAS  PubMed  Google Scholar 

  132. Shetty AK, Turner DA. Glutamic acid decarboxylase-67-positive hippocampal interneurons undergo a permanent reduction in number following kainic acid-induced degeneration of CA3 pyramidal neurons. Exp Neurol. 2001;169(2):276–97.

    Article  CAS  PubMed  Google Scholar 

  133. Kempermann G, Wiskott L, Gage FH. Functional significance of adult neurogenesis. Curr Opin Neurobiol. 2004;14(2):186–91.

    Article  CAS  PubMed  Google Scholar 

  134. Markakis EA, Gage FH. Adult-generated neurons in the dentate gyrus send axonal projections to field CA3 and are surrounded by synaptic vesicles. J Comp Neurol. 1999;406(4):449–60.

    Article  CAS  PubMed  Google Scholar 

  135. Stanfield BB, Trice JE. Evidence that granule cells generated in the dentate gyrus of adult rats extend axonal projections. Exp Brain Res. 1988;72(2):399–406.

    Article  CAS  PubMed  Google Scholar 

  136. Carlen M, Cassidy RM, Brismar H, Smith GA, Enquist LW, Frisen J. Functional integration of adult-born neurons. Curr Biol. 2002;12(7):606–8.

    Article  CAS  PubMed  Google Scholar 

  137. Jessberger S, Kempermann G. Adult-born hippocampal neurons mature into activity-dependent responsiveness. Eur J Neurosci. 2003;18(10):2707–12.

    Article  PubMed  Google Scholar 

  138. Dayer AG, Ford AA, Cleaver KM, Yassaee M, Cameron HA. Short-term and long-term survival of new neurons in the rat dentate gyrus. J Comp Neurol. 2003;460(4):563–72.

    Article  PubMed  Google Scholar 

  139. Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E. Neurogenesis in the adult is involved in the formation of trace memories. Nature. 2001;410(6826):372–6.

    Article  CAS  PubMed  Google Scholar 

  140. Dodrill CB, Wilensky AJ. Intellectual impairment as an outcome of status epilepticus. Neurology. 1990;40(5 Suppl 2):23–7.

    CAS  PubMed  Google Scholar 

  141. Breier JI, Fletcher JM, Wheless JW, Clark A, Cass J, Constantinou JE. Profiles of cognitive performance associated with reading disability in temporal lobe epilepsy. J Clin Exp Neuropsychol. 2000;22(6):804–16.

    Article  CAS  PubMed  Google Scholar 

  142. Lassonde M, Sauerwein HC, Jambaque I, Smith ML, Helmstaedter C. Neuropsychology of childhood epilepsy: pre- and postsurgical assessment. Epileptic Disord. 2000;2(1):3–13.

    CAS  PubMed  Google Scholar 

  143. Dupont S, Samson Y, Van de Moortele PF, Samson S, Poline JB, Adam C, et al. Delayed verbal memory retrieval: a functional MRI study in epileptic patients with structural lesions of the left medial temporal lobe. Neuroimage. 2001;14(5):995–1003.

    Article  CAS  PubMed  Google Scholar 

  144. Giovagnoli AR. Relation of sorting impairment to hippocampal damage in temporal lobe epilepsy. Neuropsychologia. 2001;39(2):140–50.

    Article  CAS  PubMed  Google Scholar 

  145. Gleissner U, Helmstaedter C, Elger CE. Memory reorganization in adult brain: observations in three patients with temporal lobe epilepsy. Epilepsy Res. 2002;48(3):229–34.

    Article  PubMed  Google Scholar 

  146. Helmstaedter C, Reuber M, Elger CC. Interaction of cognitive aging and memory deficits related to epilepsy surgery. Ann Neurol. 2002;52(1):89–94.

    Article  PubMed  Google Scholar 

  147. Hermann BP, Seidenberg M, Bell B. The neurodevelopmental impact of childhood onset temporal lobe epilepsy on brain structure and function and the risk of progressive cognitive effects. Prog Brain Res. 2002;135:429–38.

    Article  PubMed  Google Scholar 

  148. Martin P, Maestu F, Sola RG. Effects of surgical treatment on intellectual performance and memory in a Spanish sample of drug-resistant partial onset-temporal lobe epilepsy patients. Seizure. 2002;11(3):151–6.

    Article  PubMed  Google Scholar 

  149. Genkova-Papazova MG, Lazarova-Bakarova MB. Pentylenetetrazole kindling impairs long-term memory in rats. Eur Neuropsychopharmacol. 1995;5(1):53–6.

    Article  CAS  PubMed  Google Scholar 

  150. Rice AC, Floyd CL, Lyeth BG, Hamm RJ, DeLorenzo RJ. Status epilepticus causes long-term NMDA receptor-dependent behavioral changes and cognitive deficits. Epilepsia. 1998;39(11):1148–57.

    Article  CAS  PubMed  Google Scholar 

  151. Sutula TP, Hermann B. Progression in mesial temporal lobe epilepsy. Ann Neurol. 1999;45(5):553–6.

    Article  CAS  PubMed  Google Scholar 

  152. Hort J, Brozek G, Komarek V, Langmeier M, Mares P. Interstrain differences in cognitive functions in rats in relation to status epilepticus. Behav Brain Res. 2000;112(1–2):77–83.

    Article  CAS  PubMed  Google Scholar 

  153. Hannesson DK, Mohapel P, Corcoran ME. Dorsal hippocampal kindling selectively impairs spatial learning/short-term memory. Hippocampus. 2001;11(3):275–86.

    Article  CAS  PubMed  Google Scholar 

  154. Wu CL, Huang LT, Liou CW, Wang TJ, Tung YR, Hsu HY, et al. Lithium-pilocarpine-induced status epilepticus in immature rats result in long-term deficits in spatial learning and hippocampal cell loss. Neurosci Lett. 2001;312(2):113–7.

    Article  CAS  PubMed  Google Scholar 

  155. Sogawa Y, Monokoshi M, Silveira DC, Cha BH, Cilio MR, McCabe BK, et al. Timing of cognitive deficits following neonatal seizures: relationship to histological changes in the hippocampus. Brain Res Dev Brain Res. 2001;131(1–2):73–83.

    Article  CAS  PubMed  Google Scholar 

  156. Rutten A, van Albada M, Silveira DC, Cha BH, Liu X, Hu YN, et al. Memory impairment following status epilepticus in immature rats: time-course and environmental effects. Eur J Neurosci. 2002;16(3):501–13.

    Article  PubMed  Google Scholar 

  157. Kubova H, Mares P, Suchomelova L, Brozek G, Druga R, Pitkanen A. Status epilepticus in immature rats leads to behavioural and cognitive impairment and epileptogenesis. Eur J Neurosci. 2004;19(12):3255–65.

    Article  PubMed  Google Scholar 

  158. Kinoshameg SE, Persinger MA. Working memory and reference memory in adult rats following limbic seizures induced at 21 or 90 days of age. Psychol Rep. 2002;91(3 Pt 1):729–30.

    Article  CAS  PubMed  Google Scholar 

  159. Alessio A, Damasceno BP, Camargo CH, Kobayashi E, Guerreiro CA, Cendes F. Differences in memory performance and other clinical characteristics in patients with mesial temporal lobe epilepsy with and without hippocampal atrophy. Epilepsy Behav. 2004;5(1):22–7.

    Article  CAS  PubMed  Google Scholar 

  160. Brown-Croyts LM, Caton PW, Radecki DT, McPherson SL. Phenobarbital pre-treatment prevents kainic acid-induced impairments in acquisition learning. Life Sci. 2000;67(6):643–50.

    Article  CAS  PubMed  Google Scholar 

  161. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science. 2003;301(5634):805–9.

    Article  CAS  PubMed  Google Scholar 

  162. Tang FR. Pan-brain neural network in epilepsy. Research Signpost. ISBN:978-81-308-0318-0. 2009.

  163. Engel Jr J, Thompson PM, Stern JM, Staba RJ, Bragin A, Mody I. Connectomics and epilepsy. Curr Opin Neurol. 2013;26(2):186–94. Engel et al. assumed that an understanding of the fundamental mechanisms underlying the development of epilepsy and the generation of epileptic seizures will require delineation of the aberrant functional and structural connections of the whole brain.

  164. Song H, Stevens CF, Gage FH. Astroglia induce neurogenesis from adult neural stem cells. Nature. 2002;417(6884):39–44.

    Article  CAS  PubMed  Google Scholar 

  165. Gonzalez-Perez O, Quinones-Hinojosa A. Astrocytes as neural stem cells in the adult brain. J Stem Cells. 2012;7(3):181–8.

    PubMed Central  PubMed  Google Scholar 

  166. Staley K. Neuroscience. Epileptic neurons go wireless. Science. 2004;305(5683):482–3.

    Article  CAS  PubMed  Google Scholar 

  167. Wang N, Mi X, Gao B, Gu J, Wang W, Zhang Y, et al. Minocycline inhibits brain inflammation and attenuates spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neuroscience. 2015;287:144–56. Wang et al. showed that pro-inflammatory cytokines and chemokine played important roles in epileptogenesis as inhibition of brain inflammation could attenuate spontaneously recurrent seizures. Brain inflammation inhibits neurogenesis; it is possible that inflammation-induced decreased neurogenesis may also be involved in epileptogenesis. In other words, inhibition of brain inflammation may increase neurogenesis which in turn attenuates spontaneously recurrent seizures.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo-Xu Ren or Feng-Ru Tang.

Ethics declarations

Conflict of Interest

Qin Zhong, Bo-Xu Ren, and Feng-Ru Tang each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Epilepsy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Q., Ren, BX. & Tang, FR. Neurogenesis in the Hippocampus of Patients with Temporal Lobe Epilepsy. Curr Neurol Neurosci Rep 16, 20 (2016). https://doi.org/10.1007/s11910-015-0616-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-015-0616-3

Keywords

Navigation