Skip to main content

Advertisement

Log in

Autoimmune Encephalitis and Its Relation to Infection

  • Infection (ML Solbrig, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Encephalitis, an inflammatory condition of the brain that results in substantial morbidity and mortality, has numerous causes. Over the past decade, it has become increasingly recognized that autoimmune conditions contribute significantly to the spectrum of encephalitis causes. Clinical suspicion and early diagnosis of autoimmune etiologies are of particular importance due to the need for early institution of immune suppressive therapies to improve outcome. Emerging clinical observations suggest that the most commonly recognized cause of antibody-mediated autoimmune encephalitis, anti-N-methyl-d-aspartate (NMDA) receptor encephalitis, may in some cases be triggered by herpes virus infection. Other conditions such as Rasmussen’s encephalitis (RE) and febrile infection-related epilepsy syndrome (FIRES) have also been posited to be autoimmune conditions triggered by infectious agents. This review focuses on emerging concepts in central nervous system autoimmunity and addresses clinical and mechanistic findings linking autoimmune encephalitis and infections. Particular consideration will be given to anti-NMDA receptor encephalitis and its relation to herpes simplex encephalitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Tunkel AR, Glaser CA, Bloch KC, Sejvar JJ, Marra CM, Roos KL, et al. The management of encephalitis: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis. 2008;47:303–27.

    Article  CAS  PubMed  Google Scholar 

  2. Venkatesan A, Tunkel AR, Bloch KC, Lauring AS, Sejvar J, Bitnun A, et al. Case definitions, diagnostic algorithms, and priorities in encephalitis: consensus statement of the international encephalitis consortium. Clin Infect Dis. 2013;57:1114–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Sejvar JJ, Kohl KS, Bilynsky R, Blumberg D, Cvetkovich T, Galama J, et al. Encephalitis, myelitis, and acute disseminated encephalomyelitis (ADEM): case definitions and guidelines for collection, analysis, and presentation of immunization safety data. Vaccine. 2007;25:5771–92.

    Article  CAS  PubMed  Google Scholar 

  4. Granerod J, Ambrose HE, Davies NW, Clewley JP, Walsh AL, Morgan D, et al. Causes of encephalitis and differences in their clinical presentations in England: a multicentre, population-based prospective study. Lancet Infect Dis. 2010;10:835–44.

    Article  PubMed  Google Scholar 

  5. Kolski H, Ford-Jones EL, Richardson S, Petric M, Nelson S, Jamieson F, et al. Etiology of acute childhood encephalitis at The Hospital for Sick Children, Toronto, 1994-1995. Clin Infect Dis. 1998;26:398–409.

    Article  CAS  PubMed  Google Scholar 

  6. Ball R, Halsey N, Braun MM, Moulton LH, Gale AD, Rammohan K, et al. Development of case definitions for acute encephalopathy, encephalitis, and multiple sclerosis reports to the vaccine: Adverse Event Reporting System. J Clin Epidemiol. 2002;55:819–24.

    Article  PubMed  Google Scholar 

  7. Mailles A, Stahl JP. Infectious encephalitis in France in 2007: a national prospective study. Clin Infect Dis. 2009;49:1838–47.

    Article  PubMed  Google Scholar 

  8. Granerod J, Cousens S, Davies NW, Crowcroft NS, Thomas SL. New estimates of incidence of encephalitis in England. In: Emerg Infect Dis [Internet]. Edited by; 2013;19(9). http://dx.doi.org/10.3201/eid1909.130064.

  9. George BP, Schneider EB, Venkatesan A. Encephalitis hospitalization rates and inpatient mortality in the United States, 2000-2010. PLoS One. 2014;9:e104169.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Glaser CA, Honarmand S, Anderson LJ, Schnurr DP, Forghani B, Cossen CK, et al. Beyond viruses: clinical profiles and etiologies associated with encephalitis. Clin Infect Dis. 2006;43:1565–77.

    Article  CAS  PubMed  Google Scholar 

  11. Mailles A, Stahl JP, Group SCaI. Infectious encephalitis in France in 2007: a national prospective study. Clin Infect Dis. 2009;49:1838–47.

    Article  PubMed  Google Scholar 

  12. Graus F, Dalmau J. Paraneoplastic neurological syndromes. Curr Opin Neurol. 2012;25:795–801.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Irani SR, Gelfand JM, Al-Diwani A, Vincent A. Cell-surface central nervous system autoantibodies: clinical relevance and emerging paradigms. Ann Neurol. 2014;76:168–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Thakur KT, Motta M, Asemota AO, Kirsch HL, Benavides DR, Schneider EB, et al. Predictors of outcome in acute encephalitis. Neurology. 2013;81:793–800.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Titulaer MJ, McCracken L, Gabilondo I, Armangué T, Glaser C, Iizuka T, et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol. 2013;12:157–65. A large observational study of 577 patients, including 211 pediatric patients, with anti-NMDAR antibodies provides data on response to therapy, longitudinal outcomes, and prognostic factors.

  16. Venkatesan A, Geocadin RG. Diagnosis and management of acute encephalitis: a practical approach. Neurol Clin Pract. 2014;4:206–15.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Miller FW, Pollard KM, Parks CG, Germolec DR, Leung PS, Selmi C, et al. Criteria for environmentally associated autoimmune diseases. J Autoimmun. 2012;39:253–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Atassi MZ, Casali P. Molecular mechanisms of autoimmunity. Autoimmunity. 2008;41:123–32.

    Article  CAS  PubMed  Google Scholar 

  19. Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol. 2012;12:623–35.

    Article  CAS  PubMed  Google Scholar 

  20. Kapadia M, Sakic B. Autoimmune and inflammatory mechanisms of CNS damage. Prog Neurobiol. 2011;95:301–33.

    Article  CAS  PubMed  Google Scholar 

  21. Venkatesan A, Johnson RT. Infections and multiple sclerosis. Handb Clin Neurol. 2014;122:151–71.

    Article  PubMed  Google Scholar 

  22. Fujinami RS, von Herrath MG, Christen U, Whitton JL. Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clin Microbiol Rev. 2006;19:80–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Coutinho A, Kazatchkine MD, Avrameas S. Natural autoantibodies. Curr Opin Immunol. 1995;7:812–8.

    Article  CAS  PubMed  Google Scholar 

  24. Alves-Leon SV, Veluttini-Pimentel ML, Gouveia ME, Malfetano FR, Gaspareto EL, Alvarenga MP, et al. Acute disseminated encephalomyelitis: clinical features, HLA DRB1*1501, HLA DRB1*1503, HLA DQA1*0102, HLA DQB1*0602, and HLA DPA1*0301 allelic association study. Arq Neuropsiquiatr. 2009;67:643–51.

    Article  PubMed  Google Scholar 

  25. Shwetank, Date OS, Kim KS, Manjunath R. Infection of human endothelial cells by Japanese encephalitis virus: increased expression and release of soluble HLA-E. PLoS One. 2013;8(11):e79197.

  26. Clarke P, Leser JS, Bowen RA, Tyler KL. Virus-induced transcriptional changes in the brain include the differential expression of genes associated with interferon, apoptosis, interleukin 17 receptor A, and glutamate signaling as well as flavivirus-specific upregulation of tRNA synthetases. MBio. 2014;5:e00902–14.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Gregersen PK, Behrens TW. Genetics of autoimmune diseases—disorders of immune homeostasis. Nat Rev Genet. 2006;7:917–28.

    Article  CAS  PubMed  Google Scholar 

  28. de Aquino MT, Kapil P, Hinton DR, Phares TW, Puntambekar SS, Savarin C, et al. IL-27 limits central nervous system viral clearance by promoting IL-10 and enhances demyelination. J Immunol. 2014;193:285–94.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Cervantes-Barragán L, Firner S, Bechmann I, Waisman A, Lahl K, Sparwasser T, et al. Regulatory T cells selectively preserve immune privilege of self-antigens during viral central nervous system infection. J Immunol. 2012;188:3678–85.

    Article  PubMed  Google Scholar 

  30. Dalmau J, Lancaster E, Martinez-Hernandez E, Rosenfeld MR, Balice-Gordon R. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol. 2011;10:63–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Florance NR, Davis RL, Lam C, Szperka C, Zhou L, Ahmad S, et al. Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis in children and adolescents. Ann Neurol. 2009;66:11–8.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Iizuka T, Sakai F, Ide T, Monzen T, Yoshii S, Iigaya M, et al. Anti-NMDA receptor encephalitis in Japan: long-term outcome without tumor removal. Neurology. 2008;70:504–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Irani SR, Bera K, Waters P, Zuliani L, Maxwell S, Zandi MS, et al. N-methyl-d-aspartate antibody encephalitis: temporal progression of clinical and paraclinical observations in a predominantly non-paraneoplastic disorder of both sexes. Brain. 2010;133:1655–67.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Gable MS, Gavali S, Radner A, Tilley DH, Lee B, Dyner L, et al. Anti-NMDA receptor encephalitis: report of ten cases and comparison with viral encephalitis. Eur J Clin Microbiol Infect Dis. 2009;28:1421–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Prüss H, Finke C, Höltje M, Hofmann J, Klingbeil C, Probst C, et al. N-methyl-d-aspartate receptor antibodies in herpes simplex encephalitis. Ann Neurol. 2012;72:902–11. This is the first report of anti-NMDAR antibodies in patients with herpes simplex encephalitis with retrospective analysis of 44 patients with proven HSE, 13 of which were found to have anti-NMDAR in the course of HSE.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Leypoldt F, Titulaer MJ, Aguilar E, Walther J, Bönstrup M, Havemeister S, et al. Herpes simplex virus-1 encephalitis can trigger anti-NMDA receptor encephalitis: case report. Neurology. 2013;81:1637–9.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Desena A, Graves D, Warnack W, Greenberg BM. Herpes simplex encephalitis as a potential cause of anti-N-methyl-d-aspartate receptor antibody encephalitis: report of 2 cases. JAMA Neurol. 2014;71:344–6.

    Article  PubMed  Google Scholar 

  38. Wickström R, Fowler A, Cooray G, Karlsson-Parra A, Grillner P. Viral triggering of anti-NMDA receptor encephalitis in a child—an important cause for disease relapse. Eur J Paediatr Neurol. 2014;18:543–6.

    Article  PubMed  Google Scholar 

  39. Mohammad SS, Sinclair K, Pillai S, Merheb V, Aumann TD, Gill D, et al. Herpes simplex encephalitis relapse with chorea is associated with autoantibodies to N-methyl-d-aspartate receptor or dopamine-2 receptor. Mov Disord. 2014;29:117–22.

    Article  CAS  PubMed  Google Scholar 

  40. Bektaş O, Tanyel T, Kocabaş BA, Fitöz S, Ince E, Deda G. Anti-N-methyl-d-aspartate receptor encephalitis that developed after herpes encephalitis: a case report and literature review. Neuropediatrics. 2014;45(6):396–401.

  41. Hacohen Y, Deiva K, Pettingill P, Waters P, Siddiqui A, Chretien P, et al. N-methyl-d-aspartate receptor antibodies in post-herpes simplex virus encephalitis neurological relapse. Mov Disord. 2014;29:90–6.

    Article  CAS  PubMed  Google Scholar 

  42. Armangue T, Titulaer MJ, Málaga I, Bataller L, Gabilondo I, Graus F, Dalmau J, Group SA-N-m-D-ARNEW: pediatric anti-N-methyl-d-aspartate receptor encephalitis-clinical analysis and novel findings in a series of 20 patients. J Pediatr. 2013;162:850–856:e852.

  43. Armangue T, Leypoldt F, Málaga I, Raspall-Chaure M, Marti I, Nichter C, et al. Herpes simplex virus encephalitis is a trigger of brain autoimmunity. Ann Neurol. 2014;75:317–23. This series of patients with “relapsing post-HSE” and well-characterized serum and CSF contributes to our understanding of the timing and nature of the interaction between HSE, NMDAR antibodies, and a post-HSE immune syndrome.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Dalmau J, Gleichman AJ, Hughes EG, Rossi JE, Peng X, Lai M, et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol. 2008;7:1091–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Gleichman AJ, Spruce LA, Dalmau J, Seeholzer SH, Lynch DR. Anti-NMDA receptor encephalitis antibody binding is dependent on amino acid identity of a small region within the GluN1 amino terminal domain. J Neurosci. 2012;32:11082–94. The N368/G369 region of GluN1 is identified as crucial for anti-NMDAR antibody immunoreactivity, and it is shown that antibody binding alters receptor function by increasing open channel time.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Planagumà J, Leypoldt F, Mannara F, Gutiérrez-Cuesta J, Martín-García E, Aguilar E, Titulaer MJ, Petit-Pedrol M, Jain A, Balice-Gordon R,Lakadamyali M, Graus F, Maldonado R, Dalmau J. Human N-methyl-d-aspartate receptor antibodies alter memory and behaviour in mice. Brain. 2015;138(Pt 1):94–109.

  47. Hughes EG, Peng X, Gleichman AJ, Lai M, Zhou L, Tsou R, et al. Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis. J Neurosci. 2010;30:5866–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Moscato EH, Peng X, Jain A, Parsons TD, Dalmau J, Balice-Gordon RJ. Acute mechanisms underlying antibody effects in anti-N-methyl-d-aspartate receptor encephalitis. Ann Neurol. 2014;76:108–19. Using dissociated neuronal culture, the authors provide biochemical and electrophysiological evidence of antibody-mediated downregulation of surface NMDARs independent of NMDAR activity, and show evidence of homeostatic synaptic plasticity mechanisms with a decrease in inhibitory synapse density onto excitatory hippocampal neurons.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Mikasova L, De Rossi P, Bouchet D, Georges F, Rogemond V, Didelot A, et al. Disrupted surface cross-talk between NMDA and Ephrin-B2 receptors in anti-NMDA encephalitis. Brain. 2012;135:1606–21. High-resolution nanoparticle imaging and live imaging is used to shed light on cellular and molecular mechanisms of anti-NMDAR autoantibody pathogenic mechanisms, implicating dysfunction of NMDAR-EphB2R interactions in the trafficking abnormalities of synaptic and extrasynaptic NMDAR.

  50. Leypoldt F, Armangue T, Dalmau J. Autoimmune encephalopathies. Ann N Y Acad Sci. 2014;1–21.

  51. Armangue T, Titulaer MJ, Sabater L, Pardo-Moreno J, Gresa-Arribas N, Barbero-Bordallo N, et al. A novel treatment-responsive encephalitis with frequent opsoclonus and teratoma. Ann Neurol. 2014;75:435–41.

    Article  PubMed  Google Scholar 

  52. Panzer JA, Gleichman AJ, Lynch DR. Glutamatergic autoencephalitides: an emerging field. J Neural Transm. 2014;121:957–68.

    Article  CAS  PubMed  Google Scholar 

  53. Bien CG, Granata T, Antozzi C, Cross JH, Dulac O, Kurthen M, et al. Pathogenesis, diagnosis and treatment of Rasmussen encephalitis: a European consensus statement. Brain. 2005;128:454–71.

    Article  CAS  PubMed  Google Scholar 

  54. Varadkar S, Bien CG, Kruse CA, Jensen FE, Bauer J, Pardo CA, et al. Rasmussen’s encephalitis: clinical features, pathobiology, and treatment advances. Lancet Neurol. 2014;13:195–205.

    Article  PubMed Central  PubMed  Google Scholar 

  55. RASMUSSEN T, OLSZEWSKI J, LLOYDSMITH D. Focal seizures due to chronic localized encephalitis. Neurology. 1958;8:435–45.

    Article  CAS  PubMed  Google Scholar 

  56. Rogers SW, Andrews PI, Gahring LC, Whisenand T, Cauley K, Crain B, et al. Autoantibodies to glutamate receptor GluR3 in Rasmussen’s encephalitis. Science. 1994;265:648–51.

    Article  CAS  PubMed  Google Scholar 

  57. Wiendl H, Bien CG, Bernasconi P, Fleckenstein B, Elger CE, Dichgans J, et al. GluR3 antibodies: prevalence in focal epilepsy but no specificity for Rasmussen’s encephalitis. Neurology. 2001;57:1511–4.

    Article  CAS  PubMed  Google Scholar 

  58. Mantegazza R, Bernasconi P, Baggi F, Spreafico R, Ragona F, Antozzi C, et al. Antibodies against GluR3 peptides are not specific for Rasmussen’s encephalitis but are also present in epilepsy patients with severe, early onset disease and intractable seizures. J Neuroimmunol. 2002;131:179–85.

    Article  CAS  PubMed  Google Scholar 

  59. Watson R, Jiang Y, Bermudez I, Houlihan L, Clover L, McKnight K, et al. Absence of antibodies to glutamate receptor type 3 (GluR3) in Rasmussen encephalitis. Neurology. 2004;63:43–50.

    Article  CAS  PubMed  Google Scholar 

  60. Watson R, Jepson JE, Bermudez I, Alexander S, Hart Y, McKnight K, et al. Alpha7-acetylcholine receptor antibodies in two patients with Rasmussen encephalitis. Neurology. 2005;65:1802–4.

    Article  CAS  PubMed  Google Scholar 

  61. Yang R, Puranam RS, Butler LS, Qian WH, He XP, Moyer MB, et al. Autoimmunity to munc-18 in Rasmussen’s encephalitis. Neuron. 2000;28:375–83.

    Article  CAS  PubMed  Google Scholar 

  62. Bien CG, Bauer J, Deckwerth TL, Wiendl H, Deckert M, Wiestler OD, et al. Destruction of neurons by cytotoxic T cells: a new pathogenic mechanism in Rasmussen’s encephalitis. Ann Neurol. 2002;51:311–8.

    Article  CAS  PubMed  Google Scholar 

  63. Schwab N, Bien CG, Waschbisch A, Becker A, Vince GH, Dornmair K, et al. CD8+ T-cell clones dominate brain infiltrates in Rasmussen encephalitis and persist in the periphery. Brain. 2009;132:1236–46.

    Article  PubMed  Google Scholar 

  64. Owens GC, Huynh MN, Chang JW, McArthur DL, Hickey MJ, Vinters HV, et al. Differential expression of interferon-γ and chemokine genes distinguishes Rasmussen encephalitis from cortical dysplasia and provides evidence for an early Th1 immune response. J Neuroinflammation. 2013;10:56. Brain tissue from patients with RE subjected to quantitative PCR was found to express high levels of Th1-associated genes in the early symptomatic phase of disease, suggesting a role for the Th1 immune response in the pathogenesis of RE.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Friedman H, Ch'ien L, Parham D. Virus in brain of child with hemiplegia, hemiconvulsions, and epilepsy. Lancet. 1977;2:666.

    Article  CAS  PubMed  Google Scholar 

  66. Jay V, Becker LE, Otsubo H, Cortez M, Hwang P, Hoffman HJ, et al. Chronic encephalitis and epilepsy (Rasmussen’s encephalitis): detection of cytomegalovirus and herpes simplex virus 1 by the polymerase chain reaction and in situ hybridization. Neurology. 1995;45:108–17.

    Article  CAS  PubMed  Google Scholar 

  67. Power C, Poland SD, Blume WT, Girvin JP, Rice GP. Cytomegalovirus and Rasmussen’s encephalitis. Lancet. 1990;336:1282–4.

    Article  CAS  PubMed  Google Scholar 

  68. Walter GF, Renella RR. Epstein-Barr virus in brain and Rasmussen’s encephalitis. Lancet. 1989;1:279–80.

    Article  CAS  PubMed  Google Scholar 

  69. Vinters HV, Wang R, Wiley CA. Herpesviruses in chronic encephalitis associated with intractable childhood epilepsy. Hum Pathol. 1993;24:871–9.

    Article  CAS  PubMed  Google Scholar 

  70. Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH, van Emde Boas W, et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia. 2010;51(4):676–85.

  71. van Baalen A, Häusler M, Boor R, Rohr A, Sperner J, Kurlemann G, et al. Febrile infection-related epilepsy syndrome (FIRES): a nonencephalitic encephalopathy in childhood. Epilepsia. 2010;51:1323–8.

    Article  PubMed  Google Scholar 

  72. Kramer U, Chi CS, Lin KL, Specchio N, Sahin M, Olson H, et al. Febrile infection-related epilepsy syndrome (FIRES): pathogenesis, treatment, and outcome: a multicenter study on 77 children. Epilepsia. 2011;52:1956–65. This retrospective multicenter study identified the largest group of children to date who fit criteria for FIRES. The clinical presentations, results of serologic and CSF testing, and neuroimaging results are comprehensively presented.

    Article  PubMed  Google Scholar 

  73. Illingworth MA, Hanrahan D, Anderson CE, O'Kane K, Anderson J, Casey M, et al. Elevated VGKC-complex antibodies in a boy with fever-induced refractory epileptic encephalopathy in school-age children (FIRES). Dev Med Child Neurol. 2011;53:1053–7.

    Article  PubMed  Google Scholar 

  74. van Baalen A, Häusler M, Plecko-Startinig B, Strautmanis J, Vlaho S, Gebhardt B, et al. Febrile infection-related epilepsy syndrome without detectable autoantibodies and response to immunotherapy: a case series and discussion of epileptogenesis in FIRES. Neuropediatrics. 2012;43:209–16.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

David R. Benavides is supported by NINDS T32 training grant in neuroimmunology and neurological infectious disease (T32NS069351).

Arun Venkatesan receives support from the National Institutes of Health, Maryland Stem Cell Research Fund, and Accelerated Cure Project for Multiple Sclerosis.

Compliance with Ethics Guidelines

Conflict of Interest

Arun Venkatesan and David R. Benavides declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Venkatesan.

Additional information

This article is part of the Topical Collection on Infection

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatesan, A., Benavides, D.R. Autoimmune Encephalitis and Its Relation to Infection. Curr Neurol Neurosci Rep 15, 3 (2015). https://doi.org/10.1007/s11910-015-0529-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-015-0529-1

Keywords

Navigation