Skip to main content

Advertisement

Log in

Distal Myopathies

  • Nerve and Muscle (L Weimer, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Advanced molecular genetic possibilities have made it possible to clarify and delineate an ever growing number of distinct new disease entities in the group of distal myopathies. These diseases share the clinical features of preferential muscle weakness in the feet and/or hands, and as they are genetic disorders that lead to progressive loss of muscle tissue they can also be called distal muscular dystrophies. More than 20 entities are currently identified and many are still waiting for genetic characterisation. No final diagnosis can be made on other grounds than by the molecular genetic defect. Besides the usual investigations, including electromyography and muscle biopsy, muscle imaging is very important in defining the precise pattern of muscle involvement. Based on the combination of age at onset, mode of inheritance, pathology and muscle imaging, the list of possible underlying genes can be tracked down to minimal number allowing for specific genetic testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Laing NG, Laing BA, Meredith C, et al. Autosomal dominant distal myopathy: linkage to chromosome 14. Am J Hum Genet. 1995;56:422–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Welander L. Myopathia distalis tarda hereditaria. Acta Med Scand. 1951;141:1–124.

    Google Scholar 

  3. Miyoshi K, Iwasa M, Kawai H. Autosomal recessive distal muscular dystrophy: a new variety of distal muscular dystrophy predominantly seen in Japan. Nippon Rinsho (Tokyo). 1977;35:3922–8.

    CAS  Google Scholar 

  4. Miyoshi K, Kawai H, Iwasa M, Kusaka K, Nishino H. Autosomal recessive distal muscular dystrophy as a new type of progressive muscular dystrophy. Brain. 1986;109:31–54.

    Article  PubMed  Google Scholar 

  5. Nonaka I, Sunohara N, Ishiura S, Satoyoshi E. Familial distal myopathy with rimmed vacuole and lamellar (myeloid) body formation. J Neurol Sci. 1981;51:141–55.

    Article  CAS  PubMed  Google Scholar 

  6. Udd B, Partanen J, Halonen P, et al. Tibial muscular dystrophy: late adult-onset distal myopathy in 66 Finnish patients. Arch Neurol. 1993;50:604–8.

    Article  CAS  PubMed  Google Scholar 

  7. Milhorat AT, Wolff HG. Studies in diseases of muscle XIII: progressive muscular dystrophy of atrophic distal type; report of a family; report of autopsy. Arch Neurol Psychiatry. 1943;49:655–64.

    Article  Google Scholar 

  8. Markesbery WR, Griggs RC, Leach RP, Lapham LW. Late onset hereditary distal myopathy. Neurology. 1974;23:127–34.

    Article  Google Scholar 

  9. Bejaoui K, Hirabayashi K, Hentati F, et al. Linkage of Miyoshi myopathy (distal autosomal recessive muscular dystrophy) locus to chromosome 2p12-14. Neurology. 1995;45:768–72.

    Article  CAS  PubMed  Google Scholar 

  10. Liu J, Aoki M, Illa I, et al. Dysferlin, a novel skeletal muscle gene, is mutation in Miyoshi myopathy and limb girdle muscular dystrophy. Nat Genet. 1998;20:31–6.

    Article  CAS  PubMed  Google Scholar 

  11. Sjöberg G, Saavedra-Matiz C, Rosen D, et al. A missense mutation in the desmin rod domain is associated with autosomal dominant distal myopathy, and exerts a dominant negative effect on filament formation. Hum Mol Genet. 1999;8:2191–8.

    Article  PubMed  Google Scholar 

  12. Haravuori H, Mäkelä-Bengs P, Udd B, et al. Assignment of the tibial muscular dystrophy (TMD) locus on chromosome 2q31. Am J Hum Genet. 1998;62:620–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Hackman P, Vihola A, Haravuori H, et al. Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene encoding the giant skeletal-muscle protein titin. Am J Hum Genet. 2002;71:492–500.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Ikeuchi T, Asaka T, Saito M, et al. Gene locus for autosomal recessive distal myopathy with rimmed vacuoles maps to chromosome 9. Ann Neurol. 1997;41:432–7.

    Article  CAS  PubMed  Google Scholar 

  15. Nishino I, Noguchi S, Murayama K, et al. Distal myopathy with rimmed vacuoles is allelic to hereditary inclusion body myopathy. Neurology. 2002;59:1689–93.

    Article  CAS  PubMed  Google Scholar 

  16. Meredith C, Herrmann R, Parry C, et al. Mutations in the slow skeletal muscle fiber myosin heavy chain gene (MYH7) cause laing early-onset distal myopathy (MPD1). Am J Hum Genet. 2004;75:703–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Griggs R, Vihola A, Hackman P, et al. Zaspopathy in a large classic late onset distal myopathy family. Brain. 2007;130:1477–84.

    Article  CAS  PubMed  Google Scholar 

  18. Ahlberg G, Tell D, Borg K, et al. Genetic linkage of Welander distal myopathy to chromosome 2p13. Ann Neurol. 1999;46:399–404.

    Article  CAS  PubMed  Google Scholar 

  19. Hackman P, Sarparanta J, Lehtinen S, et al. Welander distal myopathy is caused by a mutation in the RNA-binding protein TIA1. Ann Neurol. 2012 Dec 13 [Epub ahead of print]. WDM is the hallmark disease for distal myopathies. Linkage of the disease to chromosome 2p was achieved more than 10 years ago and now, finally, the causative gene was identified. The TIA1 gene is not a typical muscle gene at all, and the protein is involved in complex RNA metabolism.

  20. Udd B. Distal myopathies. Neuromusc Disord. 2012;22:5–12. This overview of the different entities of distal myopathies contains the algorithmic flow charts for diagnostic work-up.

    Article  PubMed  Google Scholar 

  21. Borg K, Ahlberg G, Anvret M, Edstrom L. Welander distal myopathy: an overview. Neuromuscul Disord. 1998;8:115–8.

    Article  CAS  PubMed  Google Scholar 

  22. Ahlberg G, Jakobsson F, Fransson A, et al. Distribution of muscle degeneration in Welander distal myopathy: a magnetic resonance imaging and muscle biopsy study. Neuromuscul Disord. 1994;4:55–62.

    Article  CAS  PubMed  Google Scholar 

  23. Udd B, Kaarianen H, Somer H. Muscular dystrophy with separate clinical phenotypes in a large family. Muscle Nerve. 1991;14:1050–8.

    Article  CAS  PubMed  Google Scholar 

  24. Udd B, Vihola A, Sarparanta J, Richard I, Hackman P. Titinopathies and extension of the M-line mutation phenotype beyond distal myopathy and LGMD2J. Neurology. 2005;64:636–42.

    Article  CAS  PubMed  Google Scholar 

  25. Udd B, Lamminen A, Somer H. Imaging methods reveal unexpected patchy lesions in late onset distal myopathy. Neuromusc Disord. 1991;4:279–85.

    Article  Google Scholar 

  26. de Seze J, Udd B, Haravuori H, et al. The first European tibial muscular dystrophy family outside the Finnish population. Neurology. 1998;51:1746–8.

    Article  PubMed  Google Scholar 

  27. Van den Bergh P, Bouquiaux O, et al. Tibial muscular dystrophy in a Belgian family. Ann Neurol. 2003;54:248–51.

    Article  PubMed  Google Scholar 

  28. Hackman P, Marchand S, Sarparanta J, et al. Truncating mutations in C-terminal titin may cause more severe tibial muscular dystrophy (TMD). Neuromusc Disord. 2008;18:922–8.

    Article  PubMed  Google Scholar 

  29. Pollazzon M, Suominen T, Penttilä S, et al. The first Italian family with tibial muscular dystrophy (TMD) caused by a novel titin mutation. J Neurol. 2010;257:575–9.

    Article  PubMed  Google Scholar 

  30. Olive M, Goldfarb LG, Shatunov A, et al. Myotilinopathy: refining the clinical and myopathological phenotype. Brain. 2005;128:2315–26.

    Article  PubMed  Google Scholar 

  31. Penisson-Besnier I, Dumez C, Chateau D, et al. Autosomal dominant late adult onset distal leg myopathy. Neuromuscul Disord. 1998;8:459–66.

    Article  CAS  PubMed  Google Scholar 

  32. Penisson-Besnier I, Talvinen K, Dumez C, et al. Myotilinopathy in a family with late onset myopathy. Neuromuscul Disord. 2006;16:427–31.

    Article  PubMed  Google Scholar 

  33. Foroud T, Pankratz N, Batchman AP, et al. A mutation in myotilin causes spheroid body myopathy. Neurology. 2005;65:1936–40.

    Article  CAS  PubMed  Google Scholar 

  34. Claeys K, Udd B, Stoltenburg G. Electron microscopy in myofibrillar myopathies reveals clues to the mutated gene. Neuromusc Disord. 2008;18:656–66.

    Article  CAS  PubMed  Google Scholar 

  35. Selcen D, Engel AG. Mutations in myotilin cause myofibrillar myopathy. Neurology. 2004;62:1363–71.

    Article  CAS  PubMed  Google Scholar 

  36. Feit H, Silbergleit A, Schneider L, et al. Vocal cord and pharyngeal weakness with autosomal distal myopathy: clinical description and gene localization to chromosome 5q31. Am J Hum Genet. 1998;63:1732–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Kraya T, Zierz S. Distal myopathies: from clinical classification to molecular understanding. J Neural Transm. 2013;120 Suppl 1:S3–7.

    Article  PubMed  Google Scholar 

  38. Senderek J, Garvey SM, Krieger M, et al. Autosomal-dominant distal myopathy associated with a recurrent missense mutation in the gene encoding the nuclear matrix protein, matrin 3. Am J Hum Genet. 2009;84:511–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Kimonis V, Mehta S, Fulchiero E, et al. Clinical studies in familial VCP myopathy associated with Paget disease of bone and frontotemporal dementia. Am J Med Genet. 2008;146A:745–57.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Johnson J, Mandrioli J, Benatar M, et al. Exome Sequencing Reveals VCP mutations as a cause of familial ALS. Neuron. 2010;68:857–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Palmio J, Sandell S, Suominen T, Penttilä S, et al. Distinct distal myopathy phenotype caused by VCP gene mutation in a Finnish family. Neuromusc Disord. 2011;21:551–5.

    Article  PubMed  Google Scholar 

  42. Vicart P, Caron A, Guicheney P, et al. A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet. 1998;20:92–5.

    Article  CAS  PubMed  Google Scholar 

  43. Reichlich P, Schoser B, Schramm N, et al. The p.G154S mutation of the alpha-B crystallin gene (CRYAB) causes late-onset distal myopathy. Neuromuscul Disord. 2010;20:255–9.

    Article  Google Scholar 

  44. Walter M, Reichlich P, Hübner A, et al. Identification of a desmin gene mutation in scapuloperoneal syndrome type Kaeser. Neuromusc Disord. 2006;16:708–9.

    Article  Google Scholar 

  45. Bär H, Fischer D, Goudeau H, et al. Pathogenic effects of a novel heterozygous R350P desmin mutation on the assembly of desmin intermediate filaments in vivo and in vitro. Hum Mol Gen. 2005;14:1251–60.

    Article  PubMed  Google Scholar 

  46. Palmio J, Penttilä S, Huovinen S, Haapasalo H, Udd B. An unusual phenotype of late-onset desminopathy. Neuromusc Disord. 2013;23:922–3.

    Article  PubMed  Google Scholar 

  47. Williams DR, Reardon K, Roberts L, et al. A new dominant distal myopathy affecting posterior leg and anterior upper limb muscles. Neurology. 2005;64:1245–54.

    Article  CAS  PubMed  Google Scholar 

  48. Duff R, Tay V, Hackman P, et al. Mutations in the N-terminal actin-binding domain of filamin C (FLNC) cause a distinct distal myopathy. Am J Hum Genet. 2011;88:729–40. The authors have identified a completely new type of distal myopathy. Mutations in FLNC are previously known to cause myofibrillar myopathology with a rather generalised late-onset proximo-distal and axial clinical phenotype of muscle weakness. The mutations causing this new type of disease do not result in myofibrillar myopathology, and this difference is related to the mutations being located in the N-terminal actin binding domain of Filamin-C.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Muelas N, Hackman P, Luque H, et al. MYH7 gene tail mutation causing myopathic profiles beyond Laing distal myopathy. Neurology. 2010;75:732–41.

    Article  CAS  PubMed  Google Scholar 

  50. Lamont P, Udd B, Mastaglia F, et al. Laing early-onset distal myopathy – slow myosin defect with variable abnormalities on muscle biopsy. J Neurol Neurosurg Psychiatry. 2006;77:208–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Dubourg O, Maisonobe T, Behin A, et al. A novel MYH7 mutation occurring independently in French and Norwegian Laing distal myopathy families and de novo in one Finnish patient. J Neurol. 2011;258:1157–63.

    Article  PubMed  Google Scholar 

  52. Cirak S, Deimling F, Sahdev S, et al. Kelch-like homologue 9 mutation is associated with an early onset autosomal dominant distal myopathy. Brain. 2010;133:2123–35.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Wallgren-Pettersson C, Lehtokari V-L, Kalimo H, et al. Distal myopathy caused by homozygous missense mutations in the nebulin gene. Brain. 2007;130:1465–76.

    Article  PubMed  Google Scholar 

  54. Lehtokari VL, Pelin K, Herczegfalvi A, et al. Nemaline myopathy caused by mutations in the nebulin gene may present as a distal myopathy. Neuromuscul Disord. 2011;21:556–62.

    Article  PubMed  Google Scholar 

  55. Eisenberg I, Avidan N, Potikha T, et al. The UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene is mutated in recessive hereditary inclusion body myopathy. Nat Genet. 2001;29:83–7.

    Article  CAS  PubMed  Google Scholar 

  56. Illarioshkin SN, Ivanova-Smolenskaya IA, Greenberg CR, et al. Identical dysferlin mutation in limb-girdle muscular dystrophy type 2B and distal myopathy. Neurology. 2000;55:1931–3.

    Article  CAS  PubMed  Google Scholar 

  57. Paradas C, Llauger J, Diaz-Manera J, et al. Redefining dysferlinopathy phenotypes based on clinical findings and muscle imaging studies. Neurology. 2010;75:316–23.

    Article  CAS  PubMed  Google Scholar 

  58. Illa I, Serrano-Munuera C, Gallardo E, et al. Distal anterior compartment myopathy: A dysferlin mutation causing a new muscular dystrophy phenotype. Ann Neurol. 2001;49:130–4.

    Article  CAS  PubMed  Google Scholar 

  59. Bolduc V, Marlow G, Boycott KM, et al. Recessive mutations in the putative calcium-activated chloride channel anoctamin 5 cause proximal LGMD2L and distal MMD3 muscular dystrophies. Am J Hum Genet. 2010;86:213–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Penttilä S, Palmio J, Suominen T, et al. Eight new mutations and the expanding phenotype variability in muscular dystrophy caused by ANO5. Neurology. 2012;78:897–903. The paper describes in good detail the large variation of clinical presentations and disease evolutions involved with anoctaminopathy, including muscle MRI studies. Late-onset proximal limb-girdle muscular dystrophy is more common than early adult-onset distal myopathy. Anoctaminopathy has also been confused with polymyositis.

    Article  PubMed  Google Scholar 

  61. Durmus H, Laval S, Deymeer F, et al. Oculopharyngeal distal myopathy is a distinct entity. Neurology. 2011;76:227–35.

    Article  CAS  PubMed  Google Scholar 

  62. Servidei S, Capon F, Spinazzola M, et al. A distinctive autosomal dominant vacuolar neuromyopathy linked to 19p13. Neurology. 1999;53:830–7.

    Article  CAS  PubMed  Google Scholar 

  63. Felice KJ, Meredith C, Binz N, et al. Autosomal dominant distal myopathy not linked to the known distal myopathy loci. Neuromuscul Disord. 1999;9:59–65.

    Article  CAS  PubMed  Google Scholar 

  64. Mahjneh I, Haravuori H, Paetau A, et al. A distinct phenotype of distal myopathy in a large Finnish family. Neurology. 2003;61:87–92.

    Article  CAS  PubMed  Google Scholar 

  65. Haravuori H, Siitonen A, Mahjneh I, et al. Linkage to two separate loci in a family with a novel distal myopathy phenotype (MPD3). Neuromusc Disord. 2004;14:183–7.

    Article  PubMed  Google Scholar 

  66. Linssen WH, de Visser M, Notermans NC, et al. Genetic heterogeneity in Miyoshi-type distal muscular dystrophy. Neuromuscul Disord. 1998;8:317–20.

    Article  CAS  PubMed  Google Scholar 

  67. Evilä A, Vihola A, Sarparanta J, et al. Atypical phenotypes in titinopathies explained by second titin mutations and compound heterozygosity. Ann Neurol. 2014 Jan 7 [Epub ahead of print]. The paper opens a new perspective on the phenotype variations repeatedly reported in families with the identical gene mutation in muscular dystrophy. With the example of titinopathy, the authors show that atypical, complex and new phenotypes are associated with second gene mutations on top of a previously well known gene mutation.

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Bjarne Udd declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bjarne Udd.

Additional information

This article is part of the Topical Collection on Nerve and Muscle

Rights and permissions

Reprints and permissions

About this article

Cite this article

Udd, B. Distal Myopathies. Curr Neurol Neurosci Rep 14, 434 (2014). https://doi.org/10.1007/s11910-013-0434-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-013-0434-4

Keywords

Navigation