Skip to main content

Advertisement

Log in

Imaging of Neuroinflammation in Parkinsonian Syndromes with Positron Emission Tomography

  • Neuroimaging (DJ Brooks, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Microglial activation is a key aspect of the neuroinflammatory process in neurodegenerative disorders including idiopathic and atypical parkinsonian disorders. Using positron emission tomography, it has become possible to image this phenomenon in vivo and over the last years patterns of microglia activation corresponding well known distribution of neuropathologic changes in these disorders have successfully been demonstrated using this technique. It has also been possible to measure the effects of interventions aimed at suppressing microglia activation as part interventional trials. Current research aims at evaluating positron emission tomography tracers for microglial activation with more favorable properties than the prototypical [11C]-(R)-PK11195, as well as developing tracers targeting additional parameters of the neuroinflammatory process like astroglial function or the cannabinoid receptor type 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Streit WJ, Mrak RE, Griffin WS. Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation. 2004;1:14.

    Article  PubMed  Google Scholar 

  2. del Rio-Hortega P. In: Penfield W, editors. Cytology and cellular pathology of the nervous system. New York: Hafner; 1932. p. 482–584.

  3. Gehrmann J, Matsumoto Y, Kreutzberg GW. Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev. 1995;20:269–87.

    Article  PubMed  CAS  Google Scholar 

  4. Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308:1314–8 [Epub Apr 14 2005].

    Article  PubMed  CAS  Google Scholar 

  5. Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996;19:312–8.

    Article  PubMed  CAS  Google Scholar 

  6. • Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia. Physiological Rev. 2011;91:461–553. PubMed PMID: 21527731. [Epub Apr 30 2011]. Excellent in depth review of microglial physiology.

  7. Rezaie P, Male D. Mesoglia and microglia—a historical review of the concept of mononuclear phagocytes within the central nervous system. J Hist Neurosci. 2002;11:325–74.

    Article  PubMed  Google Scholar 

  8. Calne DB, Mizuno Y. The neuromythology of Parkinson’s Disease. Parkinsonism Relat Disord. 2004;10:319–22.

    Article  PubMed  Google Scholar 

  9. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.

    Article  PubMed  Google Scholar 

  10. McGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology. 1988;38:1285–91.

    Article  PubMed  CAS  Google Scholar 

  11. Imamura K, Hishikawa N, Sawada M, Nagatsu T, Yoshida M, Hashizume Y. Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol. 2003;106:518–26 [Epub Sep 25 2003].

    Article  PubMed  CAS  Google Scholar 

  12. Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D. Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure [see comments]. Ann Neurol. 1999;46:598–605.

    Article  PubMed  CAS  Google Scholar 

  13. McGeer PL, Schwab C, Parent A, Doudet D. Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Ann Neurol. 2003;54:599–604.

    Article  PubMed  CAS  Google Scholar 

  14. Ishizawa K, Komori T, Sasaki S, Arai N, Mizutani T, Hirose T. Microglial activation parallels system degeneration in multiple system atrophy. J Neuropathol Exp Neurol. 2004;63:43–52.

    PubMed  Google Scholar 

  15. Probst Cousin S, Rickert CH, Schmid KW, Gullotta F. Cell death mechanisms in multiple system atrophy. J Neuropathol Exp Neurol. 1998;57:814–21.

    Article  PubMed  CAS  Google Scholar 

  16. Schwarz SC, Seufferlein T, Liptay S, Schmid RM, Kasischke K, Foster OJ, et al. Microglial activation in multiple system atrophy: a potential role for NF-kappaB/rel proteins. Neuroreport. 1998;9:3029–32.

    Article  PubMed  CAS  Google Scholar 

  17. Hauw JJ, Daniel SE, Dickson D, Horoupian DS, Jellinger K, Lantos PL, et al. Preliminary NINDS neuropathologic criteria for Steele-Richardson-Olszewski syndrome (progressive supranuclear palsy). Neurology. 1994;44:2015–9.

    Article  PubMed  CAS  Google Scholar 

  18. Ishizawa K, Dickson DW. Microglial activation parallels system degeneration in progressive supranuclear palsy and corticobasal degeneration. J Neuropathol Exp Neurol. 2001;60:647–57.

    PubMed  CAS  Google Scholar 

  19. Dickson DW, Bergeron C, Chin SS, Duyckaerts C, Horoupian D, Ikeda K, et al. Office of Rare Diseases neuropathologic criteria for corticobasal degeneration. J Neuropathol Exp Neurol. 2002;61:935–46.

    PubMed  CAS  Google Scholar 

  20. •• Perry VH. Innate inflammation in Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2:a009373. PubMed PMID: 22951445. [Epub Sep 7 2012]. Critical review of the current problems in undestanding the role of microglia in Parkinson’s disease.

  21. Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapere JJ, Lindemann P, et al. Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci. 2006;27:402–9 [Epub Jul 5 2006].

    Article  PubMed  CAS  Google Scholar 

  22. Venneti S, Lopresti BJ, Wiley CA. The peripheral benzodiazepine receptor (Translocator protein 18kDa) in microglia: from pathology to imaging. Prog Neurobiol. 2006;80(6):308–22 [Epub Dec 6 2006].

    Article  PubMed  CAS  Google Scholar 

  23. Benavides J, Quarteronet D, Imbault F, Malgouris C, Uzan A, Renault C, et al. Labelling of “peripheral-type” benzodiazepine binding sites in the rat brain by using [3H]PK 11195, an isoquinoline carboxamide derivative: kinetic studies and autoradiographic localization. J Neurochem. 1983;41:1744–50.

    Article  PubMed  CAS  Google Scholar 

  24. Banati RB, Myers R, Kreutzberg GW. PK (‘peripheral benzodiazepine’)—binding sites in the CNS indicate early and discrete brain lesions: microautoradiographic detection of [3H]PK11195 binding to activated microglia. J Neurocytol. 1997;26:77–82.

    Article  PubMed  CAS  Google Scholar 

  25. Chauveau F, Boutin H, Van Camp N, Dolle F, Tavitian B. Nuclear imaging of neuroinflammation: a comprehensive review of [(11)C]PK11195 challengers. Eur J Nucl Med Mol Imaging. 2008;1:1.

    Google Scholar 

  26. Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, Hammers A, et al. In vivo imaging of microglial activation with [(11)C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis. 2006;21:404–12 [Epub Sep 21 2005].

    Article  PubMed  CAS  Google Scholar 

  27. Ouchi Y, Yoshikawa E, Sekine Y, Futatsubashi M, Kanno T, Ogusu T, et al. Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol. 2005;57:168–75.

    Article  PubMed  CAS  Google Scholar 

  28. Iannaccone S, Cerami C, Alessio M, Garibotto V, Panzacchi A, Olivieri S, et al. In vivo microglia activation in very early dementia with Lewy bodies, comparison with Parkinson’s disease. Parkinsonism Relat Disord. 2013;19:47–52. PubMed PMID: 22841687. [Epub Jul 31 2012].

    Article  PubMed  CAS  Google Scholar 

  29. Edison P, Ahmed I, Fan Z, Hinz R, Gelosa G, Ray Chaudhuri K, et al. Microglia, amyloid, and glucose metabolism in Parkinson’s disease with and without dementia. Neuropsychopharmacology. 2013;38:938–49. PubMed PMID: 23303049. Pubmed Central PMCID: PMC3629382. [Epub Jan 11 2013].

    Article  PubMed  CAS  Google Scholar 

  30. Gerhard A, Banati RB, Goerres GB, Cagnin A, Myers R, Gunn RN, et al. [11C](R)-PK11195 PET imaging of microglial activation in multiple system atrophy. Neurology. 2003;61:686–9.

    Article  PubMed  CAS  Google Scholar 

  31. • Dodel R, Spottke A, Gerhard A, Reuss A, Reinecker S, Schimke N, et al. Minocycline 1-year therapy in multiple-system-atrophy: effect on clinical symptoms and [(11)C] (R)-PK11195 PET (MEMSA-trial). Mov Disord. 2010;25:11. First study to demonstrate that PET can be used in vivo in man to monitor the effect of drugs suppressing microglial activation..

    Article  Google Scholar 

  32. Gerhard A, Trender-Gerhard I, Turkheimer F, Quinn NP, Bhatia KP, Brooks DJ. In vivo imaging of microglial activation with [(11)C](R)-PK11195 PET in progressive supranuclear palsy. Mov Disord. 2006;21:89–93.

    Article  PubMed  Google Scholar 

  33. Gerhard A, Watts J, Trender-Gerhard I, Turkheimer F, Banati RB, Bhatia K, et al. In vivo imaging of microglial activation with [(11)C](R)-PK11195 PET in corticobasal degeneration. Mov Disord. 2004;19:1221–6.

    Article  PubMed  Google Scholar 

  34. Kobylecki C, Counsell SJ, Cabanel N, Wachter T, Turkheimer FE, Eggert K, et al. Diffusion-weighted imaging and its relationship to microglial activation in parkinsonian syndromes. Parkinsonism Relat Disord. 2013;19:527–32. PubMed PMID: 23425503. [Epub Feb 22 2013].

    Article  PubMed  Google Scholar 

  35. Cabral GA, Raborn ES, Griffin L, Dennis J, Marciano-Cabral F. CB2 receptors in the brain: role in central immune function. Br J Pharmacol. 2008;153:240–51. PubMed PMID: 18037916. Pubmed Central PMCID: PMC2219530. [Epub Nov 27 2007].

    Article  PubMed  CAS  Google Scholar 

  36. Ramirez BG, Blazquez C, Gomez del Pulgar T, Guzman M, de Ceballos ML. Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J Neurosci. 2005;25(8):1904–13. PubMed PMID: 15728830. [Epub Feb 25 2005].

    Article  PubMed  CAS  Google Scholar 

  37. Palazuelos J, Aguado T, Pazos MR, Julien B, Carrasco C, Resel E, et al. Microglial CB2 cannabinoid receptors are neuroprotective in Huntington’s disease excitotoxicity. Brain. 2009;132(Pt 11):3152–64. PubMed PMID: 19805493. [Epub Oct 7 2009].

    Article  PubMed  Google Scholar 

  38. Evens N, Vandeputte C, Coolen C, Janssen P, Sciot R, Baekelandt V, et al. Preclinical evaluation of [11C]NE40, a type 2 cannabinoid receptor PET tracer. Nucl Med Biol. 2012;39:389–99. PubMed PMID: 22154685. [Epub Dec 14 2011].

    Article  PubMed  CAS  Google Scholar 

  39. Ahmad R, Koole M, Evens N, Serdons K, Verbruggen A, Bormans G, et al. Whole-body biodistribution and radiation dosimetry of the cannabinoid Type 2 Receptor Ligand [(11)C]-NE40 in Healthy Subjects. Mol Imaging Biol. 2013;15:384–90. PubMed PMID: 23508466. [Epub Mar 20 2013].

    Article  PubMed  Google Scholar 

  40. Nakamura S, Kawamata T, Akiguchi I, Kameyama M, Nakamura N, Kimura H. Expression of monoamine oxidase B activity in astrocytes of senile plaques. Acta Neuropathol. 1990;80:419–25. PubMed PMID: 2239154 [Epub Jan 1 1990].

    Article  PubMed  CAS  Google Scholar 

  41. Gulyas B, Pavlova E, Kasa P, Gulya K, Bakota L, Varszegi S, et al. Activated MAO-B in the brain of Alzheimer patients, demonstrated by [11C]-L-deprenyl using whole hemisphere autoradiography. Neurochem Int. 2011;58:60–8. PubMed PMID: 21075154. [Epub Nov 16 2010].

    Article  PubMed  CAS  Google Scholar 

  42. Fowler JS, Wang GJ, Logan J, Xie S, Volkow ND, MacGregor RR, et al. Selective reduction of radiotracer trapping by deuterium substitution: comparison of carbon-11-L-deprenyl and carbon-11- deprenyl-D2 for MAO B mapping. J Nucl Med. 1995;36:1255.

    PubMed  CAS  Google Scholar 

  43. Carter SF, Scholl M, Almkvist O, Wall A, Engler H, Langstrom B, et al. Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-L-deprenyl: a multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG. J Nucl Med. 2012;53:37–46. PubMed PMID: 22213821. [Epub Jan 4 2012].

    Article  PubMed  CAS  Google Scholar 

  44. Kadir A, Marutle A, Gonzalez D, Scholl M, Almkvist O, Mousavi M, et al. Positron emission tomography imaging and clinical progression in relation to molecular pathology in the first Pittsburgh Compound B positron emission tomography patient with Alzheimer’s disease. Brain. 2011;134(Pt 1):301–17. PubMed PMID: 21149866. Pubmed Central PMCID: PMC3009843. [Epub Dec 15 2010].

    Article  PubMed  Google Scholar 

  45. Hazell AS, Desjardins P, Butterworth RF. Chronic exposure of rat primary astrocyte cultures to manganese results in increased binding sites for the ‘peripheral-type’ benzodiazepine receptor ligand 3H-PK 11195. Neurosci Lett. 1999;271:5–8. PubMed PMID: 10471200. [Epub Sep 2 1999].

    Google Scholar 

  46. Venneti S, Wang GJ, Nguyen J, Wiley CA. The positron emission tomography ligand DAA1106 binds with high affinity to activated microglia in human neurological disorders. J Neuropathol Exp Neurol. 2008;67:1001–10. PubMed PMID: ISI:000259793100009.

    Article  PubMed  Google Scholar 

  47. Turkheimer FE, Edison P, Pavese N, Roncaroli F, Anderson AN, Hammers A, et al. Reference and target region modeling of [11C]-(R)-PK11195 Brain Studies. J Nucl Med. 2007;48:158–67.

    PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Alexander Gerhard declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Gerhard.

Additional information

This article is part of the Topical Collection on Neuroimaging

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerhard, A. Imaging of Neuroinflammation in Parkinsonian Syndromes with Positron Emission Tomography. Curr Neurol Neurosci Rep 13, 405 (2013). https://doi.org/10.1007/s11910-013-0405-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-013-0405-9

Keywords

Navigation