Skip to main content
Log in

Mammalian Target of Rapamycin (mTOR) Inhibition: Potential for Antiseizure, Antiepileptogenic, and Epileptostatic Therapy

  • Epilepsy (CW Bazil, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

New epilepsy treatments are needed that not only inhibit seizures symptomatically (antiseizure) but also prevent the development of epilepsy (antiepileptogenic). The mammalian target of rapamycin (mTOR) pathway may mediate mechanisms of epileptogenesis and serve as a rational therapeutic target. mTOR inhibitors have antiepileptogenic and antiseizure effects in animal models of the genetic disease, tuberous sclerosis complex. The mTOR pathway is also implicated in epileptogenesis in animal models of acquired epilepsy and infantile spasms, although the effects of mTOR inhibitors are variable depending on the specific conditions and model. Furthermore, beneficial effects on seizures are lost when treatment is withdrawn, suggesting that mTOR inhibitors are “epileptostatic” in only stalling epilepsy progression during treatment. Clinical studies of rapamycin in human epilepsy are limited, but suggest that mTOR inhibitors at least have antiseizure effects in tuberous sclerosis patients. Further studies are needed to assess the full potential of mTOR inhibitors for epilepsy treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Crino PB, Nathanson KL, Henske EP. The tuberous sclerosis complex. N Engl J Med. 2006;355:1345–56.

    Article  PubMed  CAS  Google Scholar 

  2. McDaniel SS, Wong M. Therapeutic role of mammalian target of rapamycin (mTOR) inhibition in preventing epileptogenesis. Neurosci Lett. 2011;497:231–9.

    Article  PubMed  CAS  Google Scholar 

  3. Wong M. Mammalian target of rapamycin (mTOR) inhibition as a potential antiepileptogenic therapy: From tuberous sclerosis to common acquired epilepsies. Epilepsia. 2010;51:27–36.

    Article  PubMed  CAS  Google Scholar 

  4. Cho CH. Frontier of epilepsy research—mTOR signaling pathway. Exp Mol Med. 2011;43:231–74.

    Article  PubMed  CAS  Google Scholar 

  5. Weber JD, Gutmann DH. Deconvoluting mTOR biology. Cell Cycle. 2012;11:236–48.

    Article  PubMed  CAS  Google Scholar 

  6. Freeman JM, Kossoff EH. Ketosis and the ketogenic diet 2010: advances in treating epilepsy and other disorders. Adv Pediatr. 2010;57:315–29.

    Article  PubMed  Google Scholar 

  7. McDaniel SS, Rensing NR, Thio LL, Yamada KA, Wong M. The ketogenic diet inhibits the mammalian target of rapamycin (mTOR) pathway. Epilepsia. 2011;52:e7–e11.

    Article  PubMed  CAS  Google Scholar 

  8. Orlova KA, Parker WE, Heuer GG, Tsai V, Yoon J, Baybis M, Fenning RS, Strauss K, Crino PB. STRADalpha deficiency results in aberrant mTORC1 signaling during corticogenesis in humans and mice. J Clin Invest. 2010;120:1591–602.

    Article  PubMed  CAS  Google Scholar 

  9. Crino PB. Molecular pathogenesis of tuber formation in tuberous sclerosis complex. J Child Neurol. 2004;19:716–25.

    PubMed  Google Scholar 

  10. • Krueger DA, Care MM, Holland K, Agricola K, et al. Everolimus for subependymal giant-cell astrocytomas in Tuberous Sclerosis. N Engl J Med. 2010;363:1801–11. This clinical trial showed that an mTOR inhibitor reduced the growth of subependymal giant cell astrocytomas in TSC patients, leading to FDA approval for this indication, and also provided some initial clinical data suggesting an effect of everolimus on seizures as a secondary measure.

    Article  PubMed  CAS  Google Scholar 

  11. Baybis M, Yu J, Lee A, Golden JA, Weiner H, McKhann G, Aronica E, Crino PB. mTOR cascade activation distinguishes tubers from focal cortical dysplasia. Ann Neurol. 2004;56:478–87.

    Article  PubMed  CAS  Google Scholar 

  12. Schick V, Majores M, Engels G, Hartmann W, Elger CE, Schramm J, Schoch S, Becker AJ. Differential Pi3K-pathway activation in cortical tubers and focal cortical dysplasias with balloon cells. Brain Pathol. 2007;17:165–73.

    Article  PubMed  CAS  Google Scholar 

  13. Becker AJ, Urbach H, Scheffler BJ, Baden T, Normann S, Lahl R, Pennek HW, Tuxhorn I, Elger CE, Schramm J, Wiestler OD, Blumcke I. Focal cortical dysplasia of Taylor’s balloon cell type: mutational analysis of the TSC1 gene indicates a pathogenic relationship to Tuberous Sclerosis. Ann Neurol. 2002;52:29–37.

    Article  PubMed  CAS  Google Scholar 

  14. Schonberger A, Niehusmann P, Urbach H, Majores M, Grote A, Holthausen H, Blumcke I, Deckert M, Becker AJ. Increased frequency of distinct TSC2 alleleic variants in focal cortical dysplasias with balloon cells and mineralization. Neuropathology. 2009;29:559–65.

    Article  PubMed  Google Scholar 

  15. Gumbinger C, Rohsbach CB, Schulze-Bonhage A, Korinthenberg R, Zentner J, Haffner M, Fauser S. Focal cortical dysplasia: a genotype-phenotype analysis of polymorphisms and mutations in the TSC genes. Epilepsia. 2009;50:1396–408.

    Article  PubMed  CAS  Google Scholar 

  16. Grajkowski W, Kotulska K, Matyja E, Larysz-Brysz M, Mandera M, Roszkowski M, Domanska-Pakilela D, Lewik-Kowalik J, Jozwiak S. Expression of tuberin and hamartin in tuberous sclerosis complex-associated and sporadic cortical dysplasia of Taylor’s balloon cell type. Folia Neuropathol. 2008;46:43–8.

    Google Scholar 

  17. Lugnier C, Majores M, Fassunke J, Pernhorst K, Niehusmann P, Simon M, Nellist M, Schoch S, Becker A. Hamartin variants that are frequent in focal dysplasias and cortical tubers have reduced tuberin binding and aberrant subcellular distribution in vitro. J Neuropathol Exp Neurol. 2009;68:1136–46.

    Article  PubMed  Google Scholar 

  18. Ljungberg MC, Bhattacharjee MB, Lu Y, Armstrong DL, Yoshor D, Swann JW, Sheldon M, D’Arcangelo G. Activation of mammalian target of rapamycin in cytomegalic neurons of human cortical dysplasia. Ann Neurol. 2006;60:420–9.

    Article  PubMed  CAS  Google Scholar 

  19. Miyata H, Chiang ACY, Vinters HV. Insulin signaling pathways in cortical dysplasia and TSC-tubers: tissue microarray analysis. Ann Neurol. 2004;56:510–9.

    Article  PubMed  CAS  Google Scholar 

  20. Uhlmann EJ, Wong M, Baldwin RL, Bajenaru ML, Onda H, Kwiatkowski DJ, Yamada KA, Gutmann DH. Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Ann Neurol. 2002;52:285–96.

    Article  PubMed  CAS  Google Scholar 

  21. Meikle L, Talos DM, Onda H, Pollizzi K, Rotenberg A, Sahin M, Jensen FE, Kwiatkowski DJ. A mouse model of tuberous sclerosis: neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival. J Neurosci. 2007;27:5546–58.

    Article  PubMed  CAS  Google Scholar 

  22. • Goto J, Talos DM, Klein P, Qin W, Chekaluk YI, Anderl S, Malinowska IA, Di Nardo A, Bronson RT, Chan JA, Vinters HV, Kernie SG, Jensen FE, Sahin M, Kwiatkowski DJ. Regulable neural progenitor-specific TSC1 loss yields giant cells with organellar dysfunction in a model of tuberous sclerosis complex. PNAS. 2011;108:1070–9. This study described a novel mouse model of TSC and, consistent with previous studies, demonstrated that early postnatal treatment could prevent epilepsy and associated pathological abnormalities in these mice.

    Article  Google Scholar 

  23. Carson RP, Van Nielen DL, Winzenburger PA, Ess KC. Neuronal and glia abnormalities in TSC1—deficient forebrain and partial rescue by rapamycin. Neurobiol Dis. 2012;45:369–80.

    Article  PubMed  CAS  Google Scholar 

  24. Fu C, Cawthon B, Clinkscales W, Bruce A, Winzenburger P, Ess KC. GABAergic interneuron development and function is modulated by the Tsc1 gene. Cereb Cortex 2011 Oct 20 Epub ahead of print

  25. Way SW, McKenna 3rd J, Mietzsch U, Reith RM, Wu HC, Gambello MJ. Loss of Tsc2 in radial glia models the brain pathology of tuberous sclerosis complex in the mouse. Hum Mol Genet. 2009;18:1252–65.

    Article  PubMed  CAS  Google Scholar 

  26. Ehninger D, Han S, Shilyansky C, Zhou Y, Li W, Kwiatkowski DJ, Ramesh V, Silva AJ. Reversal of learning deficits in a TSC2 +/− mouse model of tuberous sclerosis. Nat Med. 2008;14:843–8.

    Article  PubMed  CAS  Google Scholar 

  27. Zeng L, Rensing NR, Zhang B, Gutmann DH, Gambello MJ, Wong M. TSC2 gene inactivation causes a more severe epilepsy phenotype than TSC1 inactivation in a mouse model of Tuberous Sclerosis Complex. Hum Mol Genet. 2011;20:445–54.

    Article  PubMed  CAS  Google Scholar 

  28. Zeng L, Xu L, Gutmann DH, Wong M. Rapamycin prevents epilepsy in a mouse model of Tuberous Sclerosis Complex. Ann Neurol. 2008;63:444–53.

    Article  PubMed  CAS  Google Scholar 

  29. Meikle L, Pollizzi K, Egnor A, Kramvis I, Lane H, Sahin M, Kwiatkowski. Response of a neuronal model of Tuberous Sclerosis to mammalian target of Rapamycin (mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to improved survival and function. J Neurosci. 2008;28:5422–32.

    Article  PubMed  CAS  Google Scholar 

  30. Marsh DJ, Kum JB, Lunetta KL, Bennett MJ, et al. PTEN mutation spectrum and genotype - phenotype correlations in Bannayan–Riley–Ruvalcaba syndrome suggest a single entity with Cowden syndrome. Hum Mol Genet. 1999;8:1461–72.

    Article  PubMed  CAS  Google Scholar 

  31. Backman SA, Stambolic V, Suzuki A, Haight J, Elia A, Pretorius J, Tsao MS, Shannon P, Bolon B, Ivy GO, Mak TW. Deletion of Pten in mouse brain causes seizures, ataxia, and defects in soma size resembling Lhermitte-Duclos disease. Nat Genet. 2001;29:396–403.

    Article  PubMed  CAS  Google Scholar 

  32. Kwon CH, Zhu X, Zhang J, Knoop LL, Tharp R, Smeyne RJ, Eberhart CG, Burger PC, Baker SJ. Pten regulates neuronal soma size: a mouse model of Lhermitte-Duclos disease. Nat Genet. 2001;29:404–11.

    Article  PubMed  CAS  Google Scholar 

  33. Kwon C, Zhu X, Zhang J, Baker SJ. mTor is required for hypertrophy of Pten-deficient neuronal soma in vivo. Proc Natl Acad Sci USA. 2003;100:12923–8.

    Article  PubMed  CAS  Google Scholar 

  34. Ljungberg MC, Sunnen CN, Lugo JN, Anderson AE, D’Arcangelo G. Rapamycin suppresses seizures and neuronal hypertrophy in a mouse model of cortical dysplasia. Dis Model Mech. 2009;2:389–98.

    Article  PubMed  CAS  Google Scholar 

  35. • Sunnen CN, Brewster AL, Lugo JN, Vanegas F, Turclos E, Mukhi S, Parghi D, D’Arcangelo G, Anderson AE. Inhibition of the mammalian target of rapamycin blocks epilepsy progression in NS-Pten conditional knockout mice. Epilepsia. 2011;52:2065–75. This study demonstrated that intermittent (2 weeks on, 4 weeks off) treatment with rapamycin prevented epilepsy progression and reduced side effects on growth in a genetic model of epilepsy.

    Article  PubMed  CAS  Google Scholar 

  36. Zhou J, Blundell J, Ogawa S, Kwon C, Zhang W, Sinton C, Powell CM, Parada LF. Pharmacological inhibition of mTORC1 suppresses anatomical, cellular, and behavioral abnormalities in neural-specific Pten knock-out mice. J Neurosci. 2009;29:1773–83.

    Article  PubMed  CAS  Google Scholar 

  37. • Zeng LH, Rensing NR, Wong M. The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy. J Neurosci. 2009;29:6964–72. This study provided evidence that mTOR inhibitors may inhibit epilepsy development in an animal model of acquired epilepsy following status epilepticus.

    Article  PubMed  CAS  Google Scholar 

  38. Buckmaster PS, Ingram EA, Wen X. Inhibition of the mammalian target of rapamycin signaling pathway suppresses dentate granule cell axon sprouting in a rodent model of temporal lobe epilepsy. J Neurosci. 2009;29:8259–69.

    Article  PubMed  CAS  Google Scholar 

  39. Huang X, Zhang H, Yang J, Wu J, McMahon J, Lin Y, Cao Z, Gruenthal M, Huang Y. Pharmacological inhibition of the mammalian target of rapamycin pathway suppresses acquired epilepsy. Neurobiol Dis. 2010;40:193–9.

    Article  PubMed  CAS  Google Scholar 

  40. • Buckmaster PS, Lew FH. Rapamycin suppresses mossy fiber sprouting but not seizure frequency in a mouse model of temporal lobe epilepsy. J Neurosci. 2011;31:2337–47. This study demonstrated that rapamycin inhibits mossy fiber sprouting, but did not prevent epilepsy in a model of acquired temporal lobe epilepsy.

    Article  PubMed  CAS  Google Scholar 

  41. Sliwa A, Plucinska G, Bednarczyk J, Lukasiuk K. Post-treatment with rapamycin does not prevent epileptogenesis in the amygdala stimulation model of temporal lobe epilepsy. Neurosci Lett. 2012; Epub ahead of print

  42. Wong M. Rapamycin for treatment of epilepsy: antiseizure, antiepileptogenic, both, or neither? Epilepsy Curr. 2011;11:66–8.

    Article  PubMed  Google Scholar 

  43. Temkin NR. Antiepileptogenesis and seizure prevention trials with antiepileptic drugs: meta-analysis of controlled trials. Epilepsia. 2001;42:515–24.

    Article  PubMed  CAS  Google Scholar 

  44. Chen S, Atkins CM, Liu CL, Alonso OF, Dietrich WD, Hu BR. Alterations in mammalian target of rapamycin signaling pathways after traumatic brain injury. J Cereb Blood Flow Metab. 2007;27:939–49.

    PubMed  CAS  Google Scholar 

  45. Erlich S, Alexandrovich A, Shohami E, Pinkas-Kramarski R. Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol Dis. 2007;26:86–93.

    Article  PubMed  CAS  Google Scholar 

  46. Guo D, Zeng LH, Brody DL, Wong M. mTOR inhibition has potential antiepileptogenic effects in a controlled cortical impact model of traumatic brain injury. Epilepsy Curr. 2011;11(Suppl 1): Abstract #1.014

  47. Park J, Zhang J, Qiu J, Zhu X, Degterev A, Lo EH, Whalen MJ. Combination therapy targeting Akt and mammalian target of rapamycin improves functional outcome after controlled cortical impact. J Cereb Blood Flow Metab. 2012;32:330–40.

    Article  PubMed  CAS  Google Scholar 

  48. Berdichevsky Y, Saponjian Y, Mail M, Staley KJ. Organotypic culture model of post-traumatic epileptogenesis used as a medium-throughput screen of antiepileptic drugs. Epilepsy Curr. 2012;12(Suppl 1): Abstract #3.026

  49. • Raffo E, Coppola A, Ono T, Briggs SW, Galanopoulo AS. A pulse rapamycin therapy for infantile spasms and associated cognitive decline. Neurobiol Dis. 2011;43:322–8. This study found that rapamycin can suppress spasms and reduce cognitive deficits in an animal model of infantile spasms.

    Article  PubMed  CAS  Google Scholar 

  50. Chachua T, Yum MS, Veliskova J, Velisek L. Validation of the rat model of cryptogenic infantile spasms. Epilepsia. 2011;52:1666–77.

    Article  PubMed  CAS  Google Scholar 

  51. Talos DM, Sun H, Jackson M, Joseph A, Fitzgerald E, Jensen F. Rapamycin attenuates the increases in seizure susceptibility and neuronal excitability following neonatal seizures in rat. Epilepsy Curr. 2011;11(Suppl 1):Abstract A.08

  52. Sankar R, Auvin S, Kwon YS, Pineda E, Shin D, Mazarati A. Evaluation of development-specific targets for antiepileptogenic therapy using rapid kindling. Epilepsia. 2010;51(Suppl3):39–42.

    Article  PubMed  CAS  Google Scholar 

  53. Muncy J, Butler IJ, Koenig M. Rapaymycin reduces seizure frequency in Tuberous Sclerosis Complex. J Child Neurol. 2009;24:477.

    Article  PubMed  Google Scholar 

  54. Wilfong A, Krueger DA, Holland-Bouley K, Anderson AE, Agricola K, Schultz RJ, Tudor C, Mayws M, Lopez CM, Franz DN. Everolimus improves seizure control in tuberous sclerosis complex. American Epilepsy Society Meeting Abstracts 2011; Late-breaking Abstract #3.329

  55. Daoud D, Scheld HH, Speckmann EJ, Gorji A. Rapamycin: brain excitability studied in vitro. Epilepsia. 2007;48:834–6.

    Article  PubMed  CAS  Google Scholar 

  56. Ruegg S, Baybis M, Juul H, Dichter M, Crino PB. Effects of rapamycin on gene expression, morphology, and electrophysiological properties of rat hippocampal neurons. Epilepsy Res. 2007;77:85–92.

    Article  PubMed  CAS  Google Scholar 

  57. Galanopoulou A, Crino P, Wong M, Buckmaster P, Raffo E. Rapamycin: from tuberous sclerosis and beyond. Epilepsia. 2009;50 Suppl 11:309.

    Google Scholar 

  58. Anderl S, Freeland M, Kwiatkowski DJ, Goto J. Therapeutic value of prenatal rapamycin treatment in a mouse brain model of tuberous sclerosis complex. Hum Mol Genet. 2011;20:4597–604.

    Article  PubMed  CAS  Google Scholar 

  59. Guardia O, del Rial MC, Casadei D. Pregnancy under sirolimus-based immunosuppression. Transplantation. 2006;81:636.

    Article  PubMed  Google Scholar 

  60. Sifontis NM, Coscia LA, Constantinescu S, Lavelanet AF, Moritz MJ, Armenti VT. Pregnancy outcomes in solid organ transplant recipients with exposure to mycophenolate mofetil or sirolimus. Transplantation. 2006;82:1698–702.

    Article  PubMed  CAS  Google Scholar 

  61. Chu SH, Liu KL, Chiang YJ, Wang HH, Lai PC. Sirolimus used during pregnancy in a living related renal transplant recipient: a case report. Transplant Proc. 2008;40:2446–8.

    Article  PubMed  CAS  Google Scholar 

  62. Jozwiak S, Kotulsaka K, Domanska-Pakilea D, Lojszczyk B, Syczewska M, Chmielewski D, Dunin-Wasocwicz D, Kmiec T, Szymkiewicz-Dangel J, Kornacka M, Kawalec W, Kuczynski D, Borkowska J, Tomaszek K, Jurkiewicz E, Respondek-Liberska M. Antiepileptic treatment before the onset of seizures reduces epilepsy severity and risk of mental retardation in infants with tuberous sclerosis complex. Eur J Paediatr Neurol. 2011;15:424–31.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

M. Wong receives funding from the National Institutes of Health (R01 NS056872) and the Washington University/Pfizer Biomedical Research Collaboration.

Disclosure

Conflicts of interest: R.C.C. Ryther: has received travel/accommodations/meeting expenses unrelated to activities listed from the American Epilepsy Society; M. Wong: none.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Wong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryther, R.C.C., Wong, M. Mammalian Target of Rapamycin (mTOR) Inhibition: Potential for Antiseizure, Antiepileptogenic, and Epileptostatic Therapy. Curr Neurol Neurosci Rep 12, 410–418 (2012). https://doi.org/10.1007/s11910-012-0276-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-012-0276-5

Keywords

Navigation