Skip to main content
Log in

Mechanisms of LRRK2-Mediated Neurodegeneration

  • Genetics (V Bonifati, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene represent the most common cause of familial Parkinson’s disease (PD), whereas common variation at the LRRK2 locus is associated with an increased risk of idiopathic PD. Considerable progress has been made toward understanding the biological functions of LRRK2 and the molecular mechanisms underlying the pathogenic effects of disease-associated mutations. The development of neuronal culture models and transgenic or viral-based rodent models have proved useful for identifying a number of emerging pathways implicated in LRRK2-dependent neuronal damage, including the microtubule network, actin cytoskeleton, autophagy, mitochondria, vesicular trafficking, and protein quality control. However, many important questions remain to be posed and answered. Elucidating the molecular mechanisms and pathways underlying LRRK2-mediated neurodegeneration is critical for the identification of new molecular targets for therapeutic intervention in PD. In this review we discuss recent advances and unanswered questions in understanding the pathophysiology of LRRK2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance, •• Of major importance

  1. Gasser T: Mendelian forms of Parkinson's disease. Biochim Biophys Acta 2009, 1792:587–596.

    PubMed  CAS  Google Scholar 

  2. Lang AE, Lozano AM: Parkinson's Disease. First of Two Parts. N Engl J Med 1998, 339:1044–1053.

    Google Scholar 

  3. Lang AE, Lozano AM: Parkinson's disease. Second of Two Parts. N Engl J Med 1998, 339:1130–1143.

    Google Scholar 

  4. Paisán-Ruiz C, Jain S, Evans EW et al.: Cloning of the gene containing mutations that cause PARK8-linked Parkinson's Disease. Neuron 2004, 44:595–600.

    Article  PubMed  Google Scholar 

  5. Zimprich A, Biskup S, Leitner P et al.: Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 2004, 44:601–607.

    Article  PubMed  CAS  Google Scholar 

  6. Simon-Sanchez J, Schulte C, Bras JM et al.: Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat Genet 2009, 41:1308–1312.

    Article  PubMed  CAS  Google Scholar 

  7. Satake W, Nakabayashi Y, Mizuta I et al.: Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease. Nat Genet 2009, 41:1303–1307.

    Article  PubMed  CAS  Google Scholar 

  8. Biskup S, West AB: Zeroing in on LRRK2-linked pathogenic mechanisms in Parkinson's disease. Biochim Biophys Acta 2009, 1792:625–633.

    PubMed  CAS  Google Scholar 

  9. Healy DG, Falchi M, O'Sullivan SS et al.: Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case–control study. Lancet Neurol 2008, 7:583–590.

    Article  PubMed  CAS  Google Scholar 

  10. Giasson BI, Covy JP, Bonini NM et al.: Biochemical and pathological characterization of Lrrk2. Annals of Neurology 2006, 59:315–322.

    Article  PubMed  CAS  Google Scholar 

  11. Ross OA, Toft M, Whittle AJ et al.: Lrrk2 and Lewy body disease. Ann Neurol 2006, 59:388–393.

    Article  PubMed  CAS  Google Scholar 

  12. Wszolek ZK, Pfeiffer RF, Tsuboi Y et al.: Autosomal dominant parkinsonism associated with variable synuclein and tau pathology. Neurology 2004, 62:1619–1622.

    PubMed  CAS  Google Scholar 

  13. Mata IF, Wedemeyer WJ, Farrer MJ et al.: LRRK2 in Parkinson's disease: protein domains and functional insights. Trends Neurosci 2006, 29:286–293.

    Article  PubMed  CAS  Google Scholar 

  14. Berger Z, Smith KA, LaVoie MJ: Membrane localization of LRRK2 is associated with increased formation of the highly active LRRK2 dimer and changes in its phosphorylation. Biochemistry 2010, 49:5511–5523.

    Article  PubMed  CAS  Google Scholar 

  15. Greggio E, Zambrano I, Kaganovich A et al.: The Parkinson Disease-associated Leucine-rich Repeat Kinase 2 (LRRK2) is a dimer that undergoes intramolecular autophosphorylation. J Biol Chem 2008, 283:16906–16914.

    Article  PubMed  CAS  Google Scholar 

  16. Deng J, Lewis PA, Greggio E et al.: Structure of the ROC domain from the Parkinson's disease-associated leucine-rich repeat kinase 2 reveals a dimeric GTPase. Proc Natl Acad Sci U S A 2008, 105:1499–1504.

    Article  PubMed  CAS  Google Scholar 

  17. Sen S, Webber PJ, West AB: Dependence of leucine-rich repeat kinase 2 (LRRK2) kinase activity on dimerization. J Biol Chem 2009, 284:36346–36356.

    Article  PubMed  CAS  Google Scholar 

  18. Jorgensen ND, Peng Y, Ho CCY et al.: The WD40 domain is required for LRRK2 neurotoxicity. PLoS One 2009, 4:e8463.

    Article  PubMed  Google Scholar 

  19. Biskup S, Moore D, Rea A et al.: Dynamic and redundant regulation of LRRK2 and LRRK1 expression. BMC Neurosci 2007, 8:102.

    Article  PubMed  Google Scholar 

  20. Biskup S, Moore DJ, Celsi F et al.: Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Ann Neurol 2006, 60:557–569.

    Article  PubMed  CAS  Google Scholar 

  21. Galter D, Westerlund M, Carmine A et al.: LRRK2 expression linked to dopamine-innervated areas. Ann Neurol 2006, 59:714–719.

    Article  PubMed  CAS  Google Scholar 

  22. Higashi S, Biskup S, West AB et al.: Localization of Parkinson's disease-associated LRRK2 in normal and pathological human brain. Brain Res 2007, 1155:208–219.

    Article  PubMed  CAS  Google Scholar 

  23. Higashi S, Moore DJ, Colebrooke RE et al.: Expression and localization of Parkinson's disease-associated leucine-rich repeat kinase 2 in the mouse brain. J Neurochem 2007, 100:368–381.

    Article  PubMed  CAS  Google Scholar 

  24. Westerlund M, Belin AC, Anvret A et al.: Developmental regulation of leucine-rich repeat kinase 1 and 2 expression in the brain and other rodent and human organs: Implications for Parkinson's disease. Neuroscience 2008, 152:429–436.

    Article  PubMed  CAS  Google Scholar 

  25. Piccoli G, Condliffe SB, Bauer M et al.: LRRK2 controls synaptic vesicle storage and mobilization within the recycling pool. J Neurosci 2011, 31:2225–2237.

    Article  PubMed  CAS  Google Scholar 

  26. Tong Y, Giaime E, Yamaguchi H et al.: Loss of leucine-rich repeat kinase 2 causes age-dependent bi-phasic alterations of the autophagy pathway. Mol Neurodegener 2012, 7:2.

    Article  PubMed  CAS  Google Scholar 

  27. Tong Y, Yamaguchi H, Giaime E et al.: Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice. Proc Natl Acad Sci U S A 2010, 107:9879–9884.

    Article  PubMed  CAS  Google Scholar 

  28. Herzig MC, Kolly C, Persohn E et al.: LRRK2 protein levels are determined by kinase function and are crucial for kidney and lung homeostasis in mice. Hum Mol Genet 2011, 20:4209–4223.

    Article  PubMed  CAS  Google Scholar 

  29. Melrose H, Lincoln S, Tyndall G et al.: Anatomical localization of leucine-rich repeat kinase 2 in mouse brain. Neuroscience 2006, 139:791–794.

    Article  PubMed  CAS  Google Scholar 

  30. Alegre-Abarrategui J, Christian H, Lufino MMP et al.: LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model. Hum Mol Genet 2009, 18:4022–4034.

    Article  PubMed  CAS  Google Scholar 

  31. Hatano T, Kubo S, Imai S et al.: Leucine-rich repeat kinase 2 associates with lipid rafts. Hum Mol Genet 2007, 16:678–690.

    Article  PubMed  CAS  Google Scholar 

  32. Dodson MW, Zhang T, Jiang C et al.: Roles of the Drosophila LRRK2 homolog in Rab7-dependent lysosomal positioning. Hum Mol Genet 2011, Dec 30, Epub.

  33. Gloeckner CJ, Schumacher A, Boldt K, Ueffing M: The Parkinson disease-associated protein kinase LRRK2 exhibits MAPKKK activity and phosphorylates MKK3/6 and MKK4/7, in vitro. J Neurochem 2009, 109:959–968.

    Article  PubMed  CAS  Google Scholar 

  34. Hsu CH, Chan D, Greggio E et al.: MKK6 binds and regulates expression of Parkinson's disease-related protein LRRK2. J Neurochem 2010, 112:1593–1604.

    Article  PubMed  CAS  Google Scholar 

  35. Carballo-Carbajal I, Weber-Endress S, Rovelli G et al.: Leucine-rich repeat kinase 2 induces alpha-synuclein expression via the extracellular signal-regulated kinase pathway. Cell Signal 2010, 22:821–827.

    Article  PubMed  CAS  Google Scholar 

  36. West AB, Moore DJ, Choi C et al.: Parkinson's disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Hum Mol Genet 2007, 16:223–232.

    Article  PubMed  CAS  Google Scholar 

  37. Jaleel M, Nichols RJ, Deak M et al.: LRRK2 phosphorylates moesin at threonine-558: characterization of how Parkinson's disease mutants affect kinase activity. Biochem J 2007, 405:307–317.

    Article  PubMed  CAS  Google Scholar 

  38. West AB, Moore DJ, Biskup S et al.: Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci U S A 2005, 102:16842–16847.

    Article  PubMed  CAS  Google Scholar 

  39. Nichols RJ, Dzamko N, Hutti JE et al.: Substrate specificity and inhibitors of LRRK2, a protein kinase mutated in Parkinson's disease. Biochem J 2009, 424:47–60.

    Article  PubMed  CAS  Google Scholar 

  40. Gillardon F: Leucine-rich repeat kinase 2 phosphorylates brain tubulin-beta isoforms and modulates microtubule stability—a point of convergence in Parkinsonian neurodegeneration? J Neurochem 2009, 110:1514–1522.

    Article  PubMed  CAS  Google Scholar 

  41. Kanao T, Venderova K, Park DS et al.: Activation of FoxO by LRRK2 induces expression of proapoptotic proteins and alters survival of postmitotic dopaminergic neuron in Drosophila. Hum Mol Genet 2010, 19:3747–3758.

    Article  PubMed  CAS  Google Scholar 

  42. Imai Y, Gehrke S, Wang HQ et al.: Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO J 2008, 27:2432–2443.

    Article  PubMed  CAS  Google Scholar 

  43. Qing H, Wong W, McGeer EG, McGeer PL: Lrrk2 phosphorylates alpha synuclein at serine 129: Parkinson disease implications. Biochem Biophys Res Commun 2009, 387:149–152.

    Article  PubMed  CAS  Google Scholar 

  44. Lin C-H, Tsai P-I, Wu R-M, Chien C-T: LRRK2 G2019S mutation induces dendrite degeneration through mislocalization and phosphorylation of Tau by recruiting autoactivated GSK3{beta}. J Neurosci 2010, 30:13138–13149.

    Article  PubMed  CAS  Google Scholar 

  45. Kumar A, Greggio E, Beilina A et al.: The Parkinson's disease associated LRRK2 exhibits weaker in vitro phosphorylation of 4E-BP compared to autophosphorylation. PLoS One 2010, 5:e8730.

    Article  PubMed  Google Scholar 

  46. Gloeckner CJ, Boldt K, von Zweydorf F et al.: Phosphopeptide analysis reveals two discrete clusters of phosphorylation in the N-terminus and the Roc domain of the Parkinson-disease associated protein kinase LRRK2. J Proteome Res 2010, 9:1738–1745.

    Article  PubMed  CAS  Google Scholar 

  47. Greggio E, Taymans JM, Zhen EY et al.: The Parkinson's disease kinase LRRK2 autophosphorylates its GTPase domain at multiple sites. Biochem Biophys Res Commun 2009, 389:449–454.

    Article  PubMed  CAS  Google Scholar 

  48. Webber PJ, Smith AD, Sen S et al.: Autophosphorylation in the leucine-rich repeat kinase 2 (LRRK2) GTPase domain modifies kinase and GTP-binding activities. J Mol Biol 2011, 412:94–110.

    Article  PubMed  CAS  Google Scholar 

  49. Kamikawaji S, Ito G, Iwatsubo T: Identification of the autophosphorylation sites of LRRK2. Biochemistry 2009, 48:10963–10975.

    Article  PubMed  CAS  Google Scholar 

  50. Li X, Tan YC, Poulose S et al.: Leucine-rich repeat kinase 2 (LRRK2)/PARK8 possesses GTPase activity that is altered in familial Parkinson's disease R1441C/G mutants. J Neurochem 2007, 103:238–247.

    Article  PubMed  CAS  Google Scholar 

  51. Lewis PA, Greggio E, Beilina A et al.: The R1441C mutation of LRRK2 disrupts GTP hydrolysis. Biochem Biophys Res Commun 2007, 357:668–671.

    Article  PubMed  CAS  Google Scholar 

  52. Ito G, Okai T, Fujino G et al.: GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson's disease†. Biochemistry 2007, 46:1380–1388.

    Article  PubMed  CAS  Google Scholar 

  53. Smith WW, Pei Z, Jiang H et al.: Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat Neurosci 2006, 9:1231–1233.

    Article  PubMed  CAS  Google Scholar 

  54. Taymans JM, Vancraenenbroeck R, Ollikainen P et al.: LRRK2 kinase activity is dependent on LRRK2 GTP binding capacity but independent of LRRK2 GTP binding. PLoS One 2011, 6:e23207.

    Article  PubMed  CAS  Google Scholar 

  55. Haebig K, Gloeckner CJ, Miralles MG et al.: ARHGEF7 (Beta-PIX) acts as guanine nucleotide exchange factor for leucine-rich repeat kinase 2. PLoS One 2010, 5:e13762.

    Article  PubMed  Google Scholar 

  56. Stafa K, Trancikova A, Webber P et al.: GTPase activity and neuronal toxicity of Parkinson's disease-associated LRRK2 is regulated by ArfGAP1. PLoS Genet 2012, 8:e1002527.

    Article  Google Scholar 

  57. Moore DJ: The biology and pathobiology of LRRK2: Implications for Parkinson's disease. Parkinsonism Relat Disord 2008, 14:S92-S98.

    Article  PubMed  Google Scholar 

  58. Gloeckner CJ, Kinkl N, Schumacher A et al.: The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Hum Mol Genet 2006, 15:223–232.

    Article  PubMed  CAS  Google Scholar 

  59. Greggio E, Cookson MR: Leucine-rich repeat kinase 2 mutations and Parkinson's disease: three questions. ASN Neuro 2009, 1.

  60. Xiong Y, Coombes CE, Kilaru A et al.: GTPase activity plays a key role in the pathobiology of LRRK2. PLoS Genet 2010, 6:e1000902.

    Article  PubMed  Google Scholar 

  61. Daniels V, Vancraenenbroeck R, Law BM et al.: Insight into the mode of action of the LRRK2 Y1699C pathogenic mutant. J Neurochem 2011, 116:304–315.

    Article  PubMed  CAS  Google Scholar 

  62. Smith WW, Pei Z, Jiang H et al.: Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. Proc Natl Acad Sci U S A 2005, 102:18676–18681.

    Article  PubMed  CAS  Google Scholar 

  63. Ramsden N, Perrin J, Ren Z et al.: Chemoproteomics-based design of potent LRRK2-selective lead compounds that attenuate Parkinson's disease-related toxicity in human neurons. ACS Chem Biol 2011, 6:1021–1028.

    Article  PubMed  CAS  Google Scholar 

  64. • Lee BD, Shin J-H, VanKampen J et al.: Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson's disease. Nat Med 2010, 16:998–1000. This study validated in vivo that dopaminergic neuronal degeneration induced by G2019S LRRK2 is kinase-dependent and can be attenuated by pharmacological kinase inhibition.

    Article  PubMed  CAS  Google Scholar 

  65. Greggio E, Jain S, Kingsbury A et al.: Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol Dis 2006, 23:329–341.

    Article  PubMed  CAS  Google Scholar 

  66. Liu Z, Wang X, Yu Y et al.: A Drosophila model for LRRK2-linked parkinsonism. Proc Natl Acad Sci U S A 2008, 105:2693–2698.

    Article  PubMed  CAS  Google Scholar 

  67. Liu Z, Hamamichi S, Lee BD et al.: Inhibitors of LRRK2 kinase attenuate neurodegeneration and Parkinson-like phenotypes in Caenorhabditis elegans and Drosophila Parkinson's disease models. Hum Mol Genet 2011, 20:3933–3942.

    Article  PubMed  CAS  Google Scholar 

  68. Ng CH, Mok SZ, Koh C et al.: Parkin protects against LRRK2 G2019S mutant-induced dopaminergic neurodegeneration in Drosophila. J Neurosci 2009, 29:11257–11262.

    Article  PubMed  CAS  Google Scholar 

  69. • Dusonchet J, Kochubey O, Stafa K et al.: A Rat Model of Progressive Nigral Neurodegeneration Induced by the Parkinson's Disease-Associated G2019S Mutation in LRRK2. J Neurosci 2011, 31:907–912. This describes an adenoviral-based LRRK2 rat model that exhibits robust and progressive nigral dopaminergic neurodegeneration and tau pathology induced by G2019S LRRK2.

    Article  PubMed  CAS  Google Scholar 

  70. Deng X, Dzamko N, Prescott A et al.: Characterization of a selective inhibitor of the Parkinson's disease kinase LRRK2. Nat Chem Biol 2011, 7:203–205.

    Article  PubMed  CAS  Google Scholar 

  71. • Ramonet D, Daher JPL, Lin BM et al.: Dopaminergic Neuronal Loss, Reduced Neurite Complexity and Autophagic Abnormalities in Transgenic Mice Expressing G2019S Mutant LRRK2. PLoS One 2011, 6:e18568. This reports a transgenic mouse model expressing G2019S LRRK2 displaying late-onset dopaminergic neuronal degeneration and autophagic abnormalities.

    Article  PubMed  CAS  Google Scholar 

  72. • Li Y, Liu W, Oo TF et al.: Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson's disease. Nat Neurosci 2009, 12:826–828. This is the first transgenic mouse model of LRRK2 reported that develops age-dependent and levodopa-responsive motor deficits, impaired dopaminergic neurotransmission, axonal pathology, and abnormal tau hyperphosphorylation.

    Article  PubMed  CAS  Google Scholar 

  73. Li X, Patel JC, Wang J et al.: Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson's disease mutation G2019S. J Neurosci 2010, 1788–1797.

  74. Melrose HL, Dächsel JC, Behrouz B et al.: Impaired dopaminergic neurotransmission and microtubule-associated protein tau alterations in human LRRK2 transgenic mice. Neurobiol Dis 2010, 40:503–517.

    Article  PubMed  CAS  Google Scholar 

  75. Tong Y, Pisani A, Martella G et al.: R1441C mutation in LRRK2 impairs dopaminergic neurotransmission in mice. Proc Natl Acad Sci U S A 2009, 106:14622–14627.

    Article  PubMed  CAS  Google Scholar 

  76. Shin N, Jeong H, Kwon J et al.: LRRK2 regulates synaptic vesicle endocytosis. Exp Cell Res 2008, 314:2055–2065.

    Article  PubMed  CAS  Google Scholar 

  77. Sakaguchi-Nakashima A, Meir JY, Jin Y et al.: LRK-1, a C. elegans PARK8-Related Kinase, Regulates Axonal-Dendritic Polarity of SV Proteins. Curr Biol 2007, 17:592–598.

    Google Scholar 

  78. Iaccarino C, Crosio C, Vitale C et al.: Apoptotic mechanisms in mutant LRRK2-mediated cell death. Hum Mol Genet 2007, 16:1319–1326.

    Article  PubMed  CAS  Google Scholar 

  79. MacLeod D, Dowman J, Hammond R et al.: The familial Parkinsonism gene LRRK2 regulates neurite process morphology. Neuron 2006, 52:587–593.

    Article  PubMed  CAS  Google Scholar 

  80. Ho CC-Y, Rideout HJ, Ribe E et al.: The Parkinson disease protein leucine-rich repeat kinase 2 transduces death signals via fas-associated protein with death domain and caspase-8 in a cellular model of neurodegeneration. J Neurosci 2009, 29:1011–1016.

    Article  PubMed  CAS  Google Scholar 

  81. Conde C, Caceres A: Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci 2009, 10:319–332.

    Article  PubMed  CAS  Google Scholar 

  82. Plowey ED, Cherra SJ, Liu Y-J, Chu CT: Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. J Neurochem 2008, 105:1048–1056.

    Article  PubMed  CAS  Google Scholar 

  83. • Parisiadou L, Xie C, Cho HJ et al.: Phosphorylation of ezrin/radixin/moesin proteins by LRRK2 promotes the rearrangement of actin cytoskeleton in neuronal morphogenesis. J Neurosci 2009, 29:13971–13980. This study describes a potential mechanism underlying neurite outgrowth defects induced by G2019S LRRK2 based upon rearrangement of the actin cytoskeleton.

    Article  PubMed  CAS  Google Scholar 

  84. Chan D, Citro A, Cordy JM et al.: Rac1 protein rescues neurite retraction caused by G2019S leucine-rich repeat kinase 2 (LRRK2). J Biol Chem 2011, 286:16140–16149.

    Article  PubMed  CAS  Google Scholar 

  85. Gandhi PN, Wang X, Zhu X et al.: The Roc domain of leucine-rich repeat kinase 2 is sufficient for interaction with microtubules. J Neurosci Res 2008, 86:1711–1720.

    Article  PubMed  CAS  Google Scholar 

  86. •• Lin X, Parisiadou L, Gu X-L et al.: Leucine-Rich Repeat Kinase 2 Regulates the Progression of Neuropathology Induced by Parkinson's-Disease-Related Mutant [alpha]-synuclein. Neuron 2009, 64:807–827. This study reports a functional interaction between LRRK2 and α-synuclein in vivo in transgenic mice that could potentially explain the development of Lewy body pathology in LRRK2 PD brains.

    Article  PubMed  CAS  Google Scholar 

  87. Kett LR, Boassa D, Ho CC-Y et al.: LRRK2 Parkinson disease mutations enhance its microtubule association. Hum Mol Genet 2012, 21:890–899.

    Article  PubMed  CAS  Google Scholar 

  88. Rajput A, Dickson DW, Robinson CA et al.: Parkinsonism, Lrrk2 G2019S, and tau neuropathology. Neurology 2006, 67:1506–1508.

    Article  PubMed  CAS  Google Scholar 

  89. Higashi S, Moore DJ, Yamamoto R et al.: Abnormal localization of leucine-rich repeat kinase 2 to the endosomal-lysosomal compartment in lewy body disease. J Neuropathol Exp Neurol 2009, 68:994–1005.

    Article  PubMed  Google Scholar 

  90. Lichtenberg M, Mansilla A, Zecchini VR et al.: The Parkinson's disease protein LRRK2 impairs proteasome substrate clearance without affecting proteasome catalytic activity. Cell Death Dis 2011, 2:e196.

    Article  PubMed  CAS  Google Scholar 

  91. Gómez-Suaga P, Luzón-Toro B, Churamani D et al.: Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP. Hum Mol Genet 2011, 21:511–525.

    Article  PubMed  Google Scholar 

  92. Trancikova A, Tsika E, Moore DJ: Mitochondrial Dysfunction in Genetic Animal Models of Parkinson's Disease. Antioxid Redox Signal 2011, Oct 4, Epub.

  93. Mortiboys H, Johansen KK, Aasly JO, Bandmann O: Mitochondrial impairment in patients with Parkinson disease with the G2019S mutation in LRRK2. Neurology 2010, 75:2017–2020.

    Article  PubMed  CAS  Google Scholar 

  94. Wang X, Yan MH, Fujioka H et al.: LRRK2 Regulates Mitochondrial Dynamics and Function through Direct Interaction with DLP1. Hum Mol Genet 2012, Jan 6, Epub.

Download references

Acknowledgments

The authors are grateful for funding support from the Swiss National Science Foundation (grant no. 310030_127478), Michael J. Fox Foundation for Parkinson’s Research, Parkinson Schweiz, NIH, NINDS (NS076160), EPFL, and Merck-Serono AG.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren J. Moore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsika, E., Moore, D.J. Mechanisms of LRRK2-Mediated Neurodegeneration. Curr Neurol Neurosci Rep 12, 251–260 (2012). https://doi.org/10.1007/s11910-012-0265-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-012-0265-8

Keywords

Navigation