Skip to main content

Advertisement

Log in

An update on inherited ataxias

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

This article provides an overview of recent advances in the field of inherited ataxias. In the past few years, new causative mutations that broaden the diagnostic spectrum of ataxias have been described. In addition, important advances have unveiled the molecular pathology of these disorders, resulting in a classification based on the pathogenetic pathways rather than clinical or genetic features. As concepts of treatment principles emerge, debate continues as to whether such concepts might be applicable to more than one genetically defined disorder or whether each ataxia disorder requires its own unique therapeutic approach. New clinical assessment instruments have been developed that will facilitate future interventional trials. A recent phase 2 clinical trial suggested a positive effect of high-dose idebenone in Friedreich’s ataxia, raising hopes that a treatment option will soon be available for this disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Jen JC, Graves TD, Hess EJ, et al.: Primary episodic ataxias: diagnosis, pathogenesis and treatment. Brain 2007, 130:2484–2493.

    Article  PubMed  CAS  Google Scholar 

  2. Soong BW, Paulson HL: Spinocerebellar ataxias: an update. Curr Opin Neurol 2007, 20:438–446.

    Article  PubMed  CAS  Google Scholar 

  3. Jacquemont S, Hagerman RJ, Leehey MA, et al.: Penetrance of the fragile X-associated tremor/ataxia syndrome in a permutation carrier population. JAMA 2004, 291:460–469.

    Article  PubMed  CAS  Google Scholar 

  4. Fogel BL, Perlman S: Clinical features and molecular genetics of autosomal recessive cerebellar ataxias. Lancet Neurol 2007, 6:245–257.

    Article  PubMed  CAS  Google Scholar 

  5. Gueven N, Chen P, Nakamura J, et al.: A subgroup of spinocerebellar ataxias defective in DNA damage responses. Neuroscience 2007, 145:1418–1425.

    Article  PubMed  CAS  Google Scholar 

  6. Gomez CM: ARSACS goes global. Neurology 2004, 62:10–11.

    Article  PubMed  CAS  Google Scholar 

  7. Fink JK: Hereditary spastic paraplegia. Curr Neurol Neurosci Rep 2006, 6:65–76.

    Article  PubMed  CAS  Google Scholar 

  8. Thiffault I, Rioux MF, Tetreault M, et al.: A new autosomal recessive spastic ataxia associated with frequent white matter changes maps to 2q33–34. Brain 2006, 129:2332–2340.

    Article  PubMed  CAS  Google Scholar 

  9. Bouslam N, Bouhouche A, Benomar A, et al.: A novel locus for autosomal recessive spastic ataxia on chromosome 17p. Hum Genet 2007, 121:413–420.

    Article  PubMed  Google Scholar 

  10. Breedveld GJ, van Wetten B, te Raa GD, et al.: A new locus for a childhood onset, slowly progressive autosomal recessive spinocerebellar ataxia maps to chromosome 11p15. J Med Genet 2004, 41:858–866.

    Article  PubMed  CAS  Google Scholar 

  11. Knight MA, Gardner RJ, Bahlo M, et al.: Dominantly inherited ataxia and dysphonia with dentate calcification: spinocerebellar ataxia type 20. Brain 2004, 127:1172–1181.

    Article  PubMed  Google Scholar 

  12. Verbeek DS, van de Warrenburg BP, Wesseling P, et al.: Mapping of the SCA23 locus involved in autosomal dominant cerebellar ataxia to chromosome region 20p13–12.3. Brain 2004, 127:2551–2557.

    Article  PubMed  CAS  Google Scholar 

  13. Stevanin G, Bouslam N, Thobois S, et al.: Spinocerebellar ataxia with sensory neuropathy (SCA25) maps to chromosome 2p. Ann Neurol 2004, 55:97–104.

    Article  PubMed  CAS  Google Scholar 

  14. Yu GY, Howell MJ, Roller MJ, et al.: Spinocerebellar ataxia type 26 maps to chromosome 19p13.3 adjacent to SCA6. Ann Neurol 2005, 57:349–354.

    Article  PubMed  CAS  Google Scholar 

  15. Cagnoli C, Mariotti C, Taroni F, et al.: SCA28, a novel form of autosomal dominant cerebellar ataxia on chromosome 18p11.22–q11.2. Brain 2006, 129:235–242.

    Article  PubMed  Google Scholar 

  16. Van Goethem G, Luoma P, Rantamäki M, et al.: POLG mutations in neurodegenerative disorders with ataxia but no muscle involvement. Neurology 2004, 63:1251–1257.

    PubMed  Google Scholar 

  17. Horvath R, Hudson G, Ferrari G, et al.: Phenotypic spectrum associated with mutations of the mitochondrial polymerase gamma gene. Brain 2006, 129:1674–1684.

    Article  PubMed  Google Scholar 

  18. Tzoulis C, Engelsen BA, Telstad W, et al.: The spectrum of clinical disease caused by the A467T and W748S POLG mutations: a study of 26 cases. Brain 2006, 129:1685–1692.

    Article  PubMed  Google Scholar 

  19. Nikali K, Suomalainen A, Saharinen J, et al.: Infantile onset spinocerebellar ataxia is caused by recessive mutations in mitochondrial proteins Twinkle and Twinky. Hum Mol Genet 2005, 14:2981–2990.

    Article  PubMed  CAS  Google Scholar 

  20. Hakonen AH, Heiskanen S, Juvonen V, et al.: Mitochondrial DNA polymerase W748S mutation: a common cause of autosomal recessive ataxia with ancient European origin. Am J Hum Genet 2005, 77:430–441.

    Article  PubMed  CAS  Google Scholar 

  21. Gros-Louis F, Dupré N, Dion P, et al.: Mutations in SYNE1 lead to a newly discovered form of autosomal recessive cerebellar ataxia. Nat Genet 2007, 39:80–85.

    Article  PubMed  CAS  Google Scholar 

  22. Abele M, Minnerop M, Urbach H, et al.: Sporadic adult onset ataxia of unknown etiology: a clinical, electrophysiological and imaging study. J Neurol 2007, 254:1384–1389.

    Article  PubMed  CAS  Google Scholar 

  23. Dupré N, Gros-Louis F, Chrestian N, et al.: Clinical and genetic study of autosomal recessive cerebellar ataxia type 1. Ann Neurol 2007, 62:93–98.

    Article  PubMed  CAS  Google Scholar 

  24. Ikeda Y, Dick KA, Weatherspoon MR, et al.: Spectrin mutations cause spinocerebellar ataxia type 5. Nat Genet 2006, 38:184–190.

    Article  PubMed  CAS  Google Scholar 

  25. Serra HG, Byam CE, Lande JD, et al.: Gene profiling links SCA1 pathophysiology to glutamate signaling in Purkinje cells of transegenic mice. Hum Mol Genet 2004, 13:2535–2543.

    Article  PubMed  CAS  Google Scholar 

  26. Zühlke C, Bernard V, Dalski A, et al.: Screening of the SPTBN2 (SCA5) gene in German SCA patients. J Neurol 2007, 254:1649–1652.

    Article  PubMed  CAS  Google Scholar 

  27. Ishikawa K, Toru S, Tsunemi T, et al.: An autosomal dominant cerebellar ataxia linked to chromosome 16q22.1 is associated with a single-nucleotide substitution in the 5′ untranslated region of the gene encoding a protein with spectrin repeat and Rho guanine-nucleotide exchange-factor domains. Am J Hum Genet 2005, 77:280–296.

    Article  PubMed  CAS  Google Scholar 

  28. Flanigan K, Gardner K, Alderson K, et al.: Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy (SCA4): clinical description and genetic localization to chromosome 16q22.1. Am J Hum Genet 1996, 59:392–399.

    PubMed  CAS  Google Scholar 

  29. Hellenbroich Y, Gierga K, Reusche E, et al.: Spinocerebellar ataxia type 4 (SCA4): Initial pathoanatomical study reveals widespread cerebellar and brainstem degeneration. J Neural Transm 2006, 113:829–843.

    Article  PubMed  CAS  Google Scholar 

  30. Storey E, Gardner RJ, Knight MA, et al.: A new autosomal dominant pure cerebellar ataxia. Neurology 2001, 57:1913–1915.

    PubMed  CAS  Google Scholar 

  31. Hara K, Fukushima T, Suzuki T, et al.: Japanese SCA families with an unusual phenotype linked to a locus over-lapping with SCA15 locus. Neurology 2004, 62:648–651.

    PubMed  CAS  Google Scholar 

  32. van de Leemput J, Chandran J, Knight MA, et al.: Deletion at ITPR1 underlies ataxia in mice and spinocerebellar ataxia 15 in humans. PLoS Genet 2007, 3:e108.

    Article  PubMed  CAS  Google Scholar 

  33. Iwaki A, Kawano Y, Miura S, et al.: Heterozygous deletion of ITPR1, but not SUMF1, in spinocerebellar ataxia type 16. J Med Genet 2008, 45:32–35.

    Article  PubMed  CAS  Google Scholar 

  34. Waters MF, Minassian NA, Stevanin G, et al.: Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes. Nat Genet 2006, 38:447–451.

    Article  PubMed  CAS  Google Scholar 

  35. Houlden H, JOhnson J, Gardner-Thorpe C, et al.: Mutations in TTBK2, encoding a kinase implicated in tau phosphorylation, segregate with spinocerebellar ataxia type 11. Nat Genet 2007, 39:1434–1436.

    Article  PubMed  CAS  Google Scholar 

  36. Berry-Kravis E, Abrams L, Coffey SM, et al.: Fragile X-associated tremor/ataxia syndrome clinical features, genetics, and testing guidelines. Mov Disord 2007, 22:2018–2030.

    Article  PubMed  Google Scholar 

  37. Grigsby J, Brega AG, Engle K, et al.: Cognitive profile of fragile X premutation carriers with and without fragile X-associated tremor/ataxia syndrome. Neuropsychology 2008, 22:48–60.

    Article  PubMed  Google Scholar 

  38. Hagerman RJ, Leavitt BR, Farzin F, et al.: Fragile-X-associated tremor/ataxia syndrome (FXTAS) in females with the FMR1 premutation. Am J Hum Genet 2004, 74:1051–1056.

    Article  PubMed  CAS  Google Scholar 

  39. Taylor AM, Byrd PJ: Molecular pathology of ataxia telangiectasia. J Clin Pathol 2005, 58:1009–1015.

    Article  PubMed  CAS  Google Scholar 

  40. Alterman N, Fattal-Valevski A, Moyal L et al.: Ataxia-telangiectasia: mild neurological presentation despite null ATM mutation and severe cellular phenotype. Am J Med Genet A 2007, 143:1827–1834.

    Google Scholar 

  41. Difilippantonio S, Nussenzweig A: The NBS1-ATM connection revisited. Cell Cycle 2007, 6:2366–2370.

    PubMed  CAS  Google Scholar 

  42. Hirano R, Interthal H, Huang C, et al.: Spinocerebellar ataxia with axonal neuropathy: consequence of a Tdp1 recessive neomorphic mutation? EMBO J 2007, 26:4732–4743.

    Article  PubMed  CAS  Google Scholar 

  43. Quinzii CM, Kattah AG, Naini A, et al.: Coenzyme Q deficiency and cerebellar ataxia associated with an aprataxin mutation. Neurology 2005, 64:539–541.

    PubMed  CAS  Google Scholar 

  44. Takiyama Y: Autosomal recessive spastic ataxia of Charlevoix-Saguenay. Neuropathology 2006, 26:368–375.

    Article  PubMed  Google Scholar 

  45. Engert JC, Bérubé P, Mercier J, et al.: ARSACS, a spastic ataxia common in northeastern Québec, is caused by mutations in a new gene encoding an 11.5-kb ORF. Nat Genet 2000, 24:120–125.

    Article  PubMed  CAS  Google Scholar 

  46. Lorincz MT, Rainier S, Thomas D, Fink JK: Cerebrotendinous xanthomatosis: possible higher prevalence than previously recognized. Arch Neurol 2005, 62:1459–1463.

    Article  PubMed  Google Scholar 

  47. Montalvo AL, Filocamo M, Vlahovicek K, et al.: Molecular analysis of the HEXA gene in Italian patients with infantile and late onset Tay-Sachs disease: detection of fourteen novel alleles. Hum Mutat 2005, 26:282.

    Article  PubMed  Google Scholar 

  48. Mihaylova V, Hantke J, Sinigerska I, et al.: Highly variable neural involvement in sphingomyelinase-deficient Niemann-Pick disease caused by an ancestral Gypsy mutation. Brain 2007, 130:1050–1061.

    Article  PubMed  Google Scholar 

  49. Brusse E, Maat-Kievit JA, van Swieten JC: Diagnosis and management of early-and late-onset cerebellar ataxia. Clin Genet 2007, 71:12–24.

    Article  PubMed  CAS  Google Scholar 

  50. Dürr A, Cossee M, Agid Y, et al.: Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med 1996, 335:1169–1175.

    Article  PubMed  Google Scholar 

  51. Lodi R, Tonon C, Calabrese V, Schapira AH: Friedreich’s ataxia: from disease mechanisms to therapeutic interventions. Antioxid Redox Signal 2006, 8:438–443.

    Article  PubMed  CAS  Google Scholar 

  52. Richardson DR: Friedreich’s ataxia: iron chelators that target the mitochondrion as a therapeutic strategy? Expert Opin Investig Drugs 2003, 12:235–245.

    Article  PubMed  CAS  Google Scholar 

  53. Mariotti C, Solari A, Torta D, et al.: Idebenone treatment in Friedreich patients: one-year-long randomized placebo-controlled trial. Neurology 2003, 60:1676–1679.

    PubMed  CAS  Google Scholar 

  54. Hart PE, Lodi R, Rajagopalan B, et al.: Antioxidant treatment of patients with Friedreich ataxia: four-year follow-up. Arch Neurol 2005, 62:621–626.

    Article  PubMed  Google Scholar 

  55. Di Prospero NA, Baker A, Jeffries N, Fischbeck KH: Neurological effects of high-dose idebenone in patients with Friedreich’s ataxia: a randomised, placebo-controlled trial. Lancet Neurol 2007, 6:878–886.

    Article  PubMed  CAS  Google Scholar 

  56. Sturm B, Stupphann D, Kaun C, et al.: Recombinant human erythropoietin: effects on frataxin expression in vitro. Eur J Clin Invest 2005, 35:711–717.

    Article  PubMed  CAS  Google Scholar 

  57. Boesch S, Sturm B, Hering S, et al.: Friedreich’s ataxia: clinical pilot trial with recombinant human erythropoietin. Ann Neurol 2007, 62:521–524.

    Article  PubMed  CAS  Google Scholar 

  58. Hebert MD, Whittom AA: Gene-based approaches toward Friedreich ataxia therapeutics. Cell Mol Life Sci 2007, 64:3034–3043.

    Article  PubMed  CAS  Google Scholar 

  59. Greene E, Mahishi L, Entezam A, et al.: Repeat-induced epigenetic changes in intron 1 of the frataxin gene and its consequences in Friedreich ataxia. Nucleic Acids Res 2007, 35:3383–3390.

    Article  PubMed  CAS  Google Scholar 

  60. Gomez-Sebastian S, Gimenez-Cassina A, Diaz-Nido J, et al.: Infectious delivery and expression of a 135 kb human FRDA genomic DNA locus complements Friedreich’s ataxia deficiency in human cells. Mol Ther 2007, 15:248–254.

    Article  PubMed  CAS  Google Scholar 

  61. Lim F, Palomo GM, Mauritz C, et al.: Functional recovery in a Friedreich’s ataxia mouse model by frataxin gene transfer using an HSV-1 amplicon vector. Mol Ther 2007, 15:1072–1078.

    PubMed  CAS  Google Scholar 

  62. Hagerman PJ, Hagerman RJ: The fragile-X premutation: a maturing perspective. Am J Hum Genet 2004, 74:805–816.

    Article  PubMed  CAS  Google Scholar 

  63. Sofola OA, Jin P, Botas J, Nelson DL: Argonaute-2-dependent rescue of a Drosophila model of FXTAS by FRAXE premutation repeat. Hum Mol Genet 2007, 16:2326–2332.

    Article  PubMed  CAS  Google Scholar 

  64. Dueñas AM, Goold R, Giunti P: Molecular pathogenesis of spinocerebellar ataxias. Brain 2006, 129:1357–1370.

    Article  PubMed  Google Scholar 

  65. Park Y, Hong S, Kim SJ, Kang S: Proteasome function is inhibited by polyglutamine-expanded ataxin-1, the SCA1 gene product. Mol Cells 2005, 19:23–30.

    PubMed  CAS  Google Scholar 

  66. Muchowski PJ, Wacker JL: Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 2005, 6:11–22.

    Article  PubMed  CAS  Google Scholar 

  67. Berger Z, Ravikumar B, Menzies FM, et al.: Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum Mol Genet 2006, 15:433–442.

    Article  PubMed  CAS  Google Scholar 

  68. Evert BO, Araujo J, Vieira-Saecker AM, et al.: Ataxin-3 represses transcription via chromatin binding, interaction with histone deacetylase 3, and histone deacetylation. J Neurosci 2006, 26:11474–11486.

    Article  PubMed  CAS  Google Scholar 

  69. Watase K, Gatchel JR, Sun Y, et al.: Lithium therapy improves neurological function and hippocampal dendritic arborization in a spinocerebellar ataxia type 1 mouse model. PLoS Med 2007, 4:e182.

    Article  PubMed  CAS  Google Scholar 

  70. Xia H, Mao Q, Eliason SL, et al.: RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 2004, 10:816–820.

    Article  PubMed  CAS  Google Scholar 

  71. Kordasiewicz HB, Gomez CM: Molecular pathogenesis of spinocerebellar ataxia type 6. Neurotherapeutics 2007, 4:285–294.

    Article  PubMed  CAS  Google Scholar 

  72. Walter JT, Alviña K, Womack MD, et al.: Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nat Neurosci 2006, 9:389–397.

    Article  PubMed  CAS  Google Scholar 

  73. Lim J, Hao T, Shaw C, et al.: A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell 2006, 125:801–814.

    Article  PubMed  CAS  Google Scholar 

  74. Humbert S, Saudou F: The ataxia-ome: connecting disease proteins of the cerebellum. Cell 2006, 125:645–647.

    Article  PubMed  CAS  Google Scholar 

  75. Schmitz-Hübsch T, du Montcel ST, Baliko L, et al.: Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 2006, 66:1717–1720.

    Article  PubMed  Google Scholar 

  76. Schmitz-Hübsch T, Coudert M, Bauer P, et al.: Spinocerebellar ataxia type 1, 2, 3, and 6: disease severity and non-ataxia symptoms. Neurology 2008 (in press).

  77. Subramony SH, May W, Lynch D, et al.: Measuring Friedreich ataxia: interrater reliability of a neurologic rating scale. Neurology 2005, 64:1261–1262.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Klockgether.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitz-Hübsch, T., Klockgether, T. An update on inherited ataxias. Curr Neurol Neurosci Rep 8, 310–319 (2008). https://doi.org/10.1007/s11910-008-0048-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-008-0048-4

Keywords

Navigation