Skip to main content

Advertisement

Log in

Abstract

This review focuses on congenital myopathies, a distinct but markedly heterogeneous group of muscle disorders that present with muscle weakness and typically appear at birth or in infancy. These myopathies have characteristic histopathologic abnormalities on muscle biopsy, allowing a preliminary morphologic classification. Advances in molecular genetics have allowed a more rational classification of these disorders and have reshuffled taxonomy for some of these conditions. Here, we focus on recent research advances in specific congenital myopathies, including nemaline myopathy, myotubular myopathy, centronuclear myopathy, central core myopathy, multi-minicore myopathy, congenital fiber-type disproportion myopathy, and hyaline body myopathy. Scientific progress has not only elucidated the pathologic mechanisms of these disorders, but it has also provided the basis for therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Fardeau M, Tome F: Congenital myopathies. In Myology. Edited by Engel AG, Franzini-Armstrong C. New York: McGraw-Hill; 1994:1487–1533

    Google Scholar 

  2. Wallgren-Pattersson C, Laing NG: Report of the 70th ENMC International Workshop: nemaline myopathy, 11–13 June 1999, Naarden, The Netherlands. Neuromuscul Disord 2000, 10:299–306.

    Article  Google Scholar 

  3. Wilson MC, Kolsky MP, Chandra R: Nemaline myopathy with severe neonatal hypotonia and total ophthalmoplegia: a case report. J Pediatr Ophthalmol Strabismus 1998, 35:174–176.

    PubMed  CAS  Google Scholar 

  4. Wright RA, Plant GT, Landon DN, Morgan-Hughes JA: Nemaline myopathy: an unusual cause of ophthalmoparesis. J Neuro-ophthalmol 1997, 17:39–43.

    Article  CAS  Google Scholar 

  5. D’Amico A, Graziano C, Pacileo G, et al.: Fatal hypertrophic cardiomyopathy and nemaline myopathy associated with ACTA1 K336E mutation. Neuromuscul Disord 2006, 10:548–552.

    Article  Google Scholar 

  6. Scacheri PC, Hoffman EP, Fratkin JD, et al.: A novel ryanodine receptor gene mutation causing both cores and rods in congenital myopathy. Neurology 2000, 55:1689–1696.

    PubMed  CAS  Google Scholar 

  7. Scelsi R, Lombardi M, Banfi P, et al.: Acquired rod-body myopathy associated with human immunodeficiency virus infection. Ital J Neurol Sci 1990, 11:609–613.

    Article  PubMed  CAS  Google Scholar 

  8. Wallgren-Pettersson C, Laing NG: 138th ENMC Workshop: nemaline myopathy, 20–22 May 2005, Naarden, The Netherlands. Neuromuscul Disord 2006, 16:54–60.

    Article  PubMed  Google Scholar 

  9. Nowak KJ, Sewry CA, Navarro C, et al.: Nemaline myopathy caused by absence of alpha-skeletal muscle actin. Ann Neurol 2007, 61:175–184.

    Article  PubMed  CAS  Google Scholar 

  10. Laing NG, Wilton SD, Akkari PA, et al.: A mutation in the alpha-tropomyosin gene TPM3 associated with autosomal dominant nemaline myopathy NEM1. Nat Genet 1995, 9:75–79.

    Article  PubMed  CAS  Google Scholar 

  11. Durling HJ, Reilich P, Müller-Höcker J, et al.: De novo missense mutation in a constitutively expressed exon of the slow alpha-tropomyosin gene TPM3 associated with atypical, sporadic case of nemaline myopathy. Neuromuscul Disord 2002, 12:947–951.

    Article  PubMed  CAS  Google Scholar 

  12. Tan P, Briner J, Boltshauser E, et al.: Homozygosity for a nonsense mutation in the alpha-tropomyosin slow gene TPM3 in a patient with severe infantile nemaline myopathy. Neuromuscul Disord 1999, 9:573–579.

    Article  PubMed  CAS  Google Scholar 

  13. Wattanasirichaigoon D, Swoboda KJ, Takada F, et al.: Mutations of the slow muscle alpha-tropomyosin gene, TPM3, are a rare cause of nemaline myopathy. Neurology 2002, 59:613–617.

    PubMed  CAS  Google Scholar 

  14. Donner K, Ollikainen M, Ridanpää M, et al.: Mutations in the beta-tropomyosin (TPM2) gene in two families diagnosed with nemaline myopathy. Neuromuscul Disord 2002, 12:151–158.

    Article  PubMed  Google Scholar 

  15. Fidzianska A, Badurska B, Ryniewicz B, Dembek I: “Cap disease”: new congenital myopathy. Neurology 1981, 31:1113–1120.

    PubMed  CAS  Google Scholar 

  16. Lehtokari VL, Ceuterick-de Groote C, de Jonghe P, et al.: Cap disease caused by heterozygous deletion of the beta-tropomyosin gene TPM2. Neuromuscul Disord 2007, 17:433–442.

    Article  PubMed  Google Scholar 

  17. Wallgren-Pettersson C, Lehtokari VL, Kalimo H, et al.: Distal myopathy caused by homozygous missense mutations in the nebulin gene. Brain 2007, 130:1465–1476.

    Article  PubMed  Google Scholar 

  18. Johnston J, Kelley RI, Crawford TO, et al.: A novel nemaline myopathy in the Amish caused by a mutation in troponin T1. Am J Hum Genet 2000, 67:814–882.

    Article  PubMed  CAS  Google Scholar 

  19. Agrawal PB, Greenleaf RS, Tomczak KK, et al.: Nemaline myopathy with minicores caused by mutation of the CFL2 gene encoding the skeletal muscle actin-binding protein, cofilin-2. Am J Hum Genet 2007, 80:162–167.

    Article  PubMed  CAS  Google Scholar 

  20. Kaindl AM, Ruschendorf F, Krause S, et al.: Missense mutations of ACTA1 cause dominant congenital myopathy with cores. J Med Genet 2004, 41:842–848.

    Article  PubMed  CAS  Google Scholar 

  21. Costa CF, Rommelaere H, Waterschoot D, et al.: Myopathy mutations in a-skeletal-muscle actin cause a range of molecular defects. J Cell Sci 2004, 117:3367–3377.

    Article  PubMed  CAS  Google Scholar 

  22. Lammens M, Moerman PH, Fryns JP, et al.: Fetal akinesia sequence caused by nemaline myopathy. Neuropediatrics 1997, 28:116–119.

    Article  PubMed  CAS  Google Scholar 

  23. Wallgren-Pettersson C: 72nd ENMC International Workshop: myotubular myopathy 1–3 October 1999, Hilversum, The Netherlands. Neuromuscul Disord 2000, 10:525–529.

    Article  PubMed  CAS  Google Scholar 

  24. Herman GE, Finegold M, Zhao W, et al.: Medical complications in long-term survivors with X-linked myotubular myopathy. J Pediatr 1999, 134:206–214.

    Article  PubMed  CAS  Google Scholar 

  25. Hammans SR, Robinson DO, Moutou C, et al.: A clinical and genetic study of a manifesting heterozygote with X-linked myotubular myopathy. Neuromuscul Disord 2000, 10:133–137.

    Article  PubMed  CAS  Google Scholar 

  26. Pierson CR, Agrawal PB, Blasko J, Beggs AH: Myofiber size correlates with MTM1 mutation type and outcome in Xlinked myotubular myopathy. Neuromuscul Disord 2007, 17:562–568.

    Article  PubMed  Google Scholar 

  27. Biancalana V, Caron O, Gallati S, et al.: Characterisation of mutations in 77 patients with X-linked myotubular myopathy, including a family with a very mild phenotype. Hum Genet 2003, 112:135–142.

    PubMed  Google Scholar 

  28. Bertini E, Biancalana V, Bolino A, et al.: 118th ENMC International Workshop on Advances in Myotubular Myopathy. 26–28 September 2003, Naarden, The Netherlands. (5th Workshop of the International Consortium on Myotubular Myopathy). Neuromuscul Disord 2004, 14:387–396.

    Article  PubMed  CAS  Google Scholar 

  29. Bitoun M, Maugenre S, Jeannet PY, et al.: Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat Genet 2005, 37:1207–1209.

    Article  PubMed  CAS  Google Scholar 

  30. Nicot AS, Toussaint A, Tosch V, et al.: Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nat Genet 2007, 39:1134–1139.

    Article  PubMed  CAS  Google Scholar 

  31. Jungbluth H, Zhou H, Sewry CA, et al.: Centronuclear myopathy due to a de novo dominant mutation in the skeletal muscle ryanodine receptor (RYR1) gene. Neuromuscul Disord 2007, 17:338–345.

    Article  PubMed  Google Scholar 

  32. Magee KR, Shy GM: A new congenital non-progressive myopathy. Brain 1956, 79:610–621.

    Article  PubMed  CAS  Google Scholar 

  33. De Cauwer H, Heytens L, Martin JJ: 89th ENMC International Workshop: Central Core Disease. Hilversum, The Netherlands, 19–20 January 2001. Neuromuscul Disord 2002, 12:588–595

    Article  PubMed  Google Scholar 

  34. Romero NB, Monnier N, Viollet L, et al.: Dominant and recessive central core disease associated with RYR1 mutations and fetal akinesia. Brain 2003, 126:2341–2349.

    Article  PubMed  Google Scholar 

  35. Jungbluth H, Davis MR, Muller C, et al.: Magnetic resonance imaging of muscle in congenital myopathies associated with RYR1 mutations. Neuromuscul Disord 2004, 14:785–790.

    Article  PubMed  Google Scholar 

  36. Jungbluth H, Beggs A, Bonnemann C, et al.: 111th ENMC International Workshop on Multi-minicore Disease. 2nd International MmD Workshop, 9–11 November 2002, Naarden, The Netherlands. Neuromuscul Disord 2004, 14:754–766.

    Article  PubMed  Google Scholar 

  37. Zhou H, Jungbluth H, Sewry CA, et al.: Molecular mechanisms and phenotypic variation in RYR1-related congenital myopathies. Brain 2007, 130:2024–2036.

    Article  PubMed  Google Scholar 

  38. Ducreux S, Zorzato F, Ferreiro A, et al.: Functional properties of ryanodine receptors carrying three amino acid substitutions identified in patients affected by multiminicore disease and central core disease, expressed in immortalized lymphocytes. Biochem J 2006, 395:259–266.

    Article  PubMed  CAS  Google Scholar 

  39. Zhou H, Brockington M, Jungbluth H, et al.: Epigenetic allele silencing unveils recessive RYR1 mutations in core myopathies. Am J Hum Genet 2006, 79:859–868.

    Article  PubMed  CAS  Google Scholar 

  40. Messina S, Hartley L, Main M, et al.: Pilot trial of salbutamol in central core and multi-minicore diseases. Neuropediatrics 2004, 35:262–266.

    Article  PubMed  CAS  Google Scholar 

  41. Ferreiro A, Estournet B, Chateau D, et al.: Multi-minicore disease—searching for boundaries: phenotype analysis of 38 cases. Ann Neurol 2000, 48:745–757.

    Article  PubMed  CAS  Google Scholar 

  42. Jungbluth H, Zhou H, Hartley L, et al.: Minicore myopathy with ophthalmoplegia caused by mutations in the ryanodine receptor type 1 gene. Neurology 2005, 65:1930–1935.

    Article  PubMed  CAS  Google Scholar 

  43. Ferreiro A, Ceuterick-de Groote C, Marks JJ, et al.: Desminrelated myopathy with Mallory body-like inclusions is caused by mutations of the selenoprotein N gene. Ann Neurol 2004, 55:676–686.

    Article  PubMed  CAS  Google Scholar 

  44. Fidzianska A, Goebel HH, Osborn M, et al.: Mallory body-like inclusions in a hereditary congenital neuromusculular disease. Muscle Nerve 1983, 6:195–200.

    Article  PubMed  CAS  Google Scholar 

  45. Clarke NF, North KN: Congenital fiber type disproportion-30 years on. J Neuropathol Exp Neurol 2003, 62:977–989.

    PubMed  Google Scholar 

  46. Banwell BL, Becker LE, Jay V, et al.: Cardiac manifestations of congenital fiber-type disproportion myopathy. J Child Neurol 1999, 14:83–87.

    Article  PubMed  CAS  Google Scholar 

  47. Clarke NF, Kidson W, Quijano-Roy S, et al.: SEPN1: associated with congenital fiber-type disproportion and insulin resistance. Ann Neurol 2006, 59:546–552.

    Article  PubMed  CAS  Google Scholar 

  48. Clarke NF, Smith RL, Bahlo M, North KN: A novel X-linked form of congenital fiber-type disproportion. Ann Neurol 2005, 58:767–772.

    Article  PubMed  CAS  Google Scholar 

  49. Cancilla PA, Kalyanaraman K, Verity MA, et al.: Familial myopathy with probable lysis of myofibrils in type I fibers. Neurology 1971, 21:579–585.

    PubMed  CAS  Google Scholar 

  50. Meredith C, Herrmann R, Parry C, et al.: Mutations in the slow skeletal muscle fiber myosin heavy chain gene (MYH7) cause Laing early-onset distal myopathy (MPD1). Am J Hum Genet 2004, 75:703–708.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Bertini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Amico, A., Bertini, E. Congenital myopathies. Curr Neurol Neurosci Rep 8, 73–79 (2008). https://doi.org/10.1007/s11910-008-0012-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-008-0012-3

Keywords

Navigation