Skip to main content
Log in

The state of the art in the genetic analysis of the epilepsies

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Genetic influences as causal factors in the epilepsies continue to be vigorously investigated, and we review several important studies of genes reported in 2006. To date, mutations in ion channel and neuroreceptor component genes have been reported in the small fraction of cases with clear Mendelian inheritance. These findings confirm that the so-called “channelopathies” are generally inherited as monogenic disorders. At the same time, the literature in common epilepsies abounds with reports of associations and reports of nonreplication of those association studies, primarily with channel genes. These contradictory reports can mostly be explained by confounding factors unique to genetic studies. The methodology of genetic studies and their common biases and confounding factors are also explained in this review. Amid the controversy, steady progress is being made on the epilepsies of complex inheritance, which represent the most common idiopathic epilepsy. Recent discoveries show that genes influencing the developmental assembly of neural circuits and neuronal metabolism may play a more prominent role in the common epilepsies than genes affecting membrane excitability and synaptic transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Ferraro TN, Dlugos DJ, Buono RJ: Role of genetics in the diagnosis and treatment of epilepsy. Expert Rev Neurother 2006, 6:1789–1800.

    Article  PubMed  CAS  Google Scholar 

  2. Greenberg DA, Delgado-Escueta AV, Widelitz H, et al.: Juvenile myoclonic epilepsy (JME) may be linked to the BF and HLA loci on human chromosome 6. Am J Med Genet 1988, 31:185–192.

    Article  PubMed  CAS  Google Scholar 

  3. Sander T, Schulz H, Saar K, et al.: Genome search for susceptibility loci of common idiopathic generalised epilepsies. Hum Mol Genet 2000, 9:1465–1472.

    Article  PubMed  CAS  Google Scholar 

  4. Durner M, Keddache MA, Tomasini L, et al.: Genome scan of idiopathic generalized epilepsy: evidence for major susceptibility gene and modifying genes influencing the seizure type. Ann Neurol 2001, 49:328–335.

    Article  PubMed  CAS  Google Scholar 

  5. Puranam RS, Jain S, Kleindienst AM, et al.: A locus for generalized tonic-clonic seizure susceptibility maps to chromosome 10q25-q26. Ann Neurol 2005, 58:449–458.

    Article  PubMed  CAS  Google Scholar 

  6. Liu AW, Delgado-Escueta AV, Gee MN, et al.: Juvenile myoclonic epilepsy in chromosome 6p12-p11: locus heterogeneity and recombinations. Am J Med Genet 1996, 63:438–446.

    Article  PubMed  CAS  Google Scholar 

  7. Nabbout R, Prud’homme JF, Herman A, et al.: A locus for simple pure febrile seizures maps to chromosome 6q22-q24. Brain 2002, 125:2668–2680.

    Article  PubMed  Google Scholar 

  8. Pinto D, Westland B, de Haan GJ, et al.: Genome-wide linkage scan of epilepsy-related photoparoxysmal electroencephalographic response: evidence for linkage on chromosomes 7q32 and 16p13. Hum Mol Genet 2005, 14:171–178.

    Article  PubMed  CAS  Google Scholar 

  9. Susser E, Schwartz S, Morabia A, et al.: Psychiatric Epidemiology: Searching for the Causes of Mental Disorder. Oxford, UK: Oxford University Press; 2006.

    Google Scholar 

  10. Lindholm E, Hodge SE, Greenberg DA: Comparative informativeness for linkage of multiple SNPs and single microsatellites. Hum Hered 2004, 58:164–170.

    Article  PubMed  Google Scholar 

  11. Pal DK, Greenberg DA: Evaluating genetic heterogeneity in complex disorders. Hum Hered 2002, 53:216–226.

    Article  PubMed  Google Scholar 

  12. Vieland VJ, Logue M: HLODs, trait models, and ascertainment: implications of admixture for parameter estimation and linkage detection. Hum Hered 2002, 53:23–35.

    Article  PubMed  CAS  Google Scholar 

  13. Durner M, Zhou G, Fu D, et al.: Evidence for linkage of adolescent-onset idiopathic generalized epilepsies to chromosome 8-and genetic heterogeneity. Am J Hum Genet 1999, 64:1411–1419.

    Article  PubMed  CAS  Google Scholar 

  14. Commission on Classification and Terminology of the International League Against Epilepsy Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 1989, 30:389–399.

  15. Greenberg DA, Delgado-Escueta AV, Widelitz H, et al.: Juvenile myoclonic epilepsy may be linked to the BF and HLA loci on human chromosome 6. Am J Med Genet 1988, 31:185–192.

    Article  PubMed  CAS  Google Scholar 

  16. Greenberg DA, Durner M, Resor S, et al.: The genetics of idiopathic generalized epilepsies of adolescent onset: differences between juvenile myoclonic epilepsy and epilepsy with random grand mal and with awakening grand mal. Neurology 1995, 45:942–946.

    PubMed  CAS  Google Scholar 

  17. Durner M, Keddache MA, Tomasini L, et al.: Genome scan of idiopathic generalised epilepsy: evidence for major susceptibility gene and modifying genes influencing the seizure type. Ann Neurol 2001, 49:328–335.

    Article  PubMed  CAS  Google Scholar 

  18. Greenberg DA: Linkage analysis of “necessary” disease loci versus “susceptibility” loci. Am J Hum Genet 1993, 52:135–143.

    PubMed  CAS  Google Scholar 

  19. Greenberg DA, Durner M, Delgado-Escueta AV: Evidence for multiple gene loci in the expression of the common generalized epilepsies. Neurology 1992, 42:56–62.

    PubMed  CAS  Google Scholar 

  20. Greenberg DA, Durner M, Keddache M, et al.: Reproducibility and complications in gene searches: linkage on chromosome 6, heterogeneity, association and maternal inheritance in juvenile myoclonic epilepsy. Am J Hum Genet 2000, 66:508–516.

    Article  PubMed  CAS  Google Scholar 

  21. Pal DK, Evgrafov OV, Tabares P, et al.: BRD2 (RING3) is a probable major susceptibility gene for common juvenile myoclonic epilepsy. Am J Hum Genet 2003, 73:261–270.

    Article  PubMed  CAS  Google Scholar 

  22. Sander T, Bockenkamp B, Hildmann T, et al.: Refined mapping of the epilepsy susceptibility locus EJM1 on chromosome 6. Neurology 1997, 49:842–847.

    PubMed  CAS  Google Scholar 

  23. Liu AW, Delgado-Escueta AV, Serratosa JM, et al.: Juvenile myoclonic epilepsy locus in chromosome 6p21.2-p11: link-age to convulsions and electroencephalography trait. Am J Hum Genet 1995, 57:368–381.

    PubMed  CAS  Google Scholar 

  24. Lorenz S, Taylor KP, Gehrmann A, et al.: Association of BRD2 polymorphisms with photoparoxysmal response. Neurosci Lett 2006, 400:135–139.

    Article  PubMed  CAS  Google Scholar 

  25. Cavalleri GL, Soranzo N, Mulley J, et al.: A multicentre study of BRD2 as a risk factor for juvenile myoclonic epilepsy. Epilepsia 2007, 48:706–712.

    Article  PubMed  CAS  Google Scholar 

  26. Weissbecker KA, Durner M, Janz, D, et al.: Confirmation of linkage between juvenile myoclonic epilepsy locus and the HLA region of chromosome 6. Am J Med Genet 1991, 38:32–36.

    Article  PubMed  CAS  Google Scholar 

  27. Sander T, Bockenkamp B, Hildmann T, et al.: Refined mapping of the epilepsy susceptibility locus EJM1 on chromosome 6. Neurology 1997, 49:842–847.

    PubMed  CAS  Google Scholar 

  28. Pal DK, Durner M, Klotz I, et al.: Complex inheritance and parent-of-origin effect in juvenile myoclonic epilepsy. Brain Dev 2006, 28:92–98.

    Article  PubMed  Google Scholar 

  29. Keverne EB, Fundele R, Narasimha M, et al.: Genomic imprinting and the differential roles of parental genomes in brain development. Brain Res Dev Brain Res 1996, 92:91–100.

    Article  PubMed  CAS  Google Scholar 

  30. Suzuki T, Delgado-Escueta AV, Alonso ME, et al.: Mutation analyses of genes on 6p12-p11 in patients with juvenile myoclonic epilepsy. Neurosci Lett 2006, 405:126–131.

    Article  PubMed  CAS  Google Scholar 

  31. Ma S, Blair MA, Abou-Khalil B, et al.: Mutations in the GABRA1 and EFHC1 genes are rare in familial juvenile myoclonic epilepsy. Epilepsy Res 2006, 71:129–134.

    Article  PubMed  CAS  Google Scholar 

  32. Pinto D, Louwaars S, Westland B, et al.: Heterogeneity at the JME 6p11–12 locus: absence of mutations in the EFHC1 gene in linked Dutch families. Epilepsia 2006, 47:1743–1746.

    Article  PubMed  CAS  Google Scholar 

  33. Stogmann E, Lichtner P, Baumgartner C, et al.: Idiopathic generalized epilepsy phenotypes associated with different EFHC1 mutations. Neurology 2006, 67:2029–2031.

    Article  PubMed  CAS  Google Scholar 

  34. Pinto D, de Haan GJ, Janssen GA, et al.: Evidence for link-age between juvenile myoclonic epilepsy-related idiopathic generalized epilepsy and 6p11–12 in Dutch families. Epilepsia 2004, 45:211–217.

    Article  PubMed  Google Scholar 

  35. Suzuki T, Delgado-Escueta AV, Aguan K, et al.: Mutations in EFHC1 cause juvenile myoclonic epilepsy. Nat Genet 2004, 36:842–849.

    Article  PubMed  CAS  Google Scholar 

  36. Urak L, Feucht M, Fathi N, et al.: GABRB3 promoter haplotype associated with childhood absence epilepsy impairs transcriptional activity. Hum Mol Genet 2006, 15:2533–2541.

    Article  PubMed  CAS  Google Scholar 

  37. Hempelmann A, Cobilanschi J, Heils A, et al.: Lack of evidence of an allelic association of a functional GABRB3 exon 1a promoter polymorphism with idiopathic generalized epilepsy. Epilepsy Res 2007, In press.

  38. Chou IC, Lee CC, Tsai CH, et al.: Association of GABRG2 polymorphisms with idiopathic generalized epilepsy. Pediatr Neurol 2007, 36:40–44.

    Article  PubMed  Google Scholar 

  39. Kinirons P, Cavalleri GL, Shahwan A, et al.: Examining the role of common genetic variation in the gamma2 subunit of the GABA(A) receptor in epilepsy using tagging SNPs. Epilepsy Res 2006, 70:229–238.

    Article  PubMed  CAS  Google Scholar 

  40. Feucht M, Fuchs K, Pichlbauer E, et al.: Possible association between childhood absence epilepsy and the gene encoding GABRB3. Biol Psychiatry 1999, 46:997–1002.

    Article  PubMed  CAS  Google Scholar 

  41. Baulac S, Huberfeld G, Gourfinkel-An I, et al.: First genetic evidence of GABA(A) receptor dysfunction in epilepsy: a mutation in the gamm a2-subunit gene. Nat Genet 2001, 28:46–48.

    Article  PubMed  CAS  Google Scholar 

  42. Wallace RH, Marini C, Petrou S, et al.: Mutant GABA(A) receptor gamma2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet 2001, 28:49–52.

    Article  PubMed  CAS  Google Scholar 

  43. Cossette P, Liu L, Brisebois K, et al.: Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat Genet 2002, 31:184–189.

    Article  PubMed  CAS  Google Scholar 

  44. Liang J, Zhang Y, Wang J, et al.: New variants in the CACNA1H gene identified in childhood absence epilepsy. Neurosci Lett 2006, 406:27–32.

    Article  PubMed  CAS  Google Scholar 

  45. Chioza B, Everett K, Aschauer H, et al.: Evaluation of CACNA1H in European patients with childhood absence epilepsy. Epilepsy Res 2006, 69:177–181.

    Article  PubMed  CAS  Google Scholar 

  46. Chen Y, Lu J, Pan H, et al.: Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol 2003, 54:239–243.

    Article  PubMed  CAS  Google Scholar 

  47. Vadlamudi L, Kjeldsen MJ, Corey LA, et al.: Analyzing the etiology of benign rolandic epilepsy: a multicenter twin collaboration. Epilepsia 2006, 47:550–555.

    Article  PubMed  Google Scholar 

  48. Doose H: Symptomatology in children with focal sharp waves of genetic origin. Eur J Pediatr 1989, 149:210–215.

    Article  PubMed  CAS  Google Scholar 

  49. Luders HO, Lesser RP, Dinner RS, Morris HH: Benign Focal Epilepsy of Childhood. Berlin: Springer; 1987.

    Google Scholar 

  50. Vadlamudi L, Harvey AS, Connellan MM, et al.: Is benign rolandic epilepsy genetically determined? Ann Neurol 2004, 56:129–132.

    Article  PubMed  Google Scholar 

  51. Sidenvall R, Forsgren L, Blomquist HK, Heijbel J: A community-based prospective incidence study of epileptic seizures in children. Acta Paediat 1993, 82:60–65.

    PubMed  CAS  Google Scholar 

  52. Shinnar S, O’Dell C, Berg AT: Distribution of epilepsy syndromes in a cohort of children prospectively monitored from the time of their first unprovoked seizure. Epilepsia 1999, 40:1378–1383.

    Article  PubMed  CAS  Google Scholar 

  53. Lorenz S, Taylor K, Anne Gehrmann A, et al.: Association of BRD2 polymorphisms with photoparoxysmal response. Epilepsy Res 2006, 400:135–139.

    CAS  Google Scholar 

  54. Claes L, Ceulemans B, Audenaert D, et al.: Denovo SCN1A mutations are a major cause of severe myoclonic epilepsy of infancy. Hum Mutat 2003, 21:615–621.

    Article  PubMed  CAS  Google Scholar 

  55. Singh NA, Westenskow P, Charlier C, et al.: KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion of the functional and mutation spectrum. Brain 2003, 126:2726–2737.

    Article  PubMed  Google Scholar 

  56. Pennacchino LA, Lehesjoski AE, Stone NE, et al.: Mutations in a gene encoding cystatin B in progressive myoclonus epilepsy. Science 1996, 271:1731–1734.

    Article  Google Scholar 

  57. Yamakawa K, Mitchell S, Hubert R, et al.: Isolation and characterization of a candidate gene for progressive myoclonus epilepsy on 21q22.3. Hum Mol Genet 1995, 4:709–716.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Greenberg PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenberg, D.A., Pal, D.K. The state of the art in the genetic analysis of the epilepsies. Curr Neurol Neurosci Rep 7, 320–328 (2007). https://doi.org/10.1007/s11910-007-0049-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-007-0049-8

Keywords

Navigation