Skip to main content

Advertisement

Log in

Amyloid imaging of alzheimer’s disease using pittsburgh compound B

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

The advent of human amyloid imaging represents a research breakthrough in Alzheimer’s disease (AD). It is now possible to detect the early stages of cerebral amyloidosis, a major pathologic component of AD, in living humans using positron emission tomography (PET). This technology will likely enable earlier AD diagnosis, but further research is required to determine whether a positive amyloid PET scan predicts imminent decline in questionably or mildly impaired individuals, and whether amyloid PET can be used to track the efficacy of emerging antiamyloid therapeutic agents. Initial human data are encouraging but suggest that individual amyloid PET findings should be interpreted cautiously, because cerebral amyloidosis precedes and does not equate with either clinical AD or pathologic criteria that define AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Hardy J, Selkoe DJ: The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002, 297:353–356.

    Article  PubMed  CAS  Google Scholar 

  2. Schenk D, Barbour R, Dunn W, et al.: Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999, 400:173–177.

    Article  PubMed  CAS  Google Scholar 

  3. Mathis CA, Wang Y, Holt DP, et al.: Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J Med Chem 2003, 46:2740–2754. This is an early description of the chemistry and validation studies of PIB.

    Article  PubMed  CAS  Google Scholar 

  4. Ye L, Morgenstern JL, Gee AD, et al.: Delineation of positron emission tomography imaging agent binding sites on beta-amyloid peptide fibrils. J Biol Chem 2005, 280:23599–23604.

    Article  PubMed  CAS  Google Scholar 

  5. Lockhart A, Ye L, Judd DB, et al.: Evidence for the presence of three distinct binding sites for the thioflavin T class of Alzheimer’s disease PET imaging agents on beta-amyloid peptide fibrils. J Biol Chem 2005, 280:7677–7684.

    Article  PubMed  CAS  Google Scholar 

  6. Klunk WE, Price JC, Lopresti BJ, et al.: Pittsburgh compound-B four years later: what have we learned, what lies ahead? In Alzheimer Imaging Consortium, International Conference on Alzheimer’s Disease. Madrid, Spain: 2006.

  7. Tanzi RE, Bertram L: Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell 2005, 120:545–555.

    Article  PubMed  CAS  Google Scholar 

  8. Jellinger KA, Bancher C: Neuropathology of Alzheimer’s disease: a critical update. J Neural Transm Suppl 1998, 54:77–95.

    PubMed  CAS  Google Scholar 

  9. Haass C, De Strooper B: The presenilins in Alzheimer’s disease—proteolysis holds the key. Science 1999, 286:916–919.

    Article  PubMed  CAS  Google Scholar 

  10. Spires TL, Hyman BT: Neuronal structure is altered by amyloid plaques. Rev Neurosci 2004, 15:267–278.

    PubMed  Google Scholar 

  11. D’Amore JD, Kajdasz ST, McLellan ME, et al.: In vivo multiphoton imaging of a transgenic mouse model of Alzheimer disease reveals marked thioflavine-S-associated alterations in neurite trajectories. J Neuropathol Exp Neurol 2003, 62:137–145.

    PubMed  CAS  Google Scholar 

  12. Stern EA, Bacskai BJ, Hickey GA, et al.: Cortical synaptic integration in vivo is disrupted by amyloid-beta plaques. J Neurosci 2004, 24:4535–4540.

    Article  PubMed  CAS  Google Scholar 

  13. Dodart JC, Bales KR, Gannon KS, et al.: Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model. Nat Neurosci 2002, 5:452–457.

    PubMed  CAS  Google Scholar 

  14. Cleary JP, Walsh DM, Hofmeister JJ, et al.: Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci 2005, 8:79–84.

    Article  PubMed  CAS  Google Scholar 

  15. Klyubin I, Walsh DM, Lemere CA, et al.: Amyloid beta protein immunotherapy neutralizes Abeta oligomers that disrupt synaptic plasticity in vivo. Nat Med 2005, 11:556–561.

    Article  PubMed  CAS  Google Scholar 

  16. Oddo S, Caccamo A, Tran L, et al.: Temporal profile of amyloid-beta (Abeta) oligomerization in an in vivo model of Alzheimer disease. A link between Abeta and tau pathology. J Biol Chem 2006, 281:1599–1604.

    Article  PubMed  CAS  Google Scholar 

  17. Lesne S, Koh MT, Kotilinek L, et al.: A specific amyloid-beta protein assembly in the brain impairs memory. Nature 2006, 440:352–357.

    Article  PubMed  CAS  Google Scholar 

  18. Gilman S, Koller M, Black RS, et al.: Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology 2005, 64:1553–1562.

    Article  PubMed  CAS  Google Scholar 

  19. Weksler ME, Gouras G, Relkin NR, Szabo P: The immune system, amyloid-beta peptide, and Alzheimer’s disease. Immunol Rev 2005, 205:244–256.

    Article  PubMed  CAS  Google Scholar 

  20. Knopman DS, Parisi JE, Salviati A, et al.: Neuropathology of cognitively normal elderly. J Neuropathol Exp Neurol 2003, 62:1087–1095.

    PubMed  CAS  Google Scholar 

  21. Price JL, Morris JC: Tangles and plaques in nondemented aging and "preclinical" Alzheimer’s disease. Ann Neurol 1999, 45:358–368.

    Article  PubMed  CAS  Google Scholar 

  22. McKeel DW Jr, Price JL, Miller JP, et al.: Neuropathologic criteria for diagnosing Alzheimer disease in persons with pure dementia of Alzheimer type. J Neuropathol Exp Neurol 2004, 63:1028–1037. This is a description of specific neuropathologic criteria for AD diagnosis in the context of normal aging, with special emphasis on amyloid plaque morphology.

    PubMed  Google Scholar 

  23. Hyman BT: The neuropathological diagnosis of Alzheimer’s disease: clinical-pathological studies. Neurobiol Aging 1997, 18(Suppl 4):S27–32.

    Article  PubMed  CAS  Google Scholar 

  24. Greenberg SM, Kinnecom K, Klunk WE, et al.: Imaging of cerebral amyloid angiopathy with Pittsburgh compound B. In Alzheimer Imaging Consortium, International Conference on Alzheimer’s Disease. Madrid, Spain: 2006.

  25. Klunk WE, Engler H, Nordberg A, et al.: Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 2004, 55:306–319. This is a report of the initial human data on PIB PET in AD.

    Article  PubMed  CAS  Google Scholar 

  26. Glenner GG: Alzheimer’s disease. The commonest form of amyloidosis. Arch Pathol Lab Med 1983, 107:281–282.

    PubMed  CAS  Google Scholar 

  27. Barrio JR, Huang SC, Cole GM, et al.: Small, PET imaging of tables and plaques in Alzheimer’s disease with a highly hydrophilic probe. J Labelled Compounds 1999, 42:S194-S195.

    Google Scholar 

  28. Agdeppa ED, Kepe V, Petri A, et al.: In vitro detection of (S)-naproxen and ibuprofen binding to plaques in the Alzheimer’s brain using the positron emission tomography molecular imaging probe 2-(1-[6-[(2-[(18)F].uoroethyl) (methyl)amino]-2-naphthyl]ethylidene)malono nitrile. Neuroscience 2003, 117:723–730.

    Article  PubMed  CAS  Google Scholar 

  29. Agdeppa ED, Kepe V, Liu J, et al.: Binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for beta-amyloid plaques in Alzheimer’s disease. J Neurosci 2001, 21:RC189.

    PubMed  CAS  Google Scholar 

  30. Skovronsky DM, Zhang B, Kung MP, et al.: In vivo detection of amyloid plaques in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 2000, 97:7609–7614.

    Article  PubMed  CAS  Google Scholar 

  31. Styren SD, Hamilton RL, Styren GC, Klunk WE: X-34, a fluorescent derivative of Congo red: a novel histochemical stain for Alzheimer’s disease pathology. J Histochem Cytochem 2000, 48:1223–1232.

    PubMed  CAS  Google Scholar 

  32. Kung HF, Lee CW, Zhuang ZP, et al.: J Am Chem Soc 2001, 123:12740–12741.

  33. Kung MP, Hou C, Zhuang ZP, et al.: An improved thioflavin-T derivative for in vivo labeling of beta-amyloid plaques. Brain Res 2002, 956:202–210.

    Article  PubMed  CAS  Google Scholar 

  34. Mathis CA, Bacskai BJ, Kajdasz ST, et al.: A lipophilic thioflavin-T derivative for positron emission tomography (PET) imaging of amyloid in brain. Bioorg Med Chem Lett 2002, 12:295–298.

    Article  PubMed  CAS  Google Scholar 

  35. Klunk WE, Engler H, Nordberg A, et al.: Imaging the pathology of Alzheimer’s disease: amyloid-imaging with positron emission tomography. Neuroimaging Clin North Am 2003, 13:781–789.

    Article  Google Scholar 

  36. Bergstrom M, Grahnen A, Langstrom B: Positron emission tomography microdosing: a new concept with application in tracer and early clinical drug development. Eur J Clin Pharmacol 2003, 59:357–366.

    Article  PubMed  Google Scholar 

  37. Clark CM, Newberg AB, Watson M, et al.: Imaging Amyloid with I123 IMPY SPECT. In Alzheimer Imaging Consortium, International Conference on Alzheimer’s Disease. Madrid, Spain: 2006.

  38. Logan J, Fowler JS, Volkow ND, et al.: Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(-)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 1990, 10:740–747.

    PubMed  CAS  Google Scholar 

  39. Price JC, Klunk WE, Lopresti BJ, et al.: Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab 2005, 25:1528–1547.

    Article  PubMed  CAS  Google Scholar 

  40. Joachim CL, Morris JH, Selkoe DJ: Diffuse senile plaques occur commonly in the cerebellum in Alzheimer’s disease. Am J Pathol 1989, 135:309–319.

    PubMed  CAS  Google Scholar 

  41. Yamaguchi H, Hirai S, Morimatsu M, et al.: Diffuse type of senile plaques in the cerebellum of Alzheimer-type dementia demonstrated by beta protein immunostain. Acta Neuropathol (Berl) 1989, 77:314–319.

    Article  CAS  Google Scholar 

  42. Lopresti BJ, Klunk WE, Mathis CA, et al.: Simplified quantification of Pittsburgh Compound B amyloid imaging PET studies: a comparative analysis. J Nucl Med 2005, 46:1959–1972.

    PubMed  CAS  Google Scholar 

  43. Fagan AM, Mintun MA, Mach RH, et al.: Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol 2006, 59:512–519. This is a report of the comparison of PIB and cerebrospinal fluid findings in a group of subjects who were normal or mildly impaired and in patients with AD.

    Article  PubMed  CAS  Google Scholar 

  44. Archer HA, Edison P, Brooks DJ, et al.: Amyloid load and cerebral atrophy in Alzheimer’s disease: An (11)C-PIB positron emission tomography study. Ann Neurol 2006, 60:145–147.

    Article  PubMed  Google Scholar 

  45. Johnson KJ, Pollen P, Rentz D, et al.: Amyloid deposition in presymptomatic familial Alzheimer’s disease. In Alzheimer Imaging Consortium, International Conference on Alzheimer’s Disease. Madrid, Spain: 2006.

  46. Klunk WE, Pollen DA, Mathis CA, et al.: Amyloid deposition begins in the striatum of presenilin-1 mutation carriers from two unrelated pedigrees. In Alzheimer Imaging Consortium, International Conference on Alzheimer’s Disease. Madrid, Spain: 2006.

  47. Petersen RC: Mild cognitive impairment as a diagnostic entity. J Intern Med 2004, 256:183–194.

    Article  PubMed  CAS  Google Scholar 

  48. Rentz D, Becker JA, Moran EK, et al.: Amyloid Imaging with Pittsburgh Compound-B (PIB) in AD, MCI, and Highly Intelligent Older Adults. In Alzheimer Imaging Consortium, International Conference on Alzheimer’s Disease. Madrid, Spain: 2006.

  49. Nordberg AK, Forsberg A, Engler H, et al.: PIB amyloid imaging in brain of AD and MCI patients-relation to CSF markers and cognition. In Alzheimer Imaging Consortium, International Conference on Alzheimer’s Disease. Madrid, Spain: 2006.

  50. Petersen RC, Parisi JE, Dickson DW, et al.: Neuropathologic features of amnestic mild cognitive impairment. Arch Neurol 2006, 63:665–672.

    Article  PubMed  Google Scholar 

  51. Jicha GA, Parisi JE, Dickson DW, et al.: Neuropathologic outcome of mild cognitive impairment following progression to clinical dementia. Arch Neurol 2006, 63:674–681.

    Article  PubMed  Google Scholar 

  52. Robbins EM, Betensky RA, Domnitz SB, et al.: Kinetics of cerebral amyloid angiopathy progression in a transgenic mouse model of Alzheimer disease. J Neurosci 2006, 26:365–371.

    Article  PubMed  CAS  Google Scholar 

  53. Rentz DM, Sardinha LM, Manning LN, et al.: Amyloid burden correlates with cognitive function in normal aging, MCI and AD. In Alzheimer Imaging Consortium, International Conference on Alzheimer’s Disease. Madrid, Spain: 2006.

  54. Hulette CM, Welsh-Bohmer KA, Murray MG, et al.: Neuropathological and neuropsychological changes in "normal" aging: evidence for preclinical Alzheimer disease in cognitively normal individuals. J Neuropathol Exp Neurol 1998, 57:1168–1174.

    PubMed  CAS  Google Scholar 

  55. Bennett DA, Schneider JA, Arvanitakis Z, et al.: Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 2006, 66:1837–1844.

    Article  PubMed  CAS  Google Scholar 

  56. Buckner RL, Snyder AZ, Shannon BJ, et al.: Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci 2005, 25:7709–7717.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith A. Johnson MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, K.A. Amyloid imaging of alzheimer’s disease using pittsburgh compound B. Curr Neurol Neurosci Rep 6, 496–503 (2006). https://doi.org/10.1007/s11910-006-0052-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-006-0052-5

Keywords

Navigation