Skip to main content

Advertisement

Log in

Update on brain tumor imaging

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Brain tumor imaging has evolved from a strictly morphologybased discipline to one that encompasses function, physiology, and anatomy, enabled by advances in imaging and computer technology. This review outlines the current imaging standard for patients with brain tumors and summarizes the latest advances in physiology-based imaging methods that complement traditional brain tumor imaging protocol. Emphasis is placed on the strengths and limitations of the current imaging standards and on an overview of several advanced imaging methods, including diffusion-weighted magnetic resonance imaging, perfusion magnetic resonance imaging, and proton magnetic resonance spectroscopic imaging. Basic physical principles behind each imaging method are briefly presented, along with a more in-depth discussion of the clinical applications and potential pitfalls of each technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Burger PC, Vogel FS: The brain: tumors. In Surgical Pathology of the Central Nervous System and its Coverings. Edited by Burger PC, Vogel FS. New York: Wiley; 1982:223–266.

    Google Scholar 

  2. Burger PC, Vogel FS, Green SB, Strike TA: Glioblastoma multiforme and anaplastic astrocytoma: pathologic criteria and prognostic implications. Cancer 1985, 56:1106–1111.

    Article  PubMed  CAS  Google Scholar 

  3. Kleihues P, Sobin LH: World Health Organization classification of tumors. Cancer 2000, 88:2887.

    Article  PubMed  CAS  Google Scholar 

  4. Kleihues P, Ohgaki H: Phenotype vs genotype in the evolution of astrocytic brain tumors. Toxicol Pathol 2000, 28:164–170.

    PubMed  CAS  Google Scholar 

  5. Ricci PE: Imaging of adult brain tumors. Neuroimaging Clin North Am 1999, 9:651–669.

    CAS  Google Scholar 

  6. Felix R, Schorner W, Laniado M, et al.: Brain tumors: MR imaging with gadolinium-DTPA. Radiology 1985, 156:681–688.

    PubMed  CAS  Google Scholar 

  7. Kates R, Atkinson D, Brant-Zawadzki M: Fluid-attenuated inversion recovery (FLAIR): clinical prospectus of current and future applications. Top Magn Reson Imaging 1996, 8:389–396.

    Article  PubMed  CAS  Google Scholar 

  8. Ercan N, Gultekin S, Celik H, et al.: Diagnostic value of contrast-enhanced fluid-attenuated inversion recovery MR imaging of intracranial metastases. Am J Neuroradiol 2004, 25:761–765.

    PubMed  Google Scholar 

  9. Singer MB, Atlas SW, Drayer BP: Subarachnoid space disease: diagnosis with fluid-attenuated inversion-recovery MR imaging and comparison with gadolinium-enhanced spinecho MR imaging—blinded reader study. Radiology 1998, 208:417–422.

    PubMed  CAS  Google Scholar 

  10. Edelman RR, Wielopolski P, Schmitt F: Echo-planar MR imaging. Radiology 1994, 192:600–612.

    PubMed  CAS  Google Scholar 

  11. Castillo M, Mukherji SK: Diffusion-weighted imaging in the evaluation of intracranial lesions. Semin Ultrasound CT MR 2000, 21:405–416.

    Article  PubMed  CAS  Google Scholar 

  12. Schaefer PW, Grant PE, Gonzalez RG: Diffusion-weighted MR imaging of the brain. Radiology 2000, 217:331–345.

    PubMed  CAS  Google Scholar 

  13. Holodny AI, Ollenschlager M: Diffusion imaging in brain tumors. Neuroimaging Clin North Am 2002, 12:107–124.

    Article  Google Scholar 

  14. Ito R, Mori S, Melhem ER: Diffusion tensor brain imaging and tractography. Neuroimaging Clin North Am 2002, 12:1–19.

    Article  Google Scholar 

  15. Rosen BR, Belliveau JW, Vevea JM, Brady TJ: Perfusion imaging with NMR contrast agents. Magn Res Med 1990, 14:249–265.

    Article  CAS  Google Scholar 

  16. Weisskoff R, Belliveau J, Kwong K, Rosen B: Functional MR imaging of capillary hemodynamics. In Magnetic Resonance Angiography: Concepts and Applications. Edited by Potchen E. St. Louis, MO: Mosby; 1993:473–484.

    Google Scholar 

  17. Weisskoff RM, Rosen BR: Noninvasive determination of regional cerebral blood flow in rats using dynamic imaging with Gd(DTPA). Magn Reson Med 1992, 25:211–212.

    Article  PubMed  CAS  Google Scholar 

  18. Aronen HJ, Gazit IE, Louis DN, et al.: Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 1994, 191:41–51.

    PubMed  CAS  Google Scholar 

  19. Knopp EA, Cha S, Johnson G, et al.: Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 1999, 211:791–798.

    PubMed  CAS  Google Scholar 

  20. Sugahara T, Korogi Y, Kochi M, et al.: Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. Am J Roentgenol 1998, 171:1479–1486.

    CAS  Google Scholar 

  21. Sugahara T, Korogi Y, Shigematsu Y, et al.: Perfusion-sensitive MRI of cerebral lymphomas: a preliminary report. J Comput Assist Tomogr 1999, 23:232–237.

    Article  PubMed  CAS  Google Scholar 

  22. Cha S, Pierce S, Knopp EA, et al.: Dynamic contrast-enhanced t2*-weighted MR imaging of tumefactive demyelinating lesions. Am J Neuroradiol 2001, 22:1109–1116.

    PubMed  CAS  Google Scholar 

  23. Burger PC, Vollmer RT: Histologic factors of prognostic significance in the glioblastoma multiforme. Cancer 1980, 46:1179–1186.

    Article  PubMed  CAS  Google Scholar 

  24. Kelly PJ, Daumas-Duport C, Scheithauer BE, et al.: Stereotactic histologic correlations of computed tomography and magnetic resonance imaging defined abnormalities in patients with glial neoplasms. Mayo Clin Proc 1987, 62:450–459.

    PubMed  CAS  Google Scholar 

  25. Valk PE, Dillon WP: Radiation injury of the brain. Am J Neuroradiol 1991, 12:45–62.

    PubMed  CAS  Google Scholar 

  26. Ricci PE, Karis JP, Heiserman JE, et al.: Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? [see comments]. Am J Neuroradiol 1998, 19:407–413.

    PubMed  CAS  Google Scholar 

  27. Vajkoczy P, Menger MD: Vascular microenvironment in gliomas. J Neurooncol 2000, 50:99–108.

    Article  PubMed  CAS  Google Scholar 

  28. Law M, Cha S, Knopp EA, et al.: High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology 2002, 222:715–721.

    Article  PubMed  Google Scholar 

  29. Machein MR, Plate KH: VEGF in brain tumors. J Neuro-oncol 2000, 50:109–120.

    Article  CAS  Google Scholar 

  30. Burtscher IM, Skagerberg G, Geijer B, et al.: Proton MR spectroscopy and preoperative diagnostic accuracy: an evaluation of intracranial mass lesions characterized by stereotactic biopsy findings. Am J Neuroradiol 2000, 21:84–93.

    PubMed  CAS  Google Scholar 

  31. Li X, Lu Y, Pirzkall A, et al.: Analysis of the spatial characteristics of metabolic abnormalities in newly diagnosed glioma patients. J Magn Reson Imaging 2002, 16:229–237. This is an important study.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cha, S. Update on brain tumor imaging. Curr Neurol Neurosci Rep 5, 169–177 (2005). https://doi.org/10.1007/s11910-005-0044-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-005-0044-x

Keywords

Navigation