Skip to main content

Advertisement

Log in

Progress in the pathogenesis of amyotrophic lateral sclerosis

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

This decade has seen the discovery of one cause for amyotrophic lateral sclerosis (ALS)—mutations in the copper/ zinc superoxide dismutase (SOD1) gene. Mutant SOD1 has provided an invaluable tool for transgenic and cellular experiments designed to elicit the biochemical pathways that are disturbed in ALS. We highlight recent advances in ALS research, including diagnostic issues, new loci for ALS genes, and progress in understanding the toxicity of mutant SOD1. The evidence for persistant viral infection, glutamate-mediated excitotoxicity, oxidative stress, altered neurofilament and peripherin expression, disrupted axonal transport, neurotrophin deficiency, and mitochondrial dysfunction are critically reviewed. As yet, no consensus has been achieved on the pathways that lead to selective neuronal death, and the underlying causes are still unknown in the vast majority of patients. Further clues about genetic susceptibility and environmental triggers are urgently needed so that more effective treatments for ALS can be developed, with the ultimate goal being prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Brooks BR: El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases /Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial “Clinical limits of amyotrophic lateral sclerosis” workshop contributors. J Neurol Sci 1994, 124(suppl):96–107.

    Article  PubMed  Google Scholar 

  2. Ince PG, Lowe J, Shaw PJ: Amyotrophic lateral sclerosis: current issues in classification, pathogenesis and molecular pathology. Neuropathy Appl Neurobiol 1998, 24:104–117.

    Article  CAS  Google Scholar 

  3. La Spada AR, Wilson EM, Lubahn DB, et al.: Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 1991, 352:77–79.

    Article  PubMed  Google Scholar 

  4. Ellis CM, Leary S, Payan J, et al.: Use of human intravenous immunoglobulin in lower motor neuron syndromes. J Neurol Neurosurg Psychiatr 1999, 67:15–19. A small but useful study highlighting the difficulties of diagnosing multifocal motor neuropathy and the importance of identifying this treatable ALS-like motor disorder.

    Article  PubMed  CAS  Google Scholar 

  5. Parboosingh JS, Figlewicz DA, Krizus A, et al.: Spinobulbar muscular atrophy can mimic ALS: the importance of genetic testing in male patients with atypical ALS. Neurology 1997, 49:568–572.

    PubMed  CAS  Google Scholar 

  6. Kondo K: Leigh PN, Swash M, editors. Epidemiology of motor neuron disease. Motor Neuron Disease. Biology and Management. London: Springer-Verlag; 1995:19–33.

    Google Scholar 

  7. Caparros-Lefebvre D, Elbaz A: Possible relation of atypical parkinsonism in the French West Indies with consumption of tropical plants: a case-control study. Caribbean Parkinsonism Study Group. Lancet 1999, 354:281–286.

    Article  PubMed  CAS  Google Scholar 

  8. Cruz DC, Nelson LM, McGuire V, Longstreth WT, Jr: Physical trauma and family history of neurodegenerative diseases in amyotrophic lateral sclerosis: a population-based case-control study. Neuroepidemiology 1999, 18:101–110.

    Article  PubMed  CAS  Google Scholar 

  9. Nelson LM, McGuire V, Longstreth WT Jr, Matkin C: Population-based case-control study of amyotrophic lateral sclerosis in western Washington State. I. Cigarette smoking and alcohol consumption. Am J Epidemiol 2000, 151:156–163.

    PubMed  CAS  Google Scholar 

  10. Berger MM, Kopp N, Vital C, et al.: Detection and cellular localization of enterovirus RNA sequences in spinal cord of patients with ALS. Neurology 2000, 54:20–25. An interesting account of viral RNA detection in tissue and within single cells by reverse transcriptase polymerase chain reaction testing.

    Article  PubMed  CAS  Google Scholar 

  11. Andrews WD, Tuke PW, Al-Chalabi A, et al.: Detection of reverse transcriptase activity in the serum of patients with motor neurone disease. J Med Virol 2000,

  12. Rosen DR, Siddique T, Patterson D, et al.: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993, 362:59–62.

    Article  PubMed  CAS  Google Scholar 

  13. Shaw CE, Enayat ZE, Chioza BA, et al.: Mutations in all five exons of SOD-1 may cause ALS. Ann Neurol 1998, 43:390–394. The first paper to report mutations in all exons and highlight the problem of how such variously distributed mutations can lead to the same gain of toxic function and pathogenic process.

    Article  PubMed  CAS  Google Scholar 

  14. Shaw CE, Enayat ZE, Powell JF, et al.: Familial amyotrophic lateral sclerosis. Molecular pathology of a patient with a SOD1 mutation. Neurology 1997, 49:1612–1616.

    PubMed  CAS  Google Scholar 

  15. Ince PG, Tomkins J, Slade JY, et al.: Amyotrophic lateral sclerosis associated with genetic abnormalities in the gene encoding Cu/Zn superoxide dismutase: molecular pathology of five new cases, and comparison with previous reports and 73 sporadic cases of ALS. J Neuropath Exp Neurol 1998, 57:895–904. An excellent description and summary of published reports on the pathology of familial ALS.

    Article  PubMed  CAS  Google Scholar 

  16. Andersen PM, Forsgren L, Binzer M, et al.: Autosomal recessive adult-onset amyotrophic lateral sclerosis associated with homozygosity for Asp90Ala CuZn-superoxide dismutase mutation. A clinical and genealogical study of 36 patients. Brain 1996, 119:1153–1172.

    Article  PubMed  Google Scholar 

  17. Ratovitski T, Corson LB, Strain J, et al.: Variation in the biochemical/biophysical properties of mutant superoxide dismutase 1 enzymes and the rate of disease progression in familial amyotrophic lateral sclerosis kindreds. Hum Mol Genet 1999, 8:1451–1460.

    Article  PubMed  CAS  Google Scholar 

  18. Neilson S, Robinson I, Nymoen EH: Longitudinal analysis of amyotrophic lateral sclerosis mortality in Norway, 1966–1989: evidence for a susceptible subpopulation. J Neurol Sci 1994, 122:148–154.

    Article  PubMed  CAS  Google Scholar 

  19. Gurney ME, Pu H, Chiu AY, et al.: Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 1994, 264:1772–1775.

    Article  PubMed  CAS  Google Scholar 

  20. Brown RH Jr: Superoxide dismutase and familial amyotrophic lateral sclerosis: New insights into mechanisms and treatments. Ann Neurol 1996, 39:145–146.

    Article  PubMed  Google Scholar 

  21. Durham HD, Roy J, Dong L, Figlewicz DA: Aggregation of mutant Cu/Zn superoxide dismutase proteins in a culture model of ALS. J Neuropathol Exp Neurol 1997, 56:523–530.

    PubMed  CAS  Google Scholar 

  22. Wiedau Pazos M, Goto JJ, Rabizadeh S, et al.: Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science 1996, 271:515–518.

    Article  PubMed  CAS  Google Scholar 

  23. Beckman JS, Carson M, Smith CD, Koppenol WH. ALS, SOD and peroxynitrite. Nature 1993, 364:584–584.

    Article  PubMed  CAS  Google Scholar 

  24. Crow JP, Sampson JB, Zhuang Y, et al.: Decreased zinc affinity of amyotrophic lateral sclerosis-associated superoxide dismutase mutants leads to enhanced catalysis of tyrosine nitration by peroxynitrite. J Neurochem 1997, 69:1936–1944.

    Article  PubMed  CAS  Google Scholar 

  25. Estevez AG, Crow JP, Sampson JB, et al.: Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science 1999, 286:2498–2500. A fascinating description of the increased toxicity of zinc-deficient SOD1 in cultured motor neurones.

    Article  PubMed  CAS  Google Scholar 

  26. Chance PF, Rabin BA, Ryan SG, et al.: Linkage of the gene for an autosomal dominant form of juvenile amyotrophic lateral sclerosis to chromosome 9q34. Am J Hum Genet 1998, 62:633–640.

    Article  PubMed  CAS  Google Scholar 

  27. Rabin BA, Griffin JW, Crain BJ, et al.: Autosomal dominant juvenile amyotrophic lateral sclerosis. Brain 1999, 122:1539–1550.

    Article  PubMed  Google Scholar 

  28. Hentati A, Bejaoui K, Pericak-Vance MA, et al.: Linkage of recessive familial amyotrophic lateral sclerosis to chromosome 2q33-q35. Nat Genet 1994, 7:425–428.

    Article  PubMed  CAS  Google Scholar 

  29. Hentati A, Ouahchi K, Pericak-Vance MA, et al.: Linkage of a commoner form of recessive amyotrophic lateral sclerosis to chromosome 15q15-q22. Neurogenetics 1998, 2:55–60.

    Article  PubMed  CAS  Google Scholar 

  30. Figlewicz DA, Krizus A, Martinoli MG, et al.: Variants of the heavy neurofilament subunit are associated with the development of amyotrophic lateral sclerosis. Hum Mol Genet 1994, 3:1757–1761.

    Article  PubMed  CAS  Google Scholar 

  31. Tomkins J, Usher P, Slade JY, et al.: Novel insertion in the KSP region of the neurofilament heavy gene in amyotrophic lateral sclerosis (ALS). Neuro Report 1998, 9:3967–3970.

    CAS  Google Scholar 

  32. Al-Chalabi A, Andersen PM, Nilsson P, et al.: Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. Hum Mol Genet 1999, 8:157–164.

    Article  PubMed  CAS  Google Scholar 

  33. Hayward C, Colville S, Swingler RJ, Brock DJ: Molecular genetic analysis of the APEX nuclease gene in amyotrophic lateral sclerosis. Neurology 1999, 52:1899–1901.

    PubMed  CAS  Google Scholar 

  34. Giess R, Beck M, Goetz R, et al.: Potential role of LIF as a modifier gene in the pathogenesis of amyotrophic lateral sclerosis. Neurology 2000, 54:1003–1005.

    PubMed  CAS  Google Scholar 

  35. Rothstein JD, Tsai G, Kuncl RW, et al.: Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann Neurol 1990, 28:18–25.

    Article  PubMed  CAS  Google Scholar 

  36. Rothstein JD, Martin LJ, Kuncl RW: Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis see comments. N Engl J Med 1992, 326:1464–1468.

    Article  PubMed  CAS  Google Scholar 

  37. Rothstein JD, Van Kammen M, Levey AI, et al.: Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 1995, 38:73–84.

    Article  PubMed  CAS  Google Scholar 

  38. Lin CL, Bristol LA, Jin L, et al.: Aberrant RNA processing in a neurodegenerative disease: the cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron 1998, 20:589–602. A paper with many experiments describing the discovery of EAAT2 variants and postulating their pathogenic role in ALS.

    Article  PubMed  CAS  Google Scholar 

  39. Tanaka K, Watase K, Manabe T, et al.: Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 1997, 276:1699–1702.

    Article  PubMed  CAS  Google Scholar 

  40. Fray AE, Ince PG, Banner SJ, et al.: The expression of the glial glutamate transporter protein EAAT2 in motor neuron disease: an immunohistochemical study. Eur J Neurosci 1998, 10:2481–2489.

    Article  PubMed  CAS  Google Scholar 

  41. Meyer T, Munch C, Knappenberger B, et al.: Alternative splicing of the glutamate transporter EAAT2 (GLT-1). Neurosci Let 1998, 241:68–70.

    Article  CAS  Google Scholar 

  42. Meyer T, Fromm A, Munch C, et al.: The RNA of the glutamate transporter EAAT2 is variably spliced in amyotrophic lateral sclerosis and normal individuals. J Neurol Sci 1999, 170:45–50.

    Article  PubMed  CAS  Google Scholar 

  43. Nagai M, Abe K, Okamoto K, Itoyama Y: Identification of alternative splicing forms of GLT-1 mRNA in the spinal cord of amyotrophic lateral sclerosis patients. Neurosci Let 1998, 244:165–168.

    Article  CAS  Google Scholar 

  44. Takuma H, Kwak S, Yoshizawa T, Kanazawa I: Reduction of GluR2 RNA editing, a molecular change that increases calcium influx through AMPA receptors, selective in the spinal ventral gray of patients with amyotrophic lateral sclerosis see comments. Ann Neurol 1999, 46:806–815.

    Article  PubMed  CAS  Google Scholar 

  45. Ackerley S, Grierson AJ, Brownlees J, et al.: Glutamate slows axonal transport of neurofilaments in transfected neurons. J Cell Biol 2000, 150:165–176. Experiments providing a mechanistic connection between glutamate and the slowing of neurofilament transport.

    Article  PubMed  CAS  Google Scholar 

  46. Shaw PJ, Ince PG, Falkous G, Mantle D: Oxidative damage to protein in sporadic motor neuron disease spinal cord. Ann Neurol 1995, 38:691–695.

    Article  PubMed  CAS  Google Scholar 

  47. Andrus PK, Fleck TJ, Gurney ME, Hall ED: Protein oxidative damage in a transgenic mouse model of familial amyotrophic lateral sclerosis. J Neurochem 1998, 71:2041–2048.

    Article  PubMed  CAS  Google Scholar 

  48. Beal MF, Ferrante RJ, Browne SE, et al.: Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann Neurol 1997, 42:644–654.

    Article  PubMed  CAS  Google Scholar 

  49. Ferrante RJ, Shinobu LA, Schulz JB, et al.: Increased 3-nitrotyrosine and oxidative damage in mice with a human copper/zinc superoxide dismutase mutation. Ann Neurol 1997, 42:326–334.

    Article  PubMed  CAS  Google Scholar 

  50. Tohgi H, Abe T, Yamazaki K, et al.: Remarkable increase in cerebrospinal fluid 3-nitrotyrosine in patients with sporadic amyotrophic lateral sclerosis. Ann Neurol 1999, 46:129–131. Describes a sevenfold increase in cerebrospinal fluid 3-nitrotyrosine, which is a very significant clue to disturbed biochemistry in ALS.

    Article  PubMed  CAS  Google Scholar 

  51. Chou SM, Han CY, Wang HS, et al.: A receptor for advanced glycosylation endproducts (AGEs) is colocalized with neurofilament-bound AGEs and SOD1 in motoneurons of ALS: immunohistochemical study. J Neurol Sci 1999, 169:87–92.

    Article  PubMed  CAS  Google Scholar 

  52. Chou SM, Wang HS, Taniguchi A, Bucala R: Advanced glycation endproducts in neurofilament conglomeration of motoneurons in familial and sporadic amyotrophic lateral sclerosis. Mol Med 1998, 4:324–332.

    PubMed  CAS  Google Scholar 

  53. Lee MK, Marszalek JR, Cleveland DW: A mutant neurofilament subunit causes massive, selective motor neuron death: implications for the pathogenesis of human motor neuron disease. Neuron 1994, 13:975–988.

    Article  PubMed  CAS  Google Scholar 

  54. Cote F, Collard JF, Julien JP: Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: a mouse model of amyotrophic lateral sclerosis. Cell 1993, 73:35–46.

    Article  PubMed  CAS  Google Scholar 

  55. Marszalek JR, Williamson TL, Lee MK, et al.: Neurofilament subunit NF-H modulates axonal diameter by selectively slowing neurofilament transport. J Cell Biol 1996, 135:711–724.

    Article  PubMed  CAS  Google Scholar 

  56. Couillard-Despres S, Zhu Q, Wong PC, et al.: Protective effect of neurofilament heavy gene overexpression in motor neuron disease induced by mutant superoxide dismutase. Proc Nat Acad Sci USA 1998, 95:9626–9630.

    Article  PubMed  CAS  Google Scholar 

  57. Williamson TL, Bruijn LI, Zhu Q, et al.: Absence of neurofilaments reduces the selective vulnerability of motor neurons and slows disease caused by a familial amyotrophic lateral sclerosis-linked superoxide dismutase 1 mutant. Proc Nat Acad Sci USA 1998, 95:9631–9636.

    Article  PubMed  CAS  Google Scholar 

  58. Beaulieu JM, Nguyen MD, Julien JP: Late onset death of motor neurons in mice overexpressing wild-type peripherin. J Cell Biol 1999, 147:531–544.

    Article  PubMed  CAS  Google Scholar 

  59. Strong MJ: Neurofilament metabolism in sporadic amyotrophic lateral sclerosis. J Neurol Sci 1999, 169:170–177.

    Article  PubMed  CAS  Google Scholar 

  60. Arakawa Y, Sendtner M, Thoenen H: Survival effect of ciliary neurotrophic factor (CNTF) on chick embryonic motoneurons in culture: comparison with other neurotrophic factors and cytokines. J Neurosci 1990, 10:3507–3515.

    PubMed  CAS  Google Scholar 

  61. Sendtner M, Schmalbruch H, Stockli KA, et al.: Ciliary neurotrophic factor prevents degeneration of motor neurons in mouse mutant progressive motor neuronopathy. Nature 1992, 358:502–504.

    Article  PubMed  CAS  Google Scholar 

  62. Dal Canto MC, Gurney ME: Development of central nervous system pathology in a murine transgenic model of human amyotrophic lateral sclerosis. Am J Pathol 1994, 145:1271–1279.

    Google Scholar 

  63. Kurek JB, Radford AJ, Crump DE, et al.: LIF (AM424), a promising growth factor for the treatment of ALS. J Neurol Sci 1998, 160(suppl 1):6–13.

    Google Scholar 

  64. Ikeda K, Kinoshita M, Tagaya N, et al.: Coadministration of interleukin-6 (IL-6) and soluble IL-6 receptor delays progression of wobbler mouse motor neuron disease. Brain Res 1996, 726:91–97.

    Article  PubMed  CAS  Google Scholar 

  65. Comi GP, Bordoni A, Salani S, et al.: Cytochrome c oxidase subunit I microdeletion in a patient with motor neuron disease. Ann Neurol 1998, 43:110–116.

    Article  PubMed  CAS  Google Scholar 

  66. Swerdlow RH, Parks JK, Cassarino DS, et al.: Mitochondria in sporadic amyotrophic lateral sclerosis. Exp Neurol 1998, 153:135–142.

    Article  PubMed  CAS  Google Scholar 

  67. Borthwick GM, Johnson MA, Ince PG, et al.: Mitochondrial enzyme activity in amyotrophic lateral sclerosis: implications for the role of mitochondria in neuronal cell death. Ann Neurol 1999, 46:787–790.

    Article  PubMed  CAS  Google Scholar 

  68. Vielhaber S, Kunz D, Winkler K, et al.: Mitochondrial DNA abnormalities in skeletal muscle of patients with sporadic amyotrophic lateral sclerosis. Brain 2000, 123:1339–1348.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaw, C.E., Al-Chalabi, A. & Leigh, N. Progress in the pathogenesis of amyotrophic lateral sclerosis. Curr Neurol Neurosci Rep 1, 69–76 (2001). https://doi.org/10.1007/s11910-001-0078-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-001-0078-7

Keywords

Navigation