Skip to main content

Advertisement

Log in

Use of Corticosteroids and Other Adjunct Therapies for Acute Bacterial Meningitis in Adults

  • Central Nervous System and Eye Infections (KC Bloch, Section Editor)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Acute bacterial meningitis is associated with high morbidity and mortality despite the availability of effective antibiotics. The inflammatory response induced by bacterial products in the subarachnoid space is responsible for neuronal injury. The use of adjuvant therapy in acute bacterial meningitis draws its rationale from the notion of arresting the inflammatory cascade at an early stage of the disease to improve clinical outcome. Corticosteroids have been studied extensively in these patients and seems effective in selective groups of patients, particularly those with pneumococcal meningitis. Glycerol appears harmful in adults with acute bacterial meningitis. Experimental models suggest promising role of newer anti-inflammatory drugs such as antioxidants, inhibitors of Tumor Necrosis Factor-α, poly-ADP-ribose inhibitors, caspase inhibitors, brain-derived neurotrophic factor etc.; however clinical trials are still lacking for these novel potential targets in acute bacterial meningitis. This review focuses on corticosteroids with comments on the role of other potential adjuvant therapy in adults with acute bacterial meningitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Thigpen MC, Whitney CG, Messonnier NE, Zell ER, Lynfield R, Hadler JL, et al. Bacterial meningitis in the United States, 1998–2007. N Engl J Med. 2011;364(21):2016–25.

    Article  PubMed  CAS  Google Scholar 

  2. van de Beek D, de Gans J, Tunkel AR, Wijdicks EF. Communityacquired bacterial meningitis in adults. N Engl J Med. 2006;354:44–53.

    Article  PubMed  Google Scholar 

  3. Ebrahim GJ. Meningococcal meningitis. J Trop Pediatr. 1997;43(3):126–7.

    Article  PubMed  CAS  Google Scholar 

  4. Quagliarello VJ, Scheld WM. Treatment of bacterial meningitis. N Engl J Med. 1997;336(10):708–16.

    Article  PubMed  CAS  Google Scholar 

  5. Erickson L, De Wals P. Complications and sequelae of meningococcal disease in Quebec, Canada, 1990–1994. Clin Infect Dis. 1998;26(5):1159–64.

    Article  PubMed  CAS  Google Scholar 

  6. Arditi M, Mason Jr EO, Bradley JS, Tan TQ, Barson WJ, Schutze GE, et al. Three-year multicenter surveillance of pneumococcal meningitis in children: clinical characteristics, and outcome related to penicillin susceptibility and dexamethasone use. Pediatrics. 1998;102(5):1087–97.

    Article  PubMed  CAS  Google Scholar 

  7. Grimwood K, Anderson P, Anderson V, Tan L, Nolan T. Twelve year outcomes following bacterial meningitis: further evidence for persisting effects. Arch Dis Child. 2000;83(2):111–6.

    Article  PubMed  CAS  Google Scholar 

  8. Baraff LJ, Lee SI, Schriger DL. Outcomes of bacterial meningitis in children: a meta-analysis. Pediatr Infect Dis J. 1993;12(5):389–94.

    Article  PubMed  CAS  Google Scholar 

  9. Quagliarello V, Scheld WM. Bacterial meningitis: pathogenesis, pathophysiology, and progress. N Engl J Med. 1992;327(12):864–72.

    Article  PubMed  CAS  Google Scholar 

  10. Nelson Jr RP. Bacterial meningitis and inflammation. Curr Opin Neurol. 2006;19(4):369–73.

    Article  PubMed  CAS  Google Scholar 

  11. Tunkel AR. Bacterial meningitis. Philadelphia: Williams & Wilkins; 2001.

    Google Scholar 

  12. Zwijnenburg PJG, van der Poll T, Roord JJ, van Furth AM. Chemotactic factors in cerebrospinal fluid during bacterial meningitis. Infect Immun. 2006;74(3):1445–51.

    Article  PubMed  CAS  Google Scholar 

  13. Grandgirard D, Leib SL. Strategies to prevent neuronal damage in paediatric bacterial meningitis. Curr Opin Pediatr. 2006;18(2):112–8.

    Article  PubMed  Google Scholar 

  14. Pomar V, Martínez S, Paredes R, Domingo P. Advances in adjuvant therapy against acute bacterial meningitis. Curr Drug Targets Infect Disord. 2004;4(4):303–9.

    Article  PubMed  CAS  Google Scholar 

  15. Frei K, Nadal D, Pfister HW, Fontana A. Listeria meningitis: identification of a cerebrospinal fluid inhibitor of macrophage listericidal function as interleukin 10. J Exp Med. 1993;178(4):1255–61.

    Article  PubMed  CAS  Google Scholar 

  16. van Furth AM, Seijmonsbergen EM, Langermans JA, Groeneveld PH, de Bel CE, van Furth R. High levels of interleukin 10 and tumor necrosis factor alpha in cerebrospinal fluid during the onset of bacterial meningitis. Clin Infect Dis. 1995;21(1):220–2.

    Article  PubMed  Google Scholar 

  17. Kornelisse RF, Savelkoul HF, Mulder PH, Suur MH, van der Straaten PJ, van der Heijden AJ, et al. Interleukin-10 and soluble tumor necrosis factor receptors in cerebrospinal fluid of children with bacterial meningitis. J Infect Dis. 1996;173(6):1498–502.

    Article  PubMed  CAS  Google Scholar 

  18. Malipiero U, Koedel U, Pfister W, Fontana A. Bacterial meningitis: the role of transforming growth factor-Beta in innate immunity and secondary brain damage. Neurodegener Dis. 2007;4(1):43–50.

    Article  PubMed  CAS  Google Scholar 

  19. Leib SL, Clements JM, Lindberg RL, Heimgartner C, Loeffler JM, Pfister LA, et al. Inhibition of matrix metalloproteinases and tumour necrosis factor alpha converting enzyme as adjuvant therapy in pneumococcal meningitis. Brain. 2001;124(Pt 9):1734–42.

    Article  PubMed  CAS  Google Scholar 

  20. van de Beek D, Weisfelt M, de Gans J, Tunkel AR, Wijdicks EFM. Drug Insight: adjunctive therapies in adults with bacterial meningitis. Nat Clin Pract Neurol. 2006;2(9):504–16.

    Article  PubMed  Google Scholar 

  21. Grandgirard D, Schürch C, Cottagnoud P, Leib SL. Prevention of brain injury by the nonbacteriolytic antibiotic daptomycin in experimental pneumococcal meningitis. Antimicrob Agents Chemother. 2007;51(6):2173–8.

    Article  PubMed  CAS  Google Scholar 

  22. Balis FM, Lester CM, Chrousos GP, Heideman RL, Poplack DG. Differences in cerebrospinal fluid penetration of corticosteroids: possible relationship to the prevention of meningeal leukemia. J Clin Oncol. 1987;5(2):202–7.

    PubMed  CAS  Google Scholar 

  23. •• de Gans J, van de Beek D. Dexamethasone in adults with bacterial meningitis. N Engl J Med. 2002;347(20):1549–56. This study included 301 acute bacterial meningitis patients in which dexamethasone group was associated with favourable outcome among the patients with pneumococcal meningitis.

    Article  PubMed  Google Scholar 

  24. McIntyre PB, Berkey CS, King SM, Schaad UB, Kilpi T, Kanra GY, et al. Dexamethasone as adjunctive therapy in bacterial meningitis. A meta-analysis of randomized clinical trials since 1988. JAMA. 1997;278(11):925–31.

    Article  PubMed  CAS  Google Scholar 

  25. Bennett I, Finland M, Hamburger M, et al. The effectiveness of hydrocortisone in the management of severe infections. JAMA. 1963;183(6):462–5.

    Google Scholar 

  26. DeLemos RA, Haggerty RJ. Corticosteroids as an adjunct to treatment in bacterial meningitis. A controlled clinical trial. Pediatrics. 1969;44(1):30–4.

    PubMed  CAS  Google Scholar 

  27. Lebel MH, Freij BJ, Syrogiannopoulos GA, Chrane DF, Hoyt MJ, Stewart SM, et al. Dexamethasone therapy for bacterial meningitis. Results of two double-blind, placebo-controlled trials. N Engl J Med. 1988;319(15):964–71.

    Article  PubMed  CAS  Google Scholar 

  28. Lebel MH, Hoyt MJ, Waagner DC, Rollins NK, Finitzo T, McCracken Jr GH. Magnetic resonance imaging and dexamethasone therapy for bacterial meningitis. Am J Dis Child. 1989;143(3):301–6.

    PubMed  CAS  Google Scholar 

  29. Odio CM, Faingezicht I, Paris M, Nassar M, Baltodano A, Rogers J, et al. The beneficial effects of early dexamethasone administration in infants and children with bacterial meningitis. N Engl J Med. 1991;324(22):1525–31.

    Article  PubMed  CAS  Google Scholar 

  30. •• Nguyen THM, Tran THC, Thwaites G, Ly VC, Dinh XS, Ho Dang TN, et al. Dexamethasone in Vietnamese adolescents and adults with bacterial meningitis. N Engl J Med. 2007;357(24):2431–40. This study included 435 patients shows dexamethasone, had significant effect on the patients with confirmed bacterial meningitis.

    Article  PubMed  CAS  Google Scholar 

  31. •• Scarborough M, Gordon SB, Whitty CJM, French N, Njalale Y, Chitani A, et al. Corticosteroids for bacterial meningitis in adults in sub-Saharan Africa. N Engl J Med. 2007;357(24):2441–50. This study is an important RCT was conducted in Malawi on 465 patients, most of whom were human immunodeficiency virus (HIV) positive. This trial did not support the routine use of corticosteroids in the management of adult bacterial meningitis in resource-poor areas where relatively higher proportion of population is HIV positive.

    Article  PubMed  CAS  Google Scholar 

  32. •• van de Beek D, Farrar JJ, de Gans J, Mai NTH, Molyneux EM, Peltola H, et al. Adjunctive dexamethasone in bacterial meningitis: a meta-analysis of individual patient data. Lancet Neurol. 2010;9(3):254–63. This study is a recently published individual patient data meta-analysis included five large double blinded RCTs since 2001.

    Article  PubMed  Google Scholar 

  33. • Vardakas KZ, Matthaiou DK, Falagas ME. Adjunctive dexamethasone therapy for bacterial meningitis in adults: a meta-analysis of randomized controlled trials. Eur J Neurol. 2009;16(6):662–73. This is a meta-analysis article included four large trials on this topic.

    Article  PubMed  CAS  Google Scholar 

  34. • Assiri AM, Alasmari FA, Zimmerman VA, Baddour LM, Erwin PJ, Tleyjeh IM. Corticosteroid administration and outcome of adolescents and adults with acute bacterial meningitis: a meta-analysis. Mayo Clin Proc. 2009;84(5):403–9. This is a meta-analysis article on this topic.

    PubMed  CAS  Google Scholar 

  35. •• Brouwer MC, McIntyre P, de Gans J, Prasad K, van de Beek D. Corticosteroids for acute bacterial meningitis. Cochrane Database Syst Rev. 2010;9:CD004405. This article is a Cochrane review evaluated corticosteroid versus placebo on mortality, hearing loss and neurological sequelae in patients with acute bacterial meningitis. Twenty-four randomized control studies involving 4041 patients were included in the review.

    PubMed  Google Scholar 

  36. Dye C, Scheele S, Dolin P, Pathania V, Raviglione MC. Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA. 1999;282(7):677–86.

    Article  PubMed  CAS  Google Scholar 

  37. Zoghbi HY, Okumura S, Laurent JP, Fishman MA. Acute effect of glycerol on net cerebrospinal fluid production in dogs. J Neurosurg. 1985;63(5):759–62.

    Article  PubMed  CAS  Google Scholar 

  38. Täuber MG, Sande MA. General principles of therapy of pyogenic meningitis. Infect Dis Clin North Am. 1990;4(4):661–76.

    PubMed  Google Scholar 

  39. Täuber MG, Doroshow CA, Hackbarth CJ, Rusnak MG, Drake TA, Sande MA. Antibacterial activity of beta-lactam antibiotics in experimental meningitis due to Streptococcus pneumoniae. J Infect Dis. 1984;149(4):568–74.

    Article  PubMed  Google Scholar 

  40. Strausbaugh LJ, Sande MA. Factors influencing the therapy of experimental Proteus mirabilis meningitis in rabbits. J Infect Dis. 1978;137(3):251–60.

    Article  PubMed  CAS  Google Scholar 

  41. McCurdy DK, Schneider B, Scheie HG. Oral glycerol: the mechanism of intraocular hypotension. Am J Ophthalmol. 1966;61(5 Pt 2):1244–9.

    PubMed  CAS  Google Scholar 

  42. Weisfelt M, van de Beek D, Spanjaard L, Reitsma JB, de Gans J. Clinical features, complications, and outcome in adults with pneumococcal meningitis: a prospective case series. Lancet Neurol. 2006;5(2):123–9.

    Article  PubMed  Google Scholar 

  43. Ashwal S, Stringer W, Tomasi L, Schneider S, Thompson J, Perkin R. Cerebral blood flow and carbon dioxide reactivity in children with bacterial meningitis. J Pediatr. 1990;117(4):523–30.

    Article  PubMed  CAS  Google Scholar 

  44. •• Ajdukiewicz KM, Cartwright KE, Scarborough M, Mwambene JB, Goodson P, Molyneux ME, Zijlstra EE, French N, Whitty CJ, Lalloo DG. Glycerol adjuvant therapy in adults with bacterial meningitis in a high HIV seroprevalence setting in Malawi: a double-blind, randomised controlled trial. Lancet Infect Dis. 2011;11(4):293–300. This study is a good, high quality, placebo-controlled, double blinded randomized control trial evaluated the role of glycerol in adult bacterial meningitis.

    Article  PubMed  CAS  Google Scholar 

  45. Peltola H, Roine I, Fernández J, González Mata A, Zavala I, Gonzalez Ayala S, et al. Hearing impairment in childhood bacterial meningitis is little relieved by dexamethasone or glycerol. Pediatrics. 2010;125(1):e1–8.

    Article  PubMed  Google Scholar 

  46. Sankar J, Singhi P, Bansal A, Ray P, Singhi S. Role of dexamethasone and oral glycerol in reducing hearing and neurological sequelae in children with bacterial meningitis. Indian Pediatr. 2007;44(9):649–56.

    PubMed  Google Scholar 

  47. Peltola H, Roine I, Fernández J, Zavala I, Ayala SG, Mata AG, et al. Adjuvant glycerol and/or dexamethasone to improve the outcomes of childhood bacterial meningitis: a prospective, randomized, double-blind, placebo-controlled trial. Clin Infect Dis. 2007;45(10):1277–86.

    Article  PubMed  CAS  Google Scholar 

  48. Blaser C, Klein M, Grandgirard D, Wittwer M, Peltola H, Weigand M, et al. Adjuvant glycerol is not beneficial in experimental pneumococcal meningitis. BMC Infect Dis. 2010;10:84.

    Article  PubMed  Google Scholar 

  49. Kilpi T, Peltola H, Jauhiainen T, Kallio MJ. Oral glycerol and intravenous dexamethasone in preventing neurologic and audiologic sequelae of childhood bacterial meningitis. The Finnish Study Group. Pediatr Infect Dis J. 1995;14(4):270–8.

    Article  PubMed  CAS  Google Scholar 

  50. Lindvall P, Ahlm C, Ericsson M, Gothefors L, Naredi S, Koskinen L-OD. Reducing intracranial pressure may increase survival among patients with bacterial meningitis. Clin Infect Dis. 2004;38(3):384–90.

    Article  PubMed  Google Scholar 

  51. Edberg M, Furebring M, Sjölin J, Enblad P. Neurointensive care of patients with severe community-acquired meningitis. Acta Anaesthesiol Scand. 2011;55(6):732–9.

    Article  PubMed  CAS  Google Scholar 

  52. Baussart B, Cheisson G, Compain M, Leblanc PE, Tadie M, Benhamou D, et al. Multimodal cerebral monitoring and decompressive surgery for the treatment of severe bacterial meningitis with increased intracranial pressure. Acta Anaesthesiol Scand. 2006;50(6):762–5.

    Article  PubMed  CAS  Google Scholar 

  53. Wijdicks EFM. Induced hypothermia in neurocatastrophes: feeling the chill. Rev Neurol Dis. 2004;1(1):10–5.

    PubMed  Google Scholar 

  54. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N. Engl. J. Med. 2002; 346(8): 549–556, Feb

  55. Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346(8):557–63.

    Article  PubMed  Google Scholar 

  56. Shankaran S, Laptook AR, Ehrenkranz RA, Tyson JE, McDonald SA, Donovan EF, et al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med. 2005;353(15):1574–84.

    Article  PubMed  CAS  Google Scholar 

  57. Olsen TS, Weber UJ, Kammersgaard LP. Therapeutic hypothermia for acute stroke. Lancet Neurol. 2003;2(7):410–6.

    Article  PubMed  Google Scholar 

  58. Angstwurm K, Reuss S, Freyer D, Arnold G, Dirnagl U, Schumann RR, et al. Induced hypothermia in experimental pneumococcal meningitis. J Cereb Blood Flow Metab. 2000;20(5):834–8.

    Article  PubMed  CAS  Google Scholar 

  59. Deng H, Han HS, Cheng D, Sun GH, Yenari MA. Mild hypothermia inhibits inflammation after experimental stroke and brain inflammation. Stroke. 2003;34(10):2495–501.

    Article  PubMed  Google Scholar 

  60. van der Poll T. Immunotherapy of sepsis. Lancet Infect Dis. 2001;1(3):165–74.

    Article  PubMed  Google Scholar 

  61. Alejandria MM, Lansang MA, Dans LF, Mantaring JB. Intravenous immunoglobulin for treating sepsis and septic shock. Cochrane Database Syst Rev. 2002;1:CD001090.

    PubMed  Google Scholar 

  62. Neu IS, Pelka RB. Immunoglobulins in bacterial and viral meningitis. Results of a controlled randomized clinical study of intravenous and intrathecal application. Fortschr Med. 1982;100(17):802–9.

    PubMed  CAS  Google Scholar 

  63. van der Flier M, Geelen SPM, Kimpen JLL, Hoepelman IM, Tuomanen EI. Reprogramming the host response in bacterial meningitis: how best to improve outcome? Clin Microbiol Rev. 2003;16(3):415–29.

    Article  PubMed  Google Scholar 

  64. Koedel U, Scheld WM, Pfister H-W. Pathogenesis and pathophysiology of pneumococcal meningitis. Lancet Infect Dis. 2002;2(12):721–36.

    Article  PubMed  Google Scholar 

  65. Kim KS. Pathogenesis of bacterial meningitis: from bacteraemia to neuronal injury. Nat Rev Neurosci. 2003;4(5):376–85.

    Article  PubMed  CAS  Google Scholar 

  66. Kastenbauer S. Pneumococcal meningitis: a 21st century perspective. Lancet Neurol. 2006;5(2):104–5.

    Article  PubMed  Google Scholar 

  67. Kastenbauer S, Koedel U, Weih F, Ziegler-Heitbrock L, Pfister H-W. Protective role of NF-kappaB1 (p50) in experimental pneumococcal meningitis. Eur J Pharmacol. 2004;498(1–3):315–8.

    Article  PubMed  CAS  Google Scholar 

  68. Bifrare Y-D, Kummer J, Joss P, Täuber MG, Leib SL. Brain-derived neurotrophic factor protects against multiple forms of brain injury in bacterial meningitis. J Infect Dis. 2005;191(1):40–5.

    Article  PubMed  CAS  Google Scholar 

  69. Kieseier BC, Paul R, Koedel U, Seifert T, Clements JM, Gearing AJ, et al. Differential expression of matrix metalloproteinases in bacterial meningitis. Brain. 1999;122(Pt 8):1579–87.

    Article  PubMed  Google Scholar 

  70. Leib SL, Leppert D, Clements J, Täuber MG. Matrix metalloproteinases contribute to brain damage in experimental pneumococcal meningitis. Infect Immun. 2000;68(2):615–20.

    Article  PubMed  CAS  Google Scholar 

  71. Tsukahara H, Haruta T, Todoroki Y, Hiraoka M, Noiri E, Maeda M, et al. Oxidant and antioxidant activities in childhood meningitis. Life Sci. 2002;71(23):2797–806.

    Article  PubMed  CAS  Google Scholar 

  72. Koedel U, Pfister HW. Protective effect of the antioxidant N-acetyl-L-cysteine in pneumococcal meningitis in the rat. Neurosci Lett. 1997;225(1):33–6.

    Article  PubMed  CAS  Google Scholar 

  73. Auer M, Pfister LA, Leppert D, Täuber MG, Leib SL. Effects of clinically used antioxidants in experimental pneumococcal meningitis. J Infect Dis. 2000;182(1):347–50.

    Article  PubMed  CAS  Google Scholar 

  74. Leib SL, Kim YS, Chow LL, Sheldon RA, Täuber MG. Reactive oxygen intermediates contribute to necrotic and apoptotic neuronal injury in an infant rat model of bacterial meningitis due to group B streptococci. J Clin Invest. 1996;98(11):2632–9.

    Article  PubMed  CAS  Google Scholar 

  75. Loeffler JM, Ringer R, Hablützel M, Täuber MG, Leib SL. The free radical scavenger alpha-phenyl-tert-butyl nitrone aggravates hippocampal apoptosis and learning deficits in experimental pneumococcal meningitis. J Infect Dis. 2001;183(2):247–52.

    Article  PubMed  CAS  Google Scholar 

  76. Winkler F, Koedel U, Kastenbauer S, Pfister HW. Differential expression of nitric oxide synthases in bacterial meningitis: role of the inducible isoform for blood-brain barrier breakdown. J Infect Dis. 2001;183(12):1749–59.

    Article  PubMed  CAS  Google Scholar 

  77. Koedel U, Paul R, Winkler F, Kastenbauer S, Huang PL, Pfister HW. Lack of endothelial nitric oxide synthase aggravates murine pneumococcal meningitis. J Neuropathol Exp Neurol. 2001;60(11):1041–50.

    PubMed  CAS  Google Scholar 

  78. Koedel U, Winkler F, Angele B, Fontana A, Pfister H-W. Meningitis-associated central nervous system complications are mediated by the activation of poly(ADP-ribose) polymerase. J Cereb Blood Flow Metab. 2002;22(1):39–49.

    Article  PubMed  CAS  Google Scholar 

  79. Klein M, Koedel U, Pfister H-W, Kastenbauer S. Meningitis-associated hearing loss: protection by adjunctive antioxidant therapy. Ann Neurol. 2003;54(4):451–8.

    Article  PubMed  CAS  Google Scholar 

  80. Koedel U, Bayerlein I, Paul R, Sporer B, Pfister HW. Pharmacologic interference with NF-kappaB activation attenuates central nervous system complications in experimental Pneumococcal meningitis. J Infect Dis. 2000;182(5):1437–45.

    Article  PubMed  CAS  Google Scholar 

  81. Echchannaoui H, Leib SL, Neumann U, Landmann RMA. Adjuvant TACE inhibitor treatment improves the outcome of TLR2-/- mice with experimental pneumococcal meningitis. BMC Infect Dis. 2007;7:25.

    Article  PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kameshwar Prasad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, K., Rai, N.K. & Kumar, A. Use of Corticosteroids and Other Adjunct Therapies for Acute Bacterial Meningitis in Adults. Curr Infect Dis Rep 14, 445–453 (2012). https://doi.org/10.1007/s11908-012-0271-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11908-012-0271-7

Keywords

Navigation