Skip to main content

Advertisement

Log in

The Pathogenesis and Prevention of Encephalitis due to Human Enterovirus 71

  • Central Nervous System and Eye Infections (KC Bloch, Section Editor)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Human enterovirus 71 (HEV71) has emerged as a major cause of viral encephalitis in Southeast Asia, with increased epidemic activity observed since 1997. This is reflected in a large increase in scientific publications relating directly to HEV71. New research is elucidating details of the viral life cycle, confirming similarities between HEV71 and other enteroviruses. Scavenger receptor B2 (SCARB2) is a receptor for HEV71, although other receptors are likely to be identified. Currently, the only strategies to prevent HEV71-associated disease are early diagnosis and aggressive supportive management of identified cases. As more information emerges regarding the molecular processes of HEV71 infection, further advances may lead to the development of effective antiviral treatments and ultimately a vaccine-protection strategy. The protective efficacies of several inactivated HEV71 vaccines have been confirmed in animal models, suggesting that an effective vaccine may become available in the next decade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. McMinn P. An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS Microbiol Rev. 2002;26(1):91–107.

    Article  PubMed  CAS  Google Scholar 

  2. Xu W, Liu C-F, Yan L, et al. Distribution of enteroviruses in hospitalized children with hand, foot and mouth disease and relationship between pathogens and nervous system complications. Virol J. 2012;9(1):8.

    Article  PubMed  Google Scholar 

  3. •• Bek EJ, Hussain KM, Phuektes P, et al. Formalin-inactivated vaccine provokes cross-protective immunity in a mouse model of human enterovirus 71 infection. Vaccine. 2011;29(29–30):4829–38. This study reports complete cross-protection between genotypes of HEV71 in a passive protection mosue model conferred by an inactivated HEV71 vaccine..

    Article  PubMed  CAS  Google Scholar 

  4. Ansardi DC, Porter DC, Anderson MJ, Morrow CD. Poliovirus assembly and encapsidation of genomic RNA. In: Karl Maramorosch FAM, Aaron JS, editors. Advances in virus research. Academic Press; 1996. p. 1–68.

  5. Chua K, Kasri A. Hand foot and mouth disease due to enterovirus 71 in Malaysia. Virol Sin. 2011;26(4):221–8.

    Article  PubMed  Google Scholar 

  6. Wang SM, Ho TS, Lin HC, et al. Reemerging of enterovirus 71 in Taiwan: the age impact on disease severity. European journal of clinical microbiology & infectious diseases: official publication of the European Society of Clinical Microbiology, 2011.

  7. Tan X, Huang X, Zhu S, et al. The persistent circulation of enterovirus 71 in people’s republic of china: causing emerging nationwide epidemics since 2008. PLoS One. 2011;6(9):e25662.

    Article  PubMed  CAS  Google Scholar 

  8. Mao Q, Li N, Yu X, et al. Antigenicity, animal protective effect and genetic characteristics of candidate vaccine strains of enterovirus 71. Arch Virol. 2012;157(1):37–41.

    Article  PubMed  CAS  Google Scholar 

  9. Yang F, Zhang T, Hu Y, et al. Survey of enterovirus infections from hand, foot and mouth disease outbreak in china, 2009. Virol J. 2011;8(1):508.

    Article  PubMed  Google Scholar 

  10. Bek EJ, McMinn PC. Recent advances in research on human enterovirus 71. Futur Virol. 2010;5(4):453–68.

    Article  CAS  Google Scholar 

  11. Puenpa J, Theamboonlers A, Korkong S, et al. Molecular characterization and complete genome analysis of human enterovirus 71 and coxsackievirus A16 from children with hand, foot and mouth disease in Thailand during 2008–2011. Arch Virol. 2011;156(11):2007–13.

    Article  PubMed  CAS  Google Scholar 

  12. Schuffenecker I, Mirand A, Antona D, et al. Epidemiology of human enterovirus 71 infections in France, 2000–2009. J Clin Virol. 2011;50(1):50–6.

    Article  PubMed  Google Scholar 

  13. Ang L-W, Phoon M-C, Wu Y, et al. The changing seroepidemiology of enterovirus 71 infection among children and adolescents in Singapore. BMC Infect Dis. 2011;11(1):270.

    Article  PubMed  Google Scholar 

  14. Kadurugamuwa JL, Shaheen E. Inactivation of human enterovirus 71 and coxsackie virus A16 and hand, foot, and mouth disease. Am J Infect Control. 2011;39(9):788–9.

    Article  PubMed  Google Scholar 

  15. Tu PV, Thao NTT, Perera D, et al. Epidemiologic and virologic investigation of hand, foot, and mouth disease, southern Vietnam, 2005. Emerg Infect Dis. 2007;13(11):1733–41.

    Article  PubMed  CAS  Google Scholar 

  16. Surveillance of hand, foot and mouth disease in Singapore. Epidemiol News Bull. 2000:3–5.

  17. Wu TN, Tsai SF, Li SF, et al. Sentinel surveillance for enterovirus 71, Taiwan, 1998. Emerg Infect Dis. 1999;5(3):458–60.

    Article  PubMed  CAS  Google Scholar 

  18. •• Tee KK, Lam TT-Y, Chan YF, et al. Evolutionary genetics of human enterovirus 71: origin, population dynamics, natural selection, and seasonal periodicity of the VP1 gene. J Virol. 2010;84(7):3339–50. This paper is an excellent up-to-date review of HEV71 epidemiology and analysis of recent evidence of recombination..

    Article  PubMed  CAS  Google Scholar 

  19. Zhang Y, Wang J, Guo W, et al. Emergence and transmission pathways of rapidly evolving evolutionary branch C4a strains of human enterovirus 71 in the central plain of China. PLoS One. 2011;6(11):e27895.

    Article  PubMed  CAS  Google Scholar 

  20. Choi CS, Choi YJ, Choi UY, et al. Clinical manifestations of CNS infections caused by enterovirus type 71. Korean J Pediatr. 2011;54(1):11–6.

    Article  PubMed  Google Scholar 

  21. Huang S-W, Hsu Y-W, Smith DJ, et al. Reemergence of enterovirus 71 in 2008 in Taiwan: dynamics of genetic and antigenic evolution from 1998 to 2008. J Clin Microbiol. 2009;47(11):3653–62.

    Article  PubMed  Google Scholar 

  22. Solomon TA, Willison HB. Infectious causes of acute flaccid paralysis. Curr Opin Infect Dis. 2003;16(5):375–81.

    Article  PubMed  Google Scholar 

  23. Huang S-W, Kiang D, Smith DJ, Wang J-R. Evolution of re-emergent virus and its impact on enterovirus 71 epidemics. Exp Biol Med. 2011;236(8):899–908.

    Article  CAS  Google Scholar 

  24. Yan X-F, Gao S, Xia J-F, et al. Epidemic characteristics of hand, foot, and mouth disease in Shanghai from 2009 to 2010: enterovirus 71 subgenotype C4 as the primary causative agent and a high incidence of mixed infections with coxsackievirus A16. Scand J Infect Dis. 2011, Epub ahead of print:1–9.

  25. van der Sanden S, van Eek J, Martin DP, et al. Detection of recombination breakpoints in the genomes of human enterovirus 71 strains isolated in the Netherlands in epidemic and non-epidemic years, 1963–2010. Infect Genet Evol. 2011;11(5):886–94.

    Article  PubMed  Google Scholar 

  26. •• McWilliam Leitch EC, Cabrerizo M, Cardosa J, et al. The association of recombination events in the founding and emergence of subgenogroup evolutionary lineages of human enterovirus 71. J Virol. 2011;86(5):2676–85. This paper provides compelling evidence of the role of recombination events in the evolution of new epidemic strains of HEV71..

    Article  PubMed  CAS  Google Scholar 

  27. Chen X, Zhang Q, Li J, et al. Analysis of recombination and natural selection in human enterovirus 71. Virology. 2010;398(2):251–61.

    Article  PubMed  CAS  Google Scholar 

  28. Yoke-Fun C, AbuBakar S. Phylogenetic evidence for inter-typic recombination in the emergence of human enterovirus 71 subgenotypes. BMC Microbiol. 2006;6(1):74.

    Article  PubMed  CAS  Google Scholar 

  29. Yip C, Lau S, Zhou B, et al. Emergence of enterovirus 71 “double-recombinant” strains belonging to a novel genotype D originating from southern China: first evidence for combination of intratypic and intertypic recombination events in EV71. Arch Virol. 2010;155(9):1413–24.

    Article  PubMed  CAS  Google Scholar 

  30. Chen G-W, Hsiung C, Chyn J-L, et al. Revealing molecular targets for enterovirus type 71 detection by profile hidden markov models. Virus Genes. 2005;31(3):337–47.

    Article  PubMed  CAS  Google Scholar 

  31. Bible JM, Iturriza-Gomara M, Megson B, et al. Molecular epidemiology of human enterovirus 71 in the United Kingdom from 1998 to 2006. J Clin Microbiol. 2008;46(10):3192–200.

    Article  PubMed  CAS  Google Scholar 

  32. Ooi MH, Wong SC, Lewthwaite P, et al. Clinical features, diagnosis, and management of enterovirus 71. Lancet Neurol. 2010;9(11):1097–105.

    Article  PubMed  Google Scholar 

  33. Gong J. Risk factors for fatal cases with hand-foot-mouth disease (HFMD) in Guangxi, China. Pediatr Res. 2011;70(S5):445.

    Article  Google Scholar 

  34. • World Health Organization. A guide to clinical management and public health response for hand, foot and mouth disease (HFMD). Geneva: WHO Press, World Health Organization; 2011. This is a comprehensive guide developed by the WHO that provides standardized case definitions and guidelines for clinical management of severe cases of EV71-associated HFMD. It also provides an excellent review of epidemiology, virology, diagnosis, pathogenesis and prevention of HEV71..

    Google Scholar 

  35. Witsø E, Palacios G, Rønningen KS, et al. Asymptomatic circulation of HEV71 in Norway. Virus Res. 2007;123(1):19–29.

    Article  PubMed  CAS  Google Scholar 

  36. Badran SA, Midgley S, Andersen P, Ttiger B. Clinical and virological features of enterovirus 71 infections in Denmark, 2005 to 2008. Scand J Infect Dis. 2011;43(8):642–8.

    Article  PubMed  Google Scholar 

  37. Pérez-Vélez CM, Anderson MS, Robinson CC, et al. Outbreak of neurologic enterovirus type 71 disease: a diagnostic challenge. Clin Infect Dis. 2007;45(8):950–7.

    Article  PubMed  Google Scholar 

  38. Siafakas N, Attilakos A, Vourli S, et al. Molecular detection and identification of enteroviruses in children admitted to a university hospital in Greece. Mol Cell Probes. 2011;25(5–6):249–54.

    Article  PubMed  CAS  Google Scholar 

  39. Ooi MH, Wong SC, Podin Y, et al. Human enterovirus 71 disease in Sarawak, Malaysia: a prospective clinical, virological, and molecular epidemiological study. Clin Infect Dis. 2007;44(5):646–56.

    Article  PubMed  Google Scholar 

  40. Zeng H, Wen F, Gan Y, Huang W. MRI and associated clinical characteristics of EV71-induced brainstem encephalitis in children with hand–foot–mouth disease. Neuroradiol. 2011, Epub ahead of print:1–8.

  41. Huang F-L, Chen C-H, Huang S-K, Chen P-Y. An outbreak of enterovirus 71 in a nursery. Scand J Infect Dis. 2010;42:609–12.

    Article  PubMed  Google Scholar 

  42. Chang L-Y, Huang L-M, Gau SS-F, et al. Neurodevelopment and cognition in children after enterovirus 71 infection. N Engl J Med. 2007;356(12):1226–34.

    Article  PubMed  CAS  Google Scholar 

  43. Huang C-C, Liu C-C, Chang Y-C, et al. Neurologic complications in children with enterovirus 71 infection. N Engl J Med. 1999;341(13):936–42.

    Article  PubMed  CAS  Google Scholar 

  44. Chen CY, Chang YC, Huang CC, et al. Acute flaccid paralysis in infants and young children with enterovirus 71 infection: MR imaging findings and clinical correlates. Am J Neuroradiol. 2001;22(1):200–5.

    PubMed  CAS  Google Scholar 

  45. Shen WC, Tsai CH, Chiu HH, Chow KC. MRI of Enterovirus 71 myelitis with monoplegia. Neuroradiology. 2000;42(2):124–7.

    Article  PubMed  CAS  Google Scholar 

  46. Li J, Chen F, Liu T, Wang L. MRI findings of neurological complications in hand-foot-mouth disease by enterovirus 71 infection. Int J Neurosci. 2012, Feb 20 (Epub ahead of print).

  47. Wong KT, Munisamy B, Ong KC, et al. The distribution of inflammation and virus in human enterovirus 71 encephalomyelitis suggests possible viral spread by neural pathways. J Neuropathol Exp Neurol. 2008;67(2):162–9. doi:10.1097/nen.0b013e318163a990

    Article  PubMed  Google Scholar 

  48. Shieh WJ, Jung SM, Hsueh C, et al. Pathologic studies of fatal cases in outbreak of hand, foot, and mouth disease, Taiwan. Emerg Infect Dis. 2001;7(1):146–8.

    Article  PubMed  CAS  Google Scholar 

  49. Sabin AB. Paralytic poliomyelitis: old dogmas and new perspectives. Rev Infect Dis. 1981;3(3):543–64.

    Article  PubMed  CAS  Google Scholar 

  50. Wang S-M, Liu C-C, Tseng H-W, et al. Clinical spectrum of enterovirus 71 infection in children in southern Taiwan, with an emphasis on neurological complications. Clin Infect Dis. 1999;29(1):184–90.

    Article  PubMed  CAS  Google Scholar 

  51. Yan J-J, Wang J-R, Liu C-C, et al. An outbreak of enterovirus 71 infection in Taiwan 1998: a comprehensive pathological, virological, and molecular study on a case of fulminant encephalitis. J Clin Virol. 2000;17(1):13–22.

    Article  PubMed  CAS  Google Scholar 

  52. Huang M-C, Wang S-M, Hsu Y-W, et al. Long-term cognitive and motor deficits after enterovirus 71 brainstem encephalitis in children. Pediatrics. 2006;118(6):e1785–8.

    Article  PubMed  Google Scholar 

  53. Chang LY, Lin TY, Hsu KH, et al. Clinical features and risk factors of pulmonary oedema after enterovirus-71-related hand, foot, and mouth disease. Lancet. 1999;354(9191):1682–6.

    Article  PubMed  CAS  Google Scholar 

  54. McMinn P, Stratov I, Nagarajan L, Davis S. Neurological manifestations of enterovirus 71 infection in children during an outbreak of hand, foot, and mouth disease in Western Australia. Clin Infect Dis. 2001;32(2):236–42.

    Article  PubMed  CAS  Google Scholar 

  55. Ng DKK, Law AKW, Cherk SWW, Mak KL. First fatal case of enterovirus 71 infection in Hong Kong. Hong Kong Med J. 2001;7(2):193–6.

    PubMed  CAS  Google Scholar 

  56. Xie J, Jiao Y, Qiu Z, et al. Significant elevation of B cells at the acute stage in enterovirus 71-infected children with central nervous system involvement. Scand J Infect Dis. 2010;42(11–12):931–5.

    Article  PubMed  CAS  Google Scholar 

  57. Nagata N, Iwasaki T, Ami Y, et al. Differential localization of neurons susceptible to enterovirus 71 and poliovirus type 1 in the central nervous system of cynomolgus monkeys after intravenous inoculation. J Gen Virol. 2004;85(10):2981–9.

    Article  PubMed  CAS  Google Scholar 

  58. Tsou Y-A, Cheng Y-K, Chung H-K, et al. Upper aerodigestive tract sequelae in severe enterovirus 71 infection: predictors and outcome. Int J Pediatr Otorhinolaryngol. 2008;72(1):41–7.

    Article  PubMed  Google Scholar 

  59. van der Sanden S, Koopmans M, Uslu G, et al. Epidemiology of enterovirus 71 in the Netherlands, 1963 to 2008. J Clin Microbiol. 2009;47(9):2826–33.

    Article  PubMed  CAS  Google Scholar 

  60. Ahmed R, Buckland M, Davies L, et al. Enterovirus 71 meningoencephalitis complicating rituximab therapy. J Neurol Sci. 2011;305(1–2):149–51.

    Article  PubMed  Google Scholar 

  61. Patel KP, Bergelson JM. Receptors identified for hand, foot and mouth virus. Nat Med. 2009;15(7):728–9.

    Article  PubMed  CAS  Google Scholar 

  62. •• Yamayoshi S, Yamashita Y, Li J, et al. Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat Med. 2009;15(7):798–801. This is the first description of the role of SCARB2 as the human cellular receptor for HEV71..

    Article  PubMed  CAS  Google Scholar 

  63. Yamayoshi S, Koike S. Identification of a human SCARB2 region that is important for enterovirus 71 binding and infection. J Virol. 2011;85(10):4937–46.

    Article  PubMed  CAS  Google Scholar 

  64. •• Chen P, Song Z, Qi Y, et al. Molecular determinants of enterovirus 71 viral entry. J Biol Chem. 2012;287(9):6406–20. This paper provides the most convincing evidence to date that SCARB2 is a key receptor for HEV71..

    Article  PubMed  CAS  Google Scholar 

  65. Lin Y-W, Lin H-Y, Tsou Y-L, et al. Human SCARB2-mediated entry and endocytosis of EV71. PLoS One. 2012;7(1):e30507.

    Article  PubMed  CAS  Google Scholar 

  66. Nishimura Y, Shimojima M, Tano Y, et al. Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat Med. 2009;15(7):794–7.

    Article  PubMed  CAS  Google Scholar 

  67. Liu J, Dong W, Quan X, et al. Transgenic expression of human P-selectin glycoprotein ligand-1 is not sufficient for enterovirus 71 infection in mice. Arch Virol. 2012;157(3):539–43.

    Article  PubMed  CAS  Google Scholar 

  68. Miyamura K, Nishimura Y, Abo M, et al. Adaptive mutations in the genomes of enterovirus 71 strains following infection of mouse cells expressing human P-selectin glycoprotein ligand-1. J Gen Virol. 2011;92(2):287–91.

    Article  PubMed  CAS  Google Scholar 

  69. Chua BH, Phuektes P, Sanders SA, et al. The molecular basis of mouse adaptation by human enterovirus 71. J Gen Virol. 2008;89(7):1622–32.

    Article  PubMed  CAS  Google Scholar 

  70. Zaini Z, Phuektes P, McMinn P. A reverse genetic study of the adaptation of human enterovirus 71 to growth in Chinese hamster ovary cells. Virus Res. 2012;163:doi:10.1016/j.virusres.2012.02.009

  71. Huang S-W, Wang Y-F, Yu C-K, et al. Mutations in VP2 and VP1 capsid proteins increase infectivity and mouse lethality of enterovirus 71 by virus binding and RNA accumulation enhancement. Virology. 2012;422(1):132–43.

    Article  PubMed  CAS  Google Scholar 

  72. Ohba K, Ryo A, Dewan MZ, et al. Follicular dendritic cells activate HIV-1 replication in monocytes/macrophages through a juxtacrine mechanism mediated by P-selectin glycoprotein ligand 1. J Immunol. 2009;183(1):524–32.

    Article  PubMed  CAS  Google Scholar 

  73. Klopocki AG, Yago T, Mehta P, et al. Replacing a lectin domain residue in L-selectin enhances binding to P-selectin glycoprotein ligand-1 but not to 6-sulfo-sialyl lewis x. J Biol Chem. 2008;283(17):11493–500.

    Article  PubMed  CAS  Google Scholar 

  74. Lin Y-W, Wang S-W, Tung Y-Y, Chen S-H. Enterovirus 71 infection of human dendritic cells. Exp Biol Med. 2009;234(10):1166–73.

    Article  CAS  Google Scholar 

  75. Yang B, Chuang H, Yang K. Sialylated glycans as receptor and inhibitor of enterovirus 71 infection to DLD-1 intestinal cells. Virol J. 2009;6(1):141.

    Article  PubMed  CAS  Google Scholar 

  76. Kok CC, Phuektes P, Bek E, McMinn PC. Modification of the untranslated regions of human enterovirus 71 impairs growth in a cell-specific manner. J Virol. 2012;86(1):542–52.

    Article  PubMed  CAS  Google Scholar 

  77. Lin J-Y, Li M-L, Shih S-R. Far upstream element binding protein 2 interacts with enterovirus 71 internal ribosomal entry site and negatively regulates viral translation. Nucl Acids Res. 2009;37(1):47–59.

    Article  PubMed  CAS  Google Scholar 

  78. Thompson SR, Sarnow P. Enterovirus 71 contains a type I IRES element that functions when eukaryotic initiation factor eIF4G is cleaved. Virology. 2003;315(1):259–66.

    Article  PubMed  CAS  Google Scholar 

  79. Lin J-Y, Shih S-R, Pan M, et al. hnRNP A1 interacts with the 5′ untranslated regions of enterovirus 71 and sindbis virus RNA and is required for viral replication. J Virol. 2009;83(12):6106–14.

    Article  PubMed  CAS  Google Scholar 

  80. Shih S-R, Stollar V, Li M-L. Host factors in enterovirus 71 replication. J Virol. 2011;85(19):9658–66.

    Article  PubMed  CAS  Google Scholar 

  81. Huang P-N, Lin J-Y, Locker N, et al. Far upstream element binding protein 1 binds the internal ribosomal entry site of enterovirus 71 and enhances viral translation and viral growth. Nucleic Acids Res. 2011;39(22):9633–48.

    Article  PubMed  CAS  Google Scholar 

  82. Lin J-Y, Chen T-C, Weng K-F, et al. Viral and host proteins involved in picornavirus life cycle. J Biomed Sci. 2009;16(1):103.

    Article  PubMed  CAS  Google Scholar 

  83. Weng K-F, Li M-L, Hung C-T, Shih S-R. Enterovirus 71 3C protease cleaves a novel target CstF-64 and inhibits cellular polyadenylation. PLoS Pathog. 2009;5(9):e1000593.

    Article  PubMed  CAS  Google Scholar 

  84. Lee JJ, Seah JBK, Chow VTK, et al. Comparative proteome analyses of host protein expression in response to Enterovirus 71 and Coxsackievirus A16 infections. J Proteome. 2011;74(10):2018–24.

    Article  CAS  Google Scholar 

  85. Khong WX, Foo DGW, Trasti SL, et al. Sustained high levels of interleukin-6 contribute to the pathogenesis of enterovirus 71 in a neonate mouse model. J Virol. 2011;85(7):3067–76.

    Article  PubMed  CAS  Google Scholar 

  86. Chen T-C, Chang H-Y, Lin P-F, et al. Novel antiviral agent DTriP-22 targets RNA-dependent RNA polymerase of enterovirus 71. Antimicrob Agents Chemother. 2009;53(7):2740–7.

    Article  PubMed  CAS  Google Scholar 

  87. Bedard KM, Semler BL. Regulation of picornavirus gene expression. Microbes Infect. 2004;6(7):702–13.

    Article  PubMed  CAS  Google Scholar 

  88. Pettersson RF, Ambros V, Baltimore D. Identification of a protein linked to nascent poliovirus RNA and to the polyuridylic acid of negative-strand RNA. J Virol. 1978;27(2):357–65.

    PubMed  CAS  Google Scholar 

  89. Schwartz M, Chen J, Lee W-M, et al. Alternate, virus-induced membrane rearrangements support positive-strand RNA virus genome replication. Proc Natl Acad Sci U S A. 2004;101(31):11263–8.

    Article  PubMed  CAS  Google Scholar 

  90. Huang S-C, Chang C-L, Wang P-S, et al. Enterovirus 71-induced autophagy detected in vitro and in vivo promotes viral replication. J Med Virol. 2009;81(7):1241–52.

    Article  PubMed  CAS  Google Scholar 

  91. Castro C, Arnold JJ, Cameron CE. Incorporation fidelity of the viral RNA-dependent RNA polymerase: a kinetic, thermodynamic and structural perspective. Virus Res. 2005;107(2):141–9.

    Article  PubMed  CAS  Google Scholar 

  92. Pfeiffer JK, Kirkegaard K. Increased fidelity reduces poliovirus fitness and virulence under selective pressure in mice. PLoS Pathog. 2005;1(2):e11.

    Article  PubMed  CAS  Google Scholar 

  93. Yi L, Lu J, Kung H-F, He M-L. The virology and developments toward control of human enterovirus 71. Crit Rev Microbiol. 2011;37(4):313–27.

    Article  PubMed  CAS  Google Scholar 

  94. Lal SK, Kumar P, Yeo WM, et al. The VP1 protein of human enterovirus 71 self-associates via an interaction domain spanning amino acids 66–297. J Med Virol. 2006;78(5):582–90.

    Article  PubMed  CAS  Google Scholar 

  95. Shih S-R, Weng K-F, Stollar V, Li M-L. Viral protein synthesis is required for enterovirus 71 to induce apoptosis in human glioblastoma cells. J Neurovirol. 2008;14(1):53–61.

    Article  PubMed  CAS  Google Scholar 

  96. Kuo R-L, Kung S-H, Hsu Y-Y, Liu W-T. Infection with enterovirus 71 or expression of its 2A protease induces apoptotic cell death. J Gen Virol. 2002;83(6):1367–76.

    PubMed  CAS  Google Scholar 

  97. Li M-L, Hsu T-A, Chen T-C, et al. The 3C protease activity of enterovirus 71 induces human neural cell apoptosis. Virology. 2002;293(2):386–95.

    Article  PubMed  CAS  Google Scholar 

  98. Ho H-Y, Cheng M-L, Weng S-F, et al. Glucose-6-phosphate dehydrogenase deficiency enhances enterovirus 71 infection. J Gen Virol. 2008;89(9):2080–9.

    Article  PubMed  CAS  Google Scholar 

  99. Lu J, Yi L, Zhao J, et al. Enterovirus 71 disrupts interferon signaling by reducing the interferon receptor I. J. Virol. 2012, in press.

  100. Lei X, Sun Z, Liu X, et al. Cleavage of the adaptor protein TRIF by enterovirus 71 3C inhibits antiviral responses mediated by toll-like receptor 3. J Virol. 2011;85(17):8811–8.

    Article  PubMed  CAS  Google Scholar 

  101. Lei X, Liu X, Ma Y, et al. The 3C protein of enterovirus 71 inhibits retinoid acid-inducible gene I-mediated interferon regulatory factor 3 activation and type I interferon responses. J Virol. 2010;84(16):8051–61.

    Article  PubMed  CAS  Google Scholar 

  102. Chang H-W, Liu C-C, Lin M-H, et al. Generation of murine monoclonal antibodies which cross-neutralize human enterovirus genogroup B isolates. J Virol Methods. 2011;173(2):189–95.

    Article  PubMed  CAS  Google Scholar 

  103. Hung H-C, Wang H-C, Shih S-R, et al. Synergistic inhibition of enterovirus 71 replication by interferon and rupintrivir. J Infect Dis. 2011;203(12):1784–90.

    Article  PubMed  CAS  Google Scholar 

  104. Lin T-Y, Hsia S-H, Huang Y-C, et al. Proinflammatory cytokine reactions in enterovirus 71 infections of the central nervous system. Clin Infect Dis. 2003;36(3):269–74.

    Article  PubMed  CAS  Google Scholar 

  105. Wang S-M, Lei H-Y, Huang K-J, et al. Pathogenesis of enterovirus 71 brainstem encephalitis in pediatric patients: roles of cytokines and cellular immune activation in patients with pulmonary edema. J Infect Dis. 2003;188(4):564–70.

    Article  PubMed  CAS  Google Scholar 

  106. Yang J, Zhao N, Su N-L, et al. Association of interleukin 10 and interferon gamma gene polymorphisms with enterovirus 71 encephalitis in patients with hand, foot and mouth disease. Scand J Infect Dis. 2012, Epub ahead of print:1–5.

  107. Lin TY, Chang LY, Huang YC, et al. Different proinflammatory reactions in fatal and non-fatal enterovirus 71 infections: implications for early recognition and therapy. Acta Paediatr. 2002;91(6):632–5.

    Article  PubMed  CAS  Google Scholar 

  108. Leong WF, Chow VTK. Transcriptomic and proteomic analyses of rhabdomyosarcoma cells reveal differential cellular gene expression in response to enterovirus 71 infection. Cell Microbiol. 2006;8(4):565–80.

    Article  PubMed  CAS  Google Scholar 

  109. Tung W-H, Hsieh H-L, Yang C-M. Enterovirus 71 induces COX-2 expression via MAPKs, NF-[kappa]B, and AP-1 in SK-N-SH cells: role of PGE2 in viral replication. Cell Signal. 2010;22(2):234–46.

    Article  PubMed  CAS  Google Scholar 

  110. Ghukasyan V, Hsu Y-Y, Kung S-H, Kao F-J. Application of fluorescence resonance energy transfer resolved by fluorescence lifetime imaging microscopy for the detection of enterovirus 71 infection in cells. J Biomed Opt. 2007;12(2):024016.

    Article  PubMed  CAS  Google Scholar 

  111. Arita M, Nagata N, Iwata N, et al. An attenuated strain of enterovirus 71 belonging to genotype A showed a broad spectrum of antigenicity with attenuated neurovirulence in cynomolgus monkeys. J Virol. 2007;81(17):9386–95.

    Article  PubMed  CAS  Google Scholar 

  112. •• Zhang Y, Cui W, Liu L, et al. Pathogenesis study of enterovirus 71 infection in rhesus monkeys. Lab Invest. 2011;91(9):1337–50. The results of this pathogenesis study in rhesus monkeys suggest that rhesus monkeys are will become an important animal model for HEV71 infection. Following infection via the intravenous and intratracheal routes, HEV71 was detected in the lungs and CNS of the monkeys. In general, the pathogenesis of HEV71 in the rhesus monkeys was more analogous to human disease than cynomolgus monkeys..

    Article  PubMed  Google Scholar 

  113. • Chang G-H, Lin L, Luo Y-J, et al. Sequence analysis of six enterovirus 71 strains with different virulences in humans. Virus Res. 2010;151(1):66–73. In this study of six HEV71 clinical isolates, three of the strains were naturally mouse-virulent. Pathogenicity in mice did not correlate with human pathogenicity..

    Article  PubMed  CAS  Google Scholar 

  114. Yeh M-T, Wang S-W, Yu C-K, et al. A single nucleotide in stem loop II of 5′-untranslated region contributes to virulence of enterovirus 71 in mice. PLoS One. 2011;6(11):e27082.

    Article  PubMed  CAS  Google Scholar 

  115. • Khong WX, Yan B, Yeo H, et al. A non mouse-adapted enterovirus 71 (EV71) strain exhibits neurotropism causing neurological manifestations in a novel mouse model of EV71 infection. J Virol. 2011;86(4):2121–31. This study reports that non-mouse adapted HEV71 is able to infect 2-week-old AG129 mice, which lack type I and II interferon receptors..

    Article  PubMed  CAS  Google Scholar 

  116. Kung Y-H, Huang S-W, Kuo P-H, et al. Introduction of a strong temperature-sensitive phenotype into enterovirus by altering an amino acid of virus 3D polymerase. Virology. 2010;396(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  117. Wang W, Duo J, Liu J, et al. A mouse muscle-adapted enterovirus 71 strain with increased virulence in mice. Microbes Infect. 2011;13(10):862–70.

    Article  PubMed  Google Scholar 

  118. Pevear DC, Tull TM, Seipel ME, Groarke JM. Activity of pleconaril against enteroviruses. Antimicrob Agents Chemother. 1999;43(9):2109–15.

    PubMed  CAS  Google Scholar 

  119. • Zhang G, Zhou F, Gu B, et al. In vitro and in vivo evaluation of ribavirin and pleconaril antiviral activity against enterovirus 71 infection. Arch Virol. 2012, Epub ahead of print:1–11. In this study, Pleconaril was shown to reduce the morbidity and mortality HEV71 infection in one-day-old mice.

  120. Lu G, Qi J, Chen Z, et al. Enterovirus 71 and coxsackievirus A16 3C proteases: binding to rupintrivir and their substrates and anti-hand, foot, and mouth disease virus drug design. J Virol. 2011;85(19):10319–31.

    Article  PubMed  CAS  Google Scholar 

  121. Wang J, Fan T, Yao X, et al. Crystal structures of enterovirus 71 3C protease complexed with rupintrivir reveal the roles of catalytically important residues. J Virol. 2011;85(19):10021–30.

    Article  PubMed  CAS  Google Scholar 

  122. Kuo C-J, Shie J-J, Fang J-M, et al. Design, synthesis, and evaluation of 3C protease inhibitors as anti-enterovirus 71 agents. Bioorg Med Chem. 2008;16(15):7388–98.

    Article  PubMed  CAS  Google Scholar 

  123. Thibaut HJ, De Palma AM, Neyts J. Combating enterovirus replication: State-of-the-art on antiviral research. Biochem Pharmacol. 2012;83(2):185–92.

    Article  PubMed  CAS  Google Scholar 

  124. Yi L, He Y, Chen Y, et al. Potent inhibition of human enterovirus 71 replication by type I interferon subtypes. Antivir Ther. 2011;16(1):51–8.

    Article  PubMed  CAS  Google Scholar 

  125. Falah N, Violot S, Décimo D, et al. Ex vivo and in vivo inhibition of human rhinovirus replication by a new pseudosubstrate of viral 2A protease. J Virol. 2012;86(2):691–704.

    Article  PubMed  CAS  Google Scholar 

  126. Li Z-H, Li C-M, Ling P, et al. Ribavirin reduces mortality in enterovirus 71–infected mice by decreasing viral replication. J Infect Dis. 2008;197(6):854–7.

    Article  PubMed  CAS  Google Scholar 

  127. Arita M, Wakita T, Shimizu H. Cellular kinase inhibitors that suppress enterovirus replication have a conserved target in viral protein 3A similar to that of enviroxime. J Gen Virol. 2009;90(8):1869–79.

    Article  PubMed  CAS  Google Scholar 

  128. Tsai F-J, Lin C-W, Lai C-C, et al. Kaempferol inhibits enterovirus 71 replication and internal ribosome entry site (IRES) activity through FUBP and HNRP proteins. Food Chem. 2011;128(2):312–22.

    Article  CAS  Google Scholar 

  129. Zhu Q-C, Wang Y, Liu Y-P, et al. Inhibition of enterovirus 71 replication by chrysosplenetin and penduletin. Eur J Pharm Sci. 2011;44(3):392–8.

    Article  PubMed  CAS  Google Scholar 

  130. Wu Z, Yang F, Zhao R, et al. Identification of small interfering RNAs which inhibit the replication of several Enterovirus 71 strains in China. J Virol Methods. 2009;159(2):233–8.

    Article  PubMed  CAS  Google Scholar 

  131. Tan EL, Tan TMC, Chow VTK, Poh CL. Inhibition of enterovirus 71 in virus-infected mice by RNA interference. Mol Ther. 2007;15(11):1931–8.

    Article  PubMed  CAS  Google Scholar 

  132. Lim XF, Jia Q, Khong WX, et al. Characterization of an isotype-dependent monoclonal antibody against linear neutralizing epitope effective for prophylaxis of enterovirus 71 infection. PLoS One. 2012;7(1):e29751.

    Article  PubMed  CAS  Google Scholar 

  133. Han J-F, Cao R-Y, Deng Y-Q, et al. Antibody dependent enhancement infection of Enterovirus 71 in vitro and in vivo. Virol J. 2011;8(1):106.

    Article  PubMed  Google Scholar 

  134. Cao R, Han J, Deng Y, et al. Presence of high titer neutralizing antibodies against enterovirus 71 in intravenous immunoglobulin manufactured from Chinese donors. Clin Infect Dis. 2010;50(1):125–6.

    Article  PubMed  Google Scholar 

  135. Lee BY, Wateska AR, Bailey RR, et al. Forecasting the economic value of an enterovirus 71 (EV71) vaccine. Vaccine. 2010;28(49):7731–6.

    Article  PubMed  Google Scholar 

  136. Jia H, Carey K. Chinese vaccine developers gain WHO imprimatur. Nat Biotechnol. 2011;29(6):471–2.

    Article  PubMed  CAS  Google Scholar 

  137. Sinovac developing vaccine for hand, foot, and mouth disease. Worldw Biotech. 2008, Nov 1.

  138. Ong KC, Devi S, Cardosa MJ, Wong KT. Formaldehyde-inactivated whole-virus vaccine protects a murine model of enterovirus 71 encephalomyelitis against disease. J Virol. 2010;84(1):661–5.

    Article  PubMed  CAS  Google Scholar 

  139. Romanowski B. Long term protection against cervical infection with the human papillomavirus: review of currently available vaccines. Hum Vaccin Immunother. 2011;7(2):161–9.

    Article  Google Scholar 

  140. Chung Y-C, Ho M-S, Wu J-C, et al. Immunization with virus-like particles of enterovirus 71 elicits potent immune responses and protects mice against lethal challenge. Vaccine. 2008;26(15):1855–62.

    Article  PubMed  CAS  Google Scholar 

  141. Chung C-Y, Chen C-Y, Lin S-Y, et al. Enterovirus 71 virus-like particle vaccine: Improved production conditions for enhanced yield. Vaccine. 2010;28(43):6951–7.

    Article  PubMed  CAS  Google Scholar 

  142. Liu JN, Wang W, Duo JY, et al. Combined peptides of human enterovirus 71 protect against virus infection in mice. Vaccine. 2010;28(46):7444–51.

    Article  PubMed  CAS  Google Scholar 

  143. Ch'ng W-C, Stanbridge EJ, Ong K-C, et al. Partial protection against enterovirus 71 (EV71) infection in a mouse model immunized with recombinant Newcastle disease virus capsids displaying the EV71 VP1 fragment. J Med Virol. 2011;83(10):1783–91.

    Article  PubMed  CAS  Google Scholar 

  144. Chen H-F, Chang M-H, Chiang B-L, Jeng S-T. Oral immunization of mice using transgenic tomato fruit expressing VP1 protein from enterovirus 71. Vaccine. 2006;24(15):2944–51.

    Article  PubMed  CAS  Google Scholar 

  145. Tung W, Bakar S, Sekawi Z, Rosli R. DNA vaccine constructs against enterovirus 71 elicit immune response in mice. Genet Vaccines Ther. 2007;5(1):6.

    Article  PubMed  CAS  Google Scholar 

  146. Gao F, Wang Y-P, Mao Q-Y, et al. Enterovirus 71 viral capsid protein linear epitopes: identification and characterization. Virol J. 2012;9(1):26.

    Article  PubMed  CAS  Google Scholar 

  147. Vignuzzi M, Wendt E, Andino R. Engineering attenuated virus vaccines by controlling replication fidelity. Nat Med. 2008;14(2):154–61.

    Article  PubMed  CAS  Google Scholar 

  148. Barnes D, Kunitomi M, Vignuzzi M, et al. Harnessing endogenous miRNAs to control virus tissue tropism as a strategy for developing attenuated virus vaccines. Cell Host Microbe. 2008;4(3):239–48.

    Article  PubMed  CAS  Google Scholar 

  149. Vadim IA. Vaccine-derived polioviruses. Biologicals. 2006;34(2):103–8.

    Article  CAS  Google Scholar 

  150. Jiang H, Weng L, Zhang N, et al. Biochemical characterization of enterovirus 71 3D RNA polymerase. Biochim Biophys Acta–Gene Regul Mech. 2011;1809(3):211–9.

    CAS  Google Scholar 

  151. Mueller S, Papamichail D, Coleman JR, et al. Reduction of the rate of poliovirus protein synthesis through large-scale codon deoptimization causes attenuation of viral virulence by lowering specific infectivity. J Virol. 2006;80(19):9687–96.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

P. McMinn has worked as a consultant for Merck and received grants from Sinovac Biotech Pty Ltd, Beijing, PR China and Sentinext Therapeutics Sdn Bhd, Penang Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Charles McMinn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bek, E.J., McMinn, P.C. The Pathogenesis and Prevention of Encephalitis due to Human Enterovirus 71. Curr Infect Dis Rep 14, 397–407 (2012). https://doi.org/10.1007/s11908-012-0267-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11908-012-0267-3

Keywords

Navigation