Skip to main content

Advertisement

Log in

Toll-like receptors and sepsis

  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Recent evidence suggests that Toll-like receptors (TLRs) play a major role in innate immunity to recognize specific molecular patterns derived from pathogens, including lipid, protein, DNA, and RNA, and to fight against pathogens. Each TLR displays a difference in the expression pattern, intracellular localization, and signaling pathway, resulting in the distinct immune responses. The resultant immune activation augments host resistance to a variety of infectious organisms. However, such responses may exceed the threshold to maintain host homeostasis in the case of sepsis. TLR-mediated innate immune activation also induces several molecules shown to negatively regulate TLR signaling. Thus, TLRs may play an important role in positive and negative regulation of immune responses during sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Janeway CA Jr, Medzhitov R: Innate immune recognition. Annu Rev Immunol 2002, 20:197–216.

    Article  PubMed  CAS  Google Scholar 

  2. Matzinger P: The danger model: a renewed sense of self. Science 2002, 296:301–305. This excellent review discusses self-nonself definition and its physiologic relevance.

    Article  PubMed  CAS  Google Scholar 

  3. Medzhitov R, Janeway CAJr: Decoding the patterns of self and nonself by the innate immune system. Science 2002, 296:298–300. This excellent review discusses self-nonself definition and its physiologic relevance.

    Article  PubMed  CAS  Google Scholar 

  4. Takeda K, Kaisho T, Akira S: Toll-like receptors. Annu Rev Immunol 2003, 21:335–376.

    Article  PubMed  CAS  Google Scholar 

  5. Akira S, Takeda K, Kaisho T: Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2001, 2:675–680.

    Article  PubMed  CAS  Google Scholar 

  6. Riedemann NC, Guo RF, Ward PA: The enigma of sepsis. J Clin Invest 2003, 112:460–467. This is an excellent review of recent evidence and progress in clinical trials for possible interventions in the context of sepsis.

    Article  PubMed  CAS  Google Scholar 

  7. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr: A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997, 388:394–397.

    Article  PubMed  CAS  Google Scholar 

  8. Poltorak A, He X, Smirnova I, et al.: Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998, 282:2085–2088.

    Article  PubMed  CAS  Google Scholar 

  9. Hoshino K, Takeuchi O, Kawai T, et al.: Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 1999, 162:3749–3752.

    PubMed  CAS  Google Scholar 

  10. Takeuchi O, Sato S, Horiuchi T, et al.: Cutting edge: role of Tolllike receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 2002, 169:10–14.

    PubMed  CAS  Google Scholar 

  11. Takeuchi O, Kawai T, Muhlradt PF, et al.: Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 2001, 13:933–940.

    Article  PubMed  CAS  Google Scholar 

  12. Takeuchi O, Hoshino K, Kawai T, et al.: Differential roles of TLR2 and TLR4 in recognition of gram-negative and grampositive bacterial cell wall components. Immunity 1999, 11:443–451.

    Article  PubMed  CAS  Google Scholar 

  13. Hayashi F, Smith KD, Ozinsky A, et al.: The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001, 410:1099–1103.

    Article  PubMed  CAS  Google Scholar 

  14. Hemmi H, Takeuchi O, Kawai T, et al.: A Toll-like receptor recognizes bacterial DNA. Nature 2000, 408:740–745.

    Article  PubMed  CAS  Google Scholar 

  15. Heil F, Hemmi H, Hochrein H, et al.: Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 2004, 303:1526–1529.

    Article  PubMed  CAS  Google Scholar 

  16. Diebold SS, Kaisho T, Hemmi H, et al.: Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 2004, 303:1529–1531.

    Article  PubMed  CAS  Google Scholar 

  17. Zhang D, Zhang G, Hayden MS, et al.: A Toll-like receptor that prevents infection by uropathogenic bacteria. Science 2004, 303:1522–1526.

    Article  PubMed  CAS  Google Scholar 

  18. Lemaitre B, Nicolas E, Michaut L, et al.: The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996, 86:973–983.

    Article  PubMed  CAS  Google Scholar 

  19. Rock FL, Hardiman G, Timans JC, et al.: A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci U S A 1998, 95:588–593.

    Article  PubMed  CAS  Google Scholar 

  20. Takeuchi O, Kawai T, Sanjo H, et al.: TLR6: a novel member of an expanding Toll-like receptor family. Gene 1999, 231:59–65.

    Article  PubMed  CAS  Google Scholar 

  21. Du X, Poltorak A, Wei Y, et al.: Three novel mammalian Tolllike receptors: gene structure, expression, and evolution. Eur Cytokine Netw 2000, 11:362–371.

    PubMed  CAS  Google Scholar 

  22. Chuang T, Ulevitch RJ: Identification of hTLR10: a novel human Toll-like receptor preferentially expressed in immune cells. Biochim Biophys Acta 2001, 1518:157–161.

    PubMed  CAS  Google Scholar 

  23. Tsan MF, Gao B: Endogenous ligands of Toll-like receptors. J Leukoc Biol 2004, In press.

  24. Akira S: Toll-like receptor signaling. J Biol Chem 2003, 278:38105–38108.

    Article  PubMed  CAS  Google Scholar 

  25. Kawai T, Adachi O, Ogawa T, et al.: Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 1999, 11:115–122.

    Article  PubMed  CAS  Google Scholar 

  26. Kawai T, Takeuchi O, Fujita T, et al.: Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J Immunol 2001, 167:5887–5894.

    PubMed  CAS  Google Scholar 

  27. Yamamoto M, Sato S, Hemmi H, et al.: Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 2003, 301:640–643.

    Article  PubMed  CAS  Google Scholar 

  28. Yamamoto M, Sato S, Hemmi H, et al.: TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol 2003, 4:1144–1150.

    Article  PubMed  CAS  Google Scholar 

  29. Hornung V, Rothenfusser S, Britsch S, et al.: Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 2002, 168:4531–4537.

    PubMed  CAS  Google Scholar 

  30. Kadowaki N, Ho S, Antonenko S, et al.: Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 2001, 194:863–869.

    Article  PubMed  CAS  Google Scholar 

  31. Bernasconi NL, Onai N, Lanzavecchia A: A role for Toll-like receptors in acquired immunity: up-regulation of TLR9 by BCR triggering in naive B cells and constitutive expression in memory B cells. Blood 2003, 101:4500–4504.

    Article  PubMed  CAS  Google Scholar 

  32. Chalifour A, Jeannin P, Gauchat JF, et al.: Direct bacterial protein PAMPs recognition by human NK cells involves TLRs and triggers pha-defensin production. Blood 2004, In press.

  33. Komai-Koma M, Jones L, Ogg GS, et al.: TLR2 is expressed on activated T cells as a costimulatory receptor. Proc Natl Acad Sci U S A 2004, 101:3029–3034.

    Article  PubMed  CAS  Google Scholar 

  34. Alexopoulou L, Holt AC, Medzhitov R, et al.: Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 2001, 413:732–738.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang FX, Kirschning CJ, Mancinelli R, et al.: Bacterial lipopolysaccharide activates nuclear factor-kappaB through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes. J Biol Chem 1999, 274:7611–7614.

    Article  PubMed  CAS  Google Scholar 

  36. Matsumoto M, Funami K, Tanabe M, et al.: Subcellular localization of Toll-like receptor 3 in human dendritic cells. J Immunol 2003, 171:3154–3162.

    PubMed  CAS  Google Scholar 

  37. Latz E, Schoenemeyer A, Visintin A, et al.: TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol 2004, 5:190–198. This is an excellent paper demonstrating that TLR9 resides in ER and binds to CpG directly, whereas TLR4 is on the cell surface.

    Article  PubMed  CAS  Google Scholar 

  38. Nagai Y, Akashi S, Nagafuku M, et al.: Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol 2002, 3:667–672.

    PubMed  CAS  Google Scholar 

  39. Underhill DM, Ozinsky A, Hajjar AM, et al.: The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 1999, 401:811–815.

    Article  PubMed  CAS  Google Scholar 

  40. Ishii KJ, Takeshita F, Gursel I, et al.: Potential role of phosphatidylinositol 3 kinase, rather than DNA-dependent protein kinase, in CpG DNA-induced immune activation. J Exp Med 2002, 196:269–274.

    Article  PubMed  CAS  Google Scholar 

  41. Hemmi H, Kaisho T, Takeuchi O, et al.: Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 2002, 3:196–200.

    Article  PubMed  CAS  Google Scholar 

  42. Yamamoto M, Sato S, Hemmi H, et al.: Essential role for TIRAP in activation of the signaling cascade shared by TLR2 and TLR4. Nature 2002, 420:324–329.

    Article  PubMed  CAS  Google Scholar 

  43. Karaghiosoff M, Steinborn R, Kovarik P, et al.: Central role for type I interferons and Tyk2 in lipopolysaccharide-induced endotoxin shock. Nat Immunol 2003, 4:471–477.

    Article  PubMed  CAS  Google Scholar 

  44. Xu D, Chan WL, Leung BP, et al.: Selective expression of a stable cell surface molecule on type 2 but not type 1 helper T cells. J Exp Med 1998, 187:787–794.

    Article  PubMed  CAS  Google Scholar 

  45. Brint EK, Xu D, Liu H, et al.: ST2 is an inhibitor of interleukin 1 receptor and Toll-like receptor 4 signaling and maintains endotoxin tolerance. Nat Immunol 2004, 5:373–379.

    Article  PubMed  CAS  Google Scholar 

  46. Wald D, Qin J, Zhao Z, et al.: SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling. Nat Immunol 2003, 4:920–927.

    Article  PubMed  CAS  Google Scholar 

  47. Kobayashi K, Hernandez LD, Galan JE, et al.: IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 2002, 110:191–202.

    Article  PubMed  CAS  Google Scholar 

  48. Nakagawa R, Naka T, Tsutsui H, et al.: SOCS-1 participates in negative regulation of LPS responses. Immunity 2002, 17:677–687.

    Article  PubMed  CAS  Google Scholar 

  49. Kinjyo I, Hanada T, Inagaki-Ohara K, et al.: SOCS1/JAB is a negative regulator of LPS-induced macrophage activation. Immunity 2002, 17:583–591.

    Article  PubMed  CAS  Google Scholar 

  50. Gordon S: Pattern recognition receptors: doubling up for the innate immune response. Cell 2002, 111:927–930.

    Article  PubMed  CAS  Google Scholar 

  51. Haworth R, Platt N, Keshav S, et al.: The macrophage scavenger receptor type A is expressed by activated macrophages and protects the host against lethal endotoxic shock. J Exp Med 1997, 186:1431–1439.

    Article  PubMed  CAS  Google Scholar 

  52. Joseph SB, Castrillo A, Laffitte BA, et al.: Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med 2003, 9:213–219. This paper implies the possible cross-talk between innate immune responses and lipid metabolism to maintain homeostasis.

    Article  PubMed  CAS  Google Scholar 

  53. Castrillo A, Joseph SB, Vaidya SA, et al.: Crosstalk between LXR and Toll-like receptor signaling mediates bacterial and viral antagonism of cholesterol metabolism. Mol Cell 2003, 12:805–816. This paper implies the possible cross-talk between innate immune responses and lipid metabolism to maintain homeostasis.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishii, K.J., Akira, S. Toll-like receptors and sepsis. Curr Infect Dis Rep 6, 361–366 (2004). https://doi.org/10.1007/s11908-004-0034-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11908-004-0034-1

Keywords

Navigation