Skip to main content

Advertisement

Log in

HIV-1 fitness and replication capacity: What are they and can they help in patient management?

  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

The natural history of HIV-1 infection is characterized by persistent viremia, progressive CD4 lymphopenia, and profound immune suppression resulting in opportunistic infections, neoplasms, and death. Introduction of combination antiretroviral therapy has been effective in suppressing HIV-1 replication, reversing immunodeficiency to a degree, reducing HIV-1-associated complications, and thereby prolonging life. One of the most vexing challenges of prolonged antiretroviral therapy is the development of drug resistance. Antiretroviral therapies fail in a substantial number of cases, often with emergence of HIV-1 variants encoding mutations that confer potent drug resistance to individual agents or entire drug classes. Resistance testing methods have been introduced to evaluate drug resistance, and several studies have reported clinical benefits of genotyping and phenotyping assays in clinical decision-making. However, the genetic variability of HIV-1 to develop resistance exceeds the antiretroviral armamentarium, and the number of patients with drug experience and resistance to all classes of antiretrovirals continues to grow. From a clinical standpoint, it would be useful to have a more comprehensive grasp of pathogenic determinants of HIV-1 in all patients. One proposed in vitro correlate of HIV-1 pathogenic potential is the replication capacity of HIV-1. New techniques to assess HIV-1 replication potential are in development, with a commercial assay now available to analyze clinical samples. In this review we explore the experimental basis for replication capacity measurements and potential clinical applications of this methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Clavel F, Race E, Mammano F: HIV-1 drug resistance and viral fitness. Adv Pharmacol 2000, 49:41–66.

    PubMed  CAS  Google Scholar 

  2. Nijhuis M, Deeks S, Boucher C: Implications of antiretroviral resistance on viral fitness. Curr Opin Infect Dis 2001, 14:23–28.

    Article  PubMed  CAS  Google Scholar 

  3. Quiñones-Mateu M, Arts EJ: HIV-1 fitness: implications for drug resistance, disease progression, and global epidemic evolution. In HIV-1 Sequence Compendium 2001. Los Alamos, NM: Theoretical Biology and Biophysics Group, Los Alamos National Laboratory; 2001:134–170. Contains a compendium of mutatins and relative replication capacity assessments for HIV-1 mutations.

    Google Scholar 

  4. Coffin, JM, Hughes SH, Varmus HE: Retroviruses. Plainview, NY: Cold Spring Harbor Laboratory Press; 1997.

    Google Scholar 

  5. Bour S, Strebel K: HIV-1 accessory proteins: multifunctional components of a complex system. Adv Pharmacol 2000, 48:75–120.

    Article  PubMed  CAS  Google Scholar 

  6. Zhang YM, Imamichi H, Imamichi T, et al.: Drug resistance during indinavir therapy is caused by mutations in the protease gene and in its Gag substrate cleavage sites. J Virol 1997, 71:6662–6670.

    PubMed  CAS  Google Scholar 

  7. Maree AF, Keulen W, Boucher CA, De Boer RJ: Estimating relative fitness in viral competition experiments. J Virol 2000, 74:11067–11072. Description of precise fitness measurements.

    Article  PubMed  CAS  Google Scholar 

  8. Rouzine IM, Rodrigo A, Coffin JM: Transition between stochastic evolution and deterministic evolution in the presence of selection: general theory and application to virology. Microbiol Mol Biol Rev 2001, 65:151–185.

    Article  PubMed  CAS  Google Scholar 

  9. Wodarz D, Nowak MA: Mathematical models of HIV-1pathogenesis and treatment. Bioessays 2002, 24:1178–1187.

    Article  PubMed  Google Scholar 

  10. Bonhoeffer S, Barbour AD, De Boer RJ: Procedures for reliable estimation of viral fitness from time-series data. Proc R Soc Lond Biol Sci 2002, 269:1887–1893.

    Article  Google Scholar 

  11. Mammano F, Trouplin V, Zennou V, Clavel F: Retracing the evolutionary pathways of human immunodeficiency virus type 1 resistance to protease inhibitors: virus fitness in the absence and in the presence of drug. J Virol 2000, 74:8524–8531.

    Article  PubMed  CAS  Google Scholar 

  12. Kosalaraksa P, Kavlick MF, Maroun V, et al.: Comparative fitness of multi-dideoxynucleoside-resistant human immunodeficiency virus type 1 (HIV-1) in an In vitro competitive HIV-1 replication assay. J Virol 1999, 73:5356–6533.

    PubMed  CAS  Google Scholar 

  13. Maeda Y, Venzon DJ, Mitsuya H: Altered drug sensitivity, fitness, and evolution of human immunodeficiency virus type 1 with pol gene mutations conferring multi-dideoxynucleoside resistance. J Infect Dis 1998, 177:1207–1213.

    Article  PubMed  CAS  Google Scholar 

  14. Kellam P, Larder BA: Retroviral recombination can lead to linkage of reverse transcriptase mutations that confer increased zidovudine resistance. J Virol 1995, 69:669–674.

    PubMed  CAS  Google Scholar 

  15. Lu J, Kuritzkes DR: A novel recombinant marker virus assay for comparing the relative fitness of hiv-1 reverse transcriptase variants. J Acquir Immune Defic Syndr 2001, 27:7–13.

    PubMed  CAS  Google Scholar 

  16. Martinez-Picado J, Savara AV, Sutton L, D’Aquila RT: Replicative fitness of protease inhibitor-resistant mutants of human immunodeficiency virus type 1. J Virol 1999, 7:3744–3752.

    Google Scholar 

  17. Martinez-Picado J, Savara AV, Shi L, et al.: Fitness of human immunodeficiency virus type 1 protease inhibitor-selected single mutants. Virology 2000, 275:318–322.

    Article  PubMed  CAS  Google Scholar 

  18. Harrigan PR, Bloor S, Larder BA: Relative replicative fitness of zidovudine-resistant human immunodeficiency virus type 1 isolates in vitro. J Virol 1998, 72:3773–3778.

    PubMed  CAS  Google Scholar 

  19. Frost SD, Nijhuis M, Schuurman R, et al.: Evolution of lamivudine resistance in human immunodeficiency virus type 1-infected individuals: the relative roles of drift and selection. J Virol 2000, 74:6262–6268.

    Article  PubMed  CAS  Google Scholar 

  20. Quinones-Mateu ME, Tadele M, Parera M, et al.: Insertions in the reverse transcriptase increase both drug resistance and viral fitness in a human immunodeficiency virus type 1 isolate harboring the multi-nucleoside reverse transcriptase inhibitor resistance 69 insertion complex mutation. J Virol 2002, 76:10546–10552.

    Article  PubMed  CAS  Google Scholar 

  21. Archer RH, Dykes C, Gerondelis P, et al.: Mutants of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase resistant to nonnucleoside reverse transcriptase inhibitors demonstrate altered rates of RNase H cleavage that correlate with HIV-1 replication fitness in cell culture. J Virol 2000, 74:8390–8401.

    Article  PubMed  CAS  Google Scholar 

  22. Dykes C, Fox K, Lloyd A, et al.: Impact of clinical reverse transcriptase sequences on the replication capacity of HIV-1 drug-resistant mutants. Virology 2001, 285:193–203.

    Article  PubMed  CAS  Google Scholar 

  23. Seman AL, Pewen WF, Fresh LF, et al.: The replicative capacity of rhesus macaque peripheral blood mononuclear cells for simian immunodeficiency virus in vitro is predictive of the rate of progression to AIDS in vivo. J Gen Virol 2000, 81(Pt 10):2441–2449.

    PubMed  CAS  Google Scholar 

  24. Newstein MC, Desrosiers RC: Effects of reverse-transcriptase mutations M184V and E89G on simian immunodeficiency virus in Rhesus monkeys. J Infect Dis 2001, 184:1262–1267.

    Article  PubMed  CAS  Google Scholar 

  25. Van Rompay KK, Matthews TB, Higgins J, et al.: Virulence and reduced fitness of simian immunodeficiency virus with the M184V mutation in reverse transcriptase. J Virol 2002, 76:6083–6092.

    Article  PubMed  CAS  Google Scholar 

  26. Shibata R, Igarashi T, Haigwood N, et al.: Neutralizing antibody directed against the HIV-1 envelope glycoprotein can completely block HIV-1/SIV chimeric virus infections of macaque monkeys. Nat Med 1999, 5:204–210.

    Article  PubMed  CAS  Google Scholar 

  27. Soderberg K, Denekamp L, Nikiforow S, et al.: A nucleotide substitution in the tRNA(Lys) primer binding site dramatically increases replication of recombinant simian immunodeficiency virus containing a human immunodeficiency virus type 1 reverse transcriptase. J Virol 2002, 76:5803–5806.

    Article  PubMed  CAS  Google Scholar 

  28. Ambrose Z, Hughes SH, Kewal-Ramani VN: A new reverse transcriptase-SHIV-1to study HIV-1 non-nucleoside reverse transcriptase inihibitor-resistance in pigtailed macaques. Antiviral Ther 2002, 7:S44.

    Google Scholar 

  29. Aldrovandi GM, Zack JA: Replication and pathogenicity of human immunodeficiency virus type 1 accessory gene mutants in SCID-hu mice. J Virol 1996, 70:1505–1511.

    PubMed  CAS  Google Scholar 

  30. Stoddart CA, Liegler TJ, Mammano F, et al.: Impaired replication of protease inhibitor-resistant HIV-1 in human thymus. Nat Med 2001, 7:712–718. Detailed study of infections of thymus explants or SCID/hu thy/liv with HIV-1-containing protease mutations.

    Article  PubMed  CAS  Google Scholar 

  31. Penn ML, Myers M, Eckstein DA, et al.: Primary and recombinant HIV-1 type 1 strains resistant to protease inhibitors are pathogenic in mature human lymphoid tissues. AIDS Res Hum Retroviruses 2001, 17:517–523.

    Article  PubMed  CAS  Google Scholar 

  32. Picchio GR, Valdez H, Sabbe R, et al.: Altered viral fitness of HIV-1 following failure of protease inhibitor-based therapy. J Acquir Immune Defic Syndr 2000, 25:289–295.

    Article  PubMed  CAS  Google Scholar 

  33. Petropoulos CJ, Parkin NT, Limoli KL, et al.: A novel phenotypic drug susceptibility assay for human immunodeficiency virus type 1. Antimicrob Agents Chemother 2000, 44:920–928. Description of phenosense assay used as basis for commercial replication capacity assay.

    Article  PubMed  CAS  Google Scholar 

  34. Lennerstrand J, Hertogs K, Stammers DK, Larder BA: Correlation between viral resistance to zidovudine and resistance at the reverse transcriptase level for a panel of human immunodeficiency virus type 1 mutants. J Virol 2001, 75:7202–7205.

    Article  PubMed  CAS  Google Scholar 

  35. Gao HQ, Boyer PL, Sarafianos SG, et al.: The role of steric hindrance in 3TC resistance of human immunodeficiency virus type-1 reverse transcriptase. J Mol Biol 2000, 300:403–418.

    Article  PubMed  CAS  Google Scholar 

  36. Iga M, Matsuda Z, Okayama A, et al.: Rapid phenotypic assay for human immunodeficiency virus type 1 protease using in vitro translation. J Virol Method 2002, 106:25–37.

    Article  CAS  Google Scholar 

  37. Deeks SG, Wrin T, Liegler T, et al.: Virologic and immunologic consequences of discontinuing combination antiretroviraldrug therapy in HIV-infected patients with detectable viremia. N Engl J Med 2001, 344:472–480. Initial study of changes in replication capacity after discontinuing antiretroviral therapy.

    Article  PubMed  CAS  Google Scholar 

  38. Nijhuis M, Schuurman R, deJong D, et al.: Increased fitness of drug resistant HIV-1 protease as a result of acquisition of compensatory mutations during suboptimal therapy. AIDS 1999, 13:2349–2359. Study of replication capacity upon initiation of a new PI regimen.

    Article  PubMed  CAS  Google Scholar 

  39. Mammano F, Petit C, Clavel F: Resistance-associated loss of viral fitness in human immunodeficiency virus type 1: phenotypic analysis of protease and gag coevolution in protease inhibitor-treated patients. J Virol 1998, 72:7632–7637. Another study of replication capacity upon initiation of a new PI regimen.

    PubMed  CAS  Google Scholar 

  40. Barbour JD, Wrin T, Grant RM, et al.: Evolution of phenotypic drug susceptibility and viral replication capacity during longterm virologic failure of protease inhibitor therapy in human immunodeficiency virus-infected adults. J Virol 2002, 76:11104–11112. A third study of replication capacity upon initiation of a new PI regimen, and observations of the changes in replication capacity detected during suboptimal therapy.

    Article  PubMed  CAS  Google Scholar 

  41. Grant RM, Barbour JD, Wrin T, et al.: Transmission of Drug Resistant HIV-1 exhibiting lower replication capacity is associated with higher CD4 counts. Antiviral Ther 2002, 7:S41.

    Google Scholar 

  42. Brenner BG, Routy JP, Petrella M, et al.: Persistence and fitness of multidrug-resistant human immunodeficiency virus type 1 acquired in primary infection. J Virol 2002, 76:1753–1761.

    Article  PubMed  CAS  Google Scholar 

  43. Lecossier D, Bouchonnet F, Schneider P, et al.: Discordant increases in CD4+ T cells in human immunodeficiency virusinfected patients experiencing virologic treatment failure: role of changes in thymic output and T cell death. J Infect Dis 2001, 183:1009–1016.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maldarelli, F. HIV-1 fitness and replication capacity: What are they and can they help in patient management?. Curr Infect Dis Rep 5, 77–84 (2003). https://doi.org/10.1007/s11908-003-0068-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11908-003-0068-9

Keywords

Navigation