Skip to main content

Advertisement

Log in

The pathophysiology and treatment of Candida sepsis

  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Sepsis can occur during disseminated candidiasis, but its pathogenesis differs from that caused by typical prokaryotic pathogens. Complex interactions between defects in host defense and "relative" virulence factors expressed by Candida lead to dissemination of the saprophyte to parenchymal organs, and subsequently to onset of multiorgan failure. This review focuses first on the pathophysiology of Candida sepsis, detailing current understanding of host-pathogen interactions. We then consider the choice of antifungal and supportive treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Stone HH, Kolb LD, Currie CA, et al.: Candida sepsis: pathogenesis and principles of treatments. Ann Surg 1974, 179:697–711.

    PubMed  CAS  Google Scholar 

  2. McKinnon PS, Goff DA, Kern JW, et al.: Temporal assessment of Candida risk factors in the surgical intensive care unit. Arch Surg 2001, 136:1401–1409.

    PubMed  CAS  Google Scholar 

  3. Voss A, Hollis RJ, Pfaller MA, et al.: Investigation of the sequence of colonization and candidemia in nonneutropenic patients. J Clin Microbiol 1994, 32:975–980.

    PubMed  CAS  Google Scholar 

  4. Eggimann P, Francioli P, Bille J, et al.: Fluconazole prophylaxis prevents intra-abdominal candidiasis in high-risk surgical patients. Crit Care Med 1999, 27:1066–1072.

    PubMed  CAS  Google Scholar 

  5. Safdar A, Chaturvedi V, Cross EW, et al.: Prospective study of Candida species in patients at a comprehensive cancer center. Antimicrob Agents Chemother 2001, 45:2129–2133.

    PubMed  CAS  Google Scholar 

  6. Lehrer N, Segal E, Barr-Nea L: In vitro and in vivo adherence of Candida albicans to mucosal surfaces. Ann Microbiol (Paris) 1983, 134B:293–306.

    CAS  Google Scholar 

  7. Cormack BP, Ghori N, Falkow S: An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science 1999, 285:578–582. Cloning of a surface adhesin likely mediating Candida adherence to epithelium, and formal demonstration that deletion of the gene in C. glabrata reduced epithelial adherence.

    PubMed  CAS  Google Scholar 

  8. Fu Y, Rieg G, Fonzi WA, et al.: Expression of the Candida albicans gene ALS1 in Saccharomyces cerevisiae induces adherence to endothelial and epithelial cells. Infect Immun 1998, 66:1783–1786.

    PubMed  CAS  Google Scholar 

  9. Alonso R, Llopis I, Flores C, et al.: Different adhesins for type IV collagen on Candida albicans: identification of a lectinlike adhesin recognizing the 7S(IV) domain. Microbiology 2001, 147:1971–1981.

    PubMed  CAS  Google Scholar 

  10. Rotrosen D, Calderone RA, Edwards JE, Jr.: Adherence of Candida species to host tissues and plastic surfaces. Rev Infect Dis 1986, 8:73–85.

    PubMed  CAS  Google Scholar 

  11. Fu Y, Ibrahim AS, Sheppard DC, et al.: Candida albicans Als1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway. Mol Microbiol 2002, 44:61–72. Deletion of the Candida ALS1 gene reduces adherence of the organism to endothelium, reduces in vivo virulence, and affects filamentation.

    PubMed  CAS  Google Scholar 

  12. Maraki S, Mouzas IA, Kontoyiannis DP, et al.: Prospective evaluation of the impact of amoxicillin, clarithromycin and their combination on human gastrointestinal colonization by Candida species. Chemotherapy 2001, 47:215–218.

    PubMed  CAS  Google Scholar 

  13. Spellberg B: The cutaneous citadel: a holistic view of skin and immunity. Life Sci 2000, 67:477–502.

    PubMed  CAS  Google Scholar 

  14. Maibach HI, Kligman AM: The biology of experimental human cutaneous moniliasis (Candida albicans). Arch Dermatol 1962, 85:113–137.

    Google Scholar 

  15. Wenzel RP: Nosocomial candidemia: risk factors and attributable mortality. Clin Infect Dis 1995, 20:1531–1534.

    PubMed  CAS  Google Scholar 

  16. Gross M, Winkler H, Pitlik S, et al.: Unexpected candidemia complicating ureteroscopy and urinary stenting. Eur J Clin Microbiol Infect Dis 1998, 17:583–586.

    PubMed  CAS  Google Scholar 

  17. Sallah S, Wan JY, Nguyen NP, et al.: Analysis of factors related to the occurrence of chronic disseminated candidiasis in patients with acute leukemia in a non-bone marrow transplant setting: a follow-up study. Cancer 2001, 92:1349–1353.

    PubMed  CAS  Google Scholar 

  18. Krause W, Matheis H, Wulf K: Fungaemia and funguria after oral administration of Candida albicans. Lancet 1969, 1:598–599.

    PubMed  CAS  Google Scholar 

  19. Ibrahim AS, Mirbod F, Filler SG, et al.: Evidence implicating phospholipase as a virulence factor of Candida albicans. Infect Immun 1995, 63:1993–1998.

    PubMed  CAS  Google Scholar 

  20. Ibrahim AS, Filler SG, Sanglard D, et al.: Secreted aspartyl proteinases and interactions of Candida albicans with human endothelial cells. Infect Immun 1998, 66:3003–3005.

    PubMed  CAS  Google Scholar 

  21. Naglik JR, Newport G, White TC, et al.: In vivo analysis of secreted aspartyl proteinase expression in human oral candidiasis. Infect Immun 1999, 67:2482–2490.

    PubMed  CAS  Google Scholar 

  22. Filler SG, Swerdloff JN, Hobbs C, et al.: Penetration and damage of endothelial cells by Candida albicans. Infect Immun 1995, 63:976–983.

    PubMed  CAS  Google Scholar 

  23. Phan QT, Belanger PH, Filler SG: Role of hyphal formation in interactions of Candida albicans with endothelial cells. Infect Immun 2000, 68:3485–3490.

    PubMed  CAS  Google Scholar 

  24. Stanley VC, Hurley R: The growth of Candida species in cultures of mouse peritoneal macrophages. J Pathol 1969, 97:357–366.

    PubMed  CAS  Google Scholar 

  25. Louria DB, Brayton RG: Behavior of Candida cells within leukocytes. Proc Soc Exp Biol Med 1974, 115:93–96.

    Google Scholar 

  26. Lechner AJ, Tredway TL, Brink DS, et al.: Differential systemic and intrapulmonary TNF-alpha production in Candida sepsis during immunosuppression. Am J Physiol 1992, 263:L526–535.

    PubMed  CAS  Google Scholar 

  27. Bernhardt J, Herman D, Sheridan M, et al.: Adherence and invasion studies of Candida albicans strains, using in vitro models of esophageal candidiasis. J Infect Dis 2001, 184:1170–1175.

    PubMed  CAS  Google Scholar 

  28. Schmid J, Hunter PR, White GC, et al.: Physiological traits associated with success of Candida albicans strains as commensal colonizers and pathogens. J Clin Microbiol 1995, 33:2920–2926.

    PubMed  CAS  Google Scholar 

  29. Brieland J, Essig D, Jackson C, et al.: Comparison of pathogenesis and host immune responses to Candida glabrata and Candida albicans in systemically infected immunocompetent mice. Infect Immun 2001, 69:5046–5055.

    PubMed  CAS  Google Scholar 

  30. Edwards JE Jr, Montgomerie JZ, Ishida K, et al.: Experimental hematogenous endophthalmitis due to Candida: species variation in ocular pathogenicity. J Infect Dis 1977, 135:294–297.

    PubMed  Google Scholar 

  31. Edwards JEJr, Foos RY, Montgomerie JZ, et al.: Ocular manifestations of Candida septicemia: review of seventy-six cases of hematogenous Candida endophthalmitis. Medicine (Baltimore) 1974, 53:47–75.

    Google Scholar 

  32. Brooks RG: Prospective study of Candida endophthalmitis in hospitalized patients with candidemia. Arch Intern Med 1989, 149:2226–2228.

    PubMed  CAS  Google Scholar 

  33. Nucci M, Pulcheri W, Spector N, et al.: Fungal infections in neutropenic patients. A 8-year prospective study. Rev Inst Med Trop Sao Paulo 1995, 37:397–406.

    PubMed  CAS  Google Scholar 

  34. Anaissie EJ, Rex JH, Uzun O, et al.: Predictors of adverse outcome in cancer patients with candidemia. Am J Med 1998, 104:238–245.

    PubMed  CAS  Google Scholar 

  35. Heidenreich S, Kubis T, Schmidt M, et al.: Glucocorticoidinduced alterations of monocyte defense mechanisms against Candida albicans. Cell Immunol 1994, 157:320–327.

    PubMed  CAS  Google Scholar 

  36. Tansho S, Abe S, Yamaguchi H: Inhibition of Candida albicans growth by murine peritoneal neutrophils and augmentation of the inhibitory activity by bacterial lipopolysaccharide and cytokines. Microbiol Immunol 1994, 38:379–383.

    PubMed  CAS  Google Scholar 

  37. Meister H, Heymer B, Schafer H, et al.: Role of Candida albicans in granulomatous tissue reactions. II. In vivo degradation of C. albicans in hepatic macrophages of mice. J Infect Dis 1977, 135:235–242.

    PubMed  CAS  Google Scholar 

  38. Spellberg B, Edwards J: Type 1/type 2 immunity in infectious diseases. Clin Infect Dis 2001, 32:76–102. Review of regulation and function of mammalian adaptive immunity, linking humoral and cell-mediated host defense in one paradigm.

    PubMed  CAS  Google Scholar 

  39. Ellepola AN, Samaranayake LP: Inhalational and topical steroids, and oral candidosis: a mini review. Oral Dis 2001, 7:211–216.

    PubMed  CAS  Google Scholar 

  40. Ziege SU, Geerdes-Fenge HF, Rau M, et al.: In vitro effects of interleukin-10, prednisolone, and GM-CSF on the nonspecific immune function of human polymorphonuclear leucocytes and monocytes. Eur J Med Res 2000, 5:369–374.

    PubMed  CAS  Google Scholar 

  41. Saiman L, Ludington E, Pfaller M, et al.: Risk factors for candidemia in neonatal intensive care unit patients. The National Epidemiology of Mycosis Survey study group. Pediatr Infect Dis J 2000, 19:319–324.

    PubMed  CAS  Google Scholar 

  42. de LeonEM, Jacober SJ, Sobel JD, et al.: Prevalence and risk factors for vaginal Candida colonization in women with type 1 and type 2 diabetes. BMC Infect Dis 2002, 2:1.

    PubMed  Google Scholar 

  43. Leijh PC, van den BarselaarMT, van FurthR: Kinetics of phagocytosis and intracellular killing of Candida albicans by human granulocytes and monocytes. Infect Immun 1977, 17:313–318.

    PubMed  CAS  Google Scholar 

  44. Djeu JY, Blanchard DK: Regulation of human polymorphonuclear neutrophil (PMN) activity against Candida albicans by large granular lymphocytes via release of a PMN-activating factor. J Immunol 1987, 139:2761–2767.

    PubMed  CAS  Google Scholar 

  45. Cannom RM, French SW, Edwards JEJ, et al.: Candida albicansstimulates local expression of leukocyte adhesion molecules and cytokines in vivo. J Infect Dis 2002, In press. A temporal description of the host inflammatory response as it evolves during the first week of Candida sepsis in mice, including serum cytokine levels and tissue histopathology.

  46. Farah CS, Elahi S, Drysdale K, et al.: Primary role for CD4(+) T lymphocytes in recovery from oropharyngeal candidiasis. Infect Immun 2002, 70:724–731.

    PubMed  CAS  Google Scholar 

  47. Jensen J, Warner T, Balish E: Resistance of SCID mice to Candida albicans administered intravenously or colonizing the gut: role of polymorphonuclear leukocytes and macrophages. J Infect Dis 1993, 167:912–919.

    PubMed  CAS  Google Scholar 

  48. Lechner AJ, Lamprech KE, Potthoff LH, et al.: Recombinant GM-CSF reduces lung injury and mortality during neutropenic Candida sepsis. Am J Physiol 1994, 266:L561–568.

    PubMed  CAS  Google Scholar 

  49. Cole GT, Halawa AA, Anaissie EJ: The role of the gastrointestinal tract in hematogenous candidiasis: from the laboratory to the bedside. Clin Infect Dis 1996, 22(Suppl 2):S73-S88.

    PubMed  Google Scholar 

  50. Jensen J, Warner T, Balish E: The role of phagocytic cells in resistance to disseminated candidiasis in granulocytopenic mice. J Infect Dis 1994, 170:900–905.

    PubMed  CAS  Google Scholar 

  51. Han Y, Cutler JE: Antibody response that protects against disseminated candidiasis. Infect Immun 1995, 63:2714–2719.

    PubMed  CAS  Google Scholar 

  52. Wagner RD, Vazquez-Torres A, Jones-Carson J, et al.: B cell knockout mice are resistant to mucosal and systemic candidiasis of endogenous origin but susceptible to experimental systemic candidiasis. J Infect Dis 1996, 174:589–597.

    PubMed  CAS  Google Scholar 

  53. Gelfand JA, Hurley DL, Fauci AS, et al.: Role of complement in host defense against experimental disseminated candidiasis. J Infect Dis 1978, 138:9–16.

    PubMed  CAS  Google Scholar 

  54. Pearsall NN, Adams BL, Bunni R: Immunologic responses to Candida albicans. III. Effects of passive transfer of lymphoid cells or serum on murine candidiasis. J Immunol 1978, 120:1176–1180.

    PubMed  CAS  Google Scholar 

  55. Hadfield TL, Marcus S: Macrophage and lymphocyte contributions in resistance of Candida albicans infections. Immunol Commun 1982, 11:201–216.

    PubMed  CAS  Google Scholar 

  56. Tabeta H, Mikami Y, Abe F, et al.: Studies on defense mechanisms against Candida albicans infection in congenitally athymic nude (nu/nu) mice. Mycopathologia 1984, 84:107–113.

    PubMed  CAS  Google Scholar 

  57. Kobayashi M, Kobayashi H, Herndon DN, et al.: Burnassociated Candida albicans infection caused by CD30+ type 2 T cells. J Leukocyte Biol 1998, 63:723–731. Demonstration that lymphocytes can act to either enhance or suppress immunity to candidemia, and that Th2 cells are responsible for the suppressive effect.

    PubMed  CAS  Google Scholar 

  58. Balish E, Warner T, Pierson CJ, et al.: Oroesophageal candidiasis is lethal for transgenic mice with combined natural killer and T-cell defects. Med Mycol 2001, 39:261–268. Demonstration that lymphocytes are crucial to mucosal host defense against Candida, while phagocytes are crucial to protection against systemic disease.

    PubMed  CAS  Google Scholar 

  59. Romani L: Innate and adaptive immunity in Candida albicans infections and saprophytism. J Leukocyte Biol 2000, 68:175–179. A thorough review of Type 1/Type 2 immunity as it applies to host defense against Candida.

    PubMed  CAS  Google Scholar 

  60. Bajaj JS, Singh A, Aggarwal SK, et al.: Synergistic immunosuppression by candida in HIV infection: a cytokine based analysis. J Commun Dis 2000, 32:1–9.

    PubMed  CAS  Google Scholar 

  61. Savolainen J, Rantala A, Nermes M, et al.: Enhanced IgE response to Candida albicans in postoperative invasive candidiasis. Clin Exp Allergy 1996, 26:452–460. Serum IgE levels distinguished postoperative patients infected with or colonized by C. albicans. High IgE levels, used as an in vivo proxy for Type 2 immunity, correlated with infection.

    PubMed  CAS  Google Scholar 

  62. Talluri G, Marella VK, Shirazian D, et al.: Immune response in patients with persistent candiduria and occult candidemia. J Urol 1999, 162:1361–1364. Indicates that Type 2 cytokines correlate with susceptibility/onset of systemic candidiasis in patients who are colonized with the organism.

    PubMed  CAS  Google Scholar 

  63. Chiani P, Bromuro C, Torosantucci A: Defective induction of interleukin-12 in human monocytes by germ-tube forms of Candida albicans. Infect Immun 2000, 68:5628–5634.

    PubMed  CAS  Google Scholar 

  64. d’Ostiani CF, Del Sero G, Bacci A, et al.: Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans. Implications for initiation of T helper cell immunity in vitro and in vivo. J Exp Med 2000, 191:1661–1674.

    PubMed  CAS  Google Scholar 

  65. Holevinsky KO, Nelson DJ: Membrane capacitance changes associated with particle uptake during phagocytosis in macrophages. Biophys J 1998, 75:2577–2586.

    PubMed  CAS  Google Scholar 

  66. Romani L, Mencacci A, Cenci E, et al.: An immunoregulatory role for neutrophils in CD4+ T helper subset selection in mice with candidiasis. J Immunol 1997, 158:2356–2362.

    PubMed  CAS  Google Scholar 

  67. Souza VM, Faquim-Mauro EL, Macedo MS: Extracts of Ascaris suum egg and adult worm share similar immunosuppressive properties. Braz J Med Biol Res 2002, 35:81–89.

    PubMed  CAS  Google Scholar 

  68. de Jong EC, Vieira PL, Kalinski P, et al.: Microbial compounds selectively induce Th1 cell-promoting or Th2 cell-promoting dendritic cells in vitro with diverse th cell-polarizing signals. J Immunol 2002, 168:1704–1709.

    PubMed  Google Scholar 

  69. Bromuro C, La ValleR, Sandini S, et al.: A 70-kilodalton recombinant heat shock protein of Candida albicans is highly immunogenic and enhances systemic murine candidiasis. Infect Immun 1998, 66:2154–2162.

    PubMed  CAS  Google Scholar 

  70. Filler SG, Ibe BO, Ibrahim AS, et al.: Mechanisms by which Candida albicans induces endothelial cell prostaglandin synthesis. Infect Immun 1994, 62:1064–1069.

    PubMed  CAS  Google Scholar 

  71. Rotstein D, Parodo J, Taneja R, et al.: Phagocytosis of Candida albicans induces apoptosis of human neutrophils. Shock 2000, 14:278–283.

    PubMed  CAS  Google Scholar 

  72. Ozinsky A, Underhill DM, Fontenot JD, et al.: The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci U S A 2000, 97:13766–13771.

    PubMed  CAS  Google Scholar 

  73. Choi JH, Ko HM, Kim JW, et al.: Platelet-activating factorinduced early activation of NF-kappa B plays a crucial role for organ clearance of Candida albicans. J Immunol 2001, 166:5139–5144.

    PubMed  CAS  Google Scholar 

  74. Skeen MJ, Miller MA, Shinnick TM, et al.: Regulation of murine macrophage IL-12 production. Activation of macrophages in vivo, restimulation in vitro, and modulation by other cytokines. J Immunol 1996, 156:1196–1206.

    PubMed  CAS  Google Scholar 

  75. Steele C, Fidel PLJr: Cytokine and chemokine production by human oral and vaginal epithelial cells in response to Candida albicans. Infect Immun 2002, 70:577–583.

    PubMed  CAS  Google Scholar 

  76. Filler SG, Pfunder AS, Spellberg BJ, et al.: Candida albicans stimulates cytokine production and leukocyte adhesion molecule expression by endothelial cells. Infect Immun 1996, 64:2609–2617.

    PubMed  CAS  Google Scholar 

  77. Orozco AS, Zhou X, Filler SG: Mechanisms of the proinflammatory response of endothelial cells to Candida albicans infection. Infect Immun 2000, 68:1134–1141.

    PubMed  CAS  Google Scholar 

  78. Jouault T, Bernigaud A, Lepage G, et al.: The Candida albicans phospholipomannan induces in vitro production of tumour necrosis factor-alpha from human and murine macrophages. Immunology 1994, 83:268–273.

    PubMed  CAS  Google Scholar 

  79. Ataoglu H, Dogan MD, Mustafa F, et al.: Candida albicans and Saccharomyces cerevisiae cell wall mannans produce fever in rats: role of nitric oxide and cytokines. Life Sci 2000, 67:2247–2256.

    PubMed  CAS  Google Scholar 

  80. Hesse DG, Tracey KJ, Fong Y, et al.: Cytokine appearance in human endotoxemia and primate bacteremia. Surg Gynecol Obstet 1988, 166:147–153.

    PubMed  CAS  Google Scholar 

  81. Martich GD, Danner RL, Ceska M, et al.: Detection of interleukin 8 and tumor necrosis factor in normal humans after intravenous endotoxin: the effect of antiinflammatory agents. J Exp Med 1991, 173:1021–1024.

    PubMed  CAS  Google Scholar 

  82. Lechner AJ, Rouben LR, Potthoff LH, et al.: Effects of pentoxifylline on tumor necrosis factor production and survival during lethal E. coli sepsis vs. disseminated candidiasis with fungal septic shock. Circ Shock 1993, 39:306–315.

    PubMed  CAS  Google Scholar 

  83. Matuschak GM, Klein CA, Tredway TL, et al.: TNF-alpha and cyclooxygenase metabolites do not modulate C. albicans septic shock with disseminated candidiasis. J Appl Physiol 1993, 74:2432–2442.

    PubMed  CAS  Google Scholar 

  84. Netea MG, van Tits LJ, Curfs JH, et al.: Increased susceptibility of TNF-alpha lymphotoxin-alpha double knockout mice to systemic candidiasis through impaired recruitment of neutrophils and phagocytosis of Candida albicans. J Immunol 1999, 163:1498–1505. Demonstrates the important role of TNF in protection of mice from disseminated candidiasis, and the correlation between higher TNF production with higher rates of survival.

    PubMed  CAS  Google Scholar 

  85. Louria DB, Fallon N, Browne HG: The influence of cortisone on experimental fungus infections in mice. J Clin Invest 1960, 39:1435–1449.

    PubMed  CAS  Google Scholar 

  86. Lechner AJ, Ryerse JS, Matuschak GM: Acute lung injury during bacterial or fungal sepsis. Microsc Res Tech 1993, 26:444–456.

    PubMed  CAS  Google Scholar 

  87. Matuschak GM, Lechner AJ: The yeast to hyphal transition following hematogenous candidiasis induces shock and organ injury independent of circulating tumor necrosis factoralpha. Crit Care Med 1997, 25:111–120. Demonstrates that Candida sepsis is not mediated by induction of high levels of TNF, that TNF levels correlate with survival, and that the yeast to hyphal transition is temporally linked to induction of sepsis.

    PubMed  CAS  Google Scholar 

  88. Bone RC: Immunologic dissonance: a continuing evolution in our understanding of the systemic inflammatory response syndrome (SIRS) and the multiple organ dysfunction syndrome (MODS). Ann Intern Med 1996, 125:680–687.

    PubMed  CAS  Google Scholar 

  89. Oberholzer A, Oberholzer C, Moldawer LL: Sepsis syndromes: understanding the role of innate and acquired immunity. Shock 2001, 16:83–96. Reviews the immunosuppressive nature of CARS as it relates to SIRS.

    PubMed  CAS  Google Scholar 

  90. Keel M, Ungethum U, Steckholzer U, et al.: Interleukin-10 counterregulates proinflammatory cytokine-induced inhibition of neutrophil apoptosis during severe sepsis. Blood 1997, 90:3356–3363.

    PubMed  CAS  Google Scholar 

  91. Adrie C, Bachelet M, Vayssier-Taussat M, et al.: Mitochondrial membrane potential and apoptosis peripheral blood monocytes in severe human sepsis. Am J Respir Crit Care Med 2001, 164:389–395.

    PubMed  CAS  Google Scholar 

  92. Hotchkiss RS, Tinsley KW, Swanson PE, et al.: Depletion of Dendritic Cells, But Not Macrophages, in Patients with Sepsis. J Immunol 2002, 168:2493–2500.

    PubMed  CAS  Google Scholar 

  93. Xiong J, Kang K, Liu L, et al.: Candida albicans and Candida krusei differentially induce human blood mononuclear cell interleukin-12 and gamma interferon production. Infect Immun 2000, 68:2464–2469.

    PubMed  CAS  Google Scholar 

  94. Mencacci A, Cenci E, Boelaert JR, et al.: Iron overload alters innate and T helper cell responses to Candida albicans in mice. J Infect Dis 1997, 175:1467–1476.

    Article  PubMed  CAS  Google Scholar 

  95. Hiatt JS, Martin DS: Recovery from pulmonary moniliasis following serum therapy. JAMA 1946, 130:205–206.

    Google Scholar 

  96. Romani L, Mencacci A, Cenci E, et al.: Impaired neutrophil response and CD4+ T helper cell 1 development in interleukin 6-deficient mice infected with Candida albicans. J Exp Med 1996, 183:1345–1355.

    PubMed  CAS  Google Scholar 

  97. Edwards JEJr, Bodey GP, Bowden RA, et al.: International conference for the development of a consensus on the management and prevention of severe candidal infections. Clin Infect Dis 1997, 25:43–59. Summary of a consensus conference of fungal specialists addressing the management of severe Candida infections.

    PubMed  Google Scholar 

  98. Rex JH, Walsh TJ, Sobel JD, et al.: Practice guidelines for the treatment of candidiasis. Infectious Diseases Society of America. Clin Infect Dis 2000, 30:662–678. The IDSA consensus guidelines on management of Candida infections.

    PubMed  CAS  Google Scholar 

  99. Rex JH, Bennett JE, Sugar AM, et al.: A randomized trial comparing fluconazole with amphotericin B for the treatment of candidemia in patients without neutropenia. Candidemia Study Group and the National Institute. N Engl J Med 1994, 331:1325–1330.

    PubMed  CAS  Google Scholar 

  100. Phillips P, Shafran S, Garber G, et al.: Multicenter randomized trial of fluconazole versus amphotericin B for treatment of candidemia in non-neutropenic patients. Canadian Candidemia Study Group. Eur J Clin Microbiol Infect Dis 1997, 16:337–345.

    PubMed  CAS  Google Scholar 

  101. Orozco AS, Higginbotham LM, Hitchcock CA, et al.: Mechanism of fluconazole resistance in Candida krusei. Antimicrob Agents Chemother 1998, 42:2645–2649.

    PubMed  CAS  Google Scholar 

  102. Miyazaki H, Miyazaki Y, Geber A, et al.: Fluconazole resistance associated with drug efflux and increased transcription of a drug transporter gene, PDH1, in Candida glabrata. Antimicrob Agents Chemother 1998, 42:1695–1701.

    PubMed  CAS  Google Scholar 

  103. Walsh TJ, Hiemenz JW, Seibel NL, et al.: Amphotericin B lipid complex for invasive fungal infections: analysis of safety and efficacy in 556 cases. Clin Infect Dis 1998, 26:1383–1396.

    PubMed  CAS  Google Scholar 

  104. WalshTJ, Finberg RW, Arndt C, et al.: Liposomal amphotericin B for empirical therapy in patients with persistent fever and neutropenia. National Institute of Allergy and Infectious Diseases Mycoses Study Group. N Engl J Med 1999, 340:764–771. A randomized, double-blinded comparison of liposomal amphotericin B and amphotericin B deoxycholate in neutropenic patients with persistent fever, showing equivalent efficacy of the two agents but diminished toxicity from the liposomal formulation.

    PubMed  CAS  Google Scholar 

  105. Walsh TJ, Pappas P, Winston DJ, et al.: Voriconazole compared with liposomal amphotericin B for empirical antifungal therapy in patients with neutropenia and persistent fever. N Engl J Med 2002, 346:225–234.

    PubMed  CAS  Google Scholar 

  106. LeendersAC, Daenen S, Jansen RL, et al.: Liposomal amphotericin B compared with amphotericin B deoxycholate in the treatment of documented and suspected neutropeniaassociated invasive fungal infections. Br J Haematol 1998, 103:205–212. A randomized comparison of liposomal amphotericin B with amphotericin B deoxycholate in neutropenic patients with either suspected or proven invasive fungal disease. The study showed improved mortality in the liposomal arm, but the applicability to Candida sepsis is weakened by the few patients enrolled with known candidemia.

    PubMed  CAS  Google Scholar 

  107. Prentice HG, Hann IM, Herbrecht R, et al.: A randomized comparison of liposomal versus conventional amphotericin B for the treatment of pyrexia of unknown origin in neutropenic patients. Br J Haematol 1997, 98:711–718.

    PubMed  CAS  Google Scholar 

  108. Mehta J, Kelsey S, Chu P, et al.: Amphotericin B lipid complex (ABLC) for the treatment of confirmed or presumed fungal infections in immunocompromised patients with hematologic malignancies. Bone Marrow Transplant 1997, 20:39–43.

    PubMed  CAS  Google Scholar 

  109. Kruger WH, Kroger N, Russmann B, et al.: Treatment of mycotic infections after haemopoietic progenitor cell transplantation with liposomal amphotericin-B. Bone Marrow Transplant 1998, 22(Suppl 4):S10-S13.

    PubMed  Google Scholar 

  110. Walsh TJ, Goodman JL, Pappas P, et al.: Safety, tolerance, and pharmacokinetics of high-dose liposomal amphotericin B (AmBisome) in patients infected with Aspergillus species and other filamentous fungi: maximum tolerated dose study. Antimicrob Agents Chemother 2001, 45:3487–3496. Demonstrates that liposomal amphotericin B can be safely administered at doses up to 15 mg/kg/d.

    PubMed  CAS  Google Scholar 

  111. FlemingRV, Kantarjian HM, Husni R, et al.: Comparison of amphotericin B lipid complex (ABLC) vs. ambisome in the treatment of suspected or documented fungal infections in patients with leukemia. Leuk Lymphoma 2001, 40:511–520. A randomized comparison of liposomal amphotericin B versus amphotericin B lipid complex in leukemic patients with suspected or proven fungal infections. Although efficacy was equivalent in both arms, the results are difficult to interpret in light of the few patients enrolled with known candidemia and the fact that randomization did not lead to equivalent populations in each arm.

    Article  PubMed  CAS  Google Scholar 

  112. WingardJR, White MH, Anaissie E, et al.: A randomized, double-blind comparative trial evaluating the safety of liposomal amphotericin B versus amphotericin B lipid complex in the empirical treatment of febrile neutropenia. L Amph/ABLC Collaborative Study Group. Clin Infect Dis 2000, 31:1155–1163. A randomized comparison of liposomal amphotericin B versus amphotericin B lipid complex that showed equivalent efficacy in febrile neutropenic patients, but diminished toxicity in the liposomal amphotericin B arm.

    PubMed  CAS  Google Scholar 

  113. Denning DW, Ribaud P, Milpied N, et al.: Efficacy and safety of voriconazole in the treatment of acute invasive aspergillosis. Clin Infect Dis 2002, 34:563–571.

    PubMed  CAS  Google Scholar 

  114. Arathoon EG, Gotuzzo E, Noriega LM, et al.: Randomized, double-blind, multicenter study of caspofungin versus amphotericin b for treatment of oropharyngeal and esophageal candidiases. Antimicrob Agents Chemother 2002, 46:451–457.

    PubMed  CAS  Google Scholar 

  115. Lehrnbecher T, Groll AH, Chanock SJ: Treatment of fungal infections in neutropenic children. Curr Opin Pediatr 1999, 11:47–55.

    PubMed  CAS  Google Scholar 

  116. Offner F: Hematopoietic growth factors in cancer patients with invasive fungal infections. Eur J Clin Microbiol Infect Dis 1997, 16:56–63.

    PubMed  CAS  Google Scholar 

  117. Kullberg BJ, Netea MG, Vonk AG, et al.: Modulation of neutrophil function in host defense against disseminated Candida albicans infection in mice. FEMS Immunol Med Microbiol 1999, 26:299–307.

    PubMed  CAS  Google Scholar 

  118. Bodey GP, Buckley M, Sathe YS, et al.: Quantitative relationships between circulating leukocytes and infection in patients with acute leukemia. Ann Intern Med 1966, 64:328–340.

    PubMed  CAS  Google Scholar 

  119. Leibovici L, Drucker M, Samra Z, et al.: Prognostic significance of the neutrophil count in immunocompetent patients with bacteraemia. Q J Med 1995, 88:181–189.

    CAS  Google Scholar 

  120. Huestis DW, Glasser L: The neutrophil in transfusion medicine. Transfusion 1994, 34:630–646.

    PubMed  CAS  Google Scholar 

  121. Price TH: The current prospects for neutrophil transfusions for the treatment of granulocytopenic infected patients. Transfusion Med Rev 2000, 14:2–11.

    Google Scholar 

  122. BernardGR, Vincent JL, Laterre PF, et al.: Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 2001, 344:699–709. The first clinical trial to show a mortality benefit from biologic modulation of the SIRS cascade. Recombinant activated human protein C (drotrecogin-alpha) reduced mortality by nearly 20% in a randomized, double-blinded study of patients with severe sepsis.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spellberg, B., Edwards, J.E. The pathophysiology and treatment of Candida sepsis. Curr Infect Dis Rep 4, 387–399 (2002). https://doi.org/10.1007/s11908-002-0005-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11908-002-0005-3

Keywords

Navigation