Skip to main content
Log in

Mineralocorticoid Receptor Blockers: Novel Selective Nonsteroidal Mineralocorticoid Receptor Antagonists

  • Prevention of Hypertension: Public Health Challenges(Y Yano, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Recently, nonsteroidal mineralocorticoid receptor (MR) antagonists (MRAs), which have been proposed to be called MR blockers (MRBs), have become available for clinical use, but their clinical role is unknown. We reviewed the clinical roles of MRAs and MRBs based on previous knowledge and as demonstrated in representative clinical trials.

Recent Findings

Steroidal MRAs, such as spironolactone and eplerenone, inhibit the action of aldosterone and cortisol in MRs expressed in several organs and cell types, and accumulating clinical studies have revealed that they exert hypotensive and cardiorenal protective effects. Recently, MRBs, including finerenone and esaxerenone, have been developed and are expected to lower the risk of hyperkalemia, which is common when steroidal MRAs are used. Although the differences between MRAs and MRBs in clinical practice have not yet been established, further studies in this field are expected to broaden our understanding.

Summary

MRBs exert antihypertensive and cardiorenal protective effects, and their potency is thought to be far superior to that of MRAs, because MRBs have both strong MR inhibitory action and high selectivity. Thus, MRBs could be a promising agent for the treatment of hypertension and cardiorenal, cerebral, and metabolic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Simpson SA, Tait JF, Wettstein A, Neher R, Von Euw J, Reichstein T. Isolation from the adrenals of a new crystalline hormone with especially high effectiveness on mineral metabolism. Experientia. 1953;9(9):333–5.

    Article  CAS  PubMed  Google Scholar 

  2. Nishiyama A. Pathophysiological mechanisms of mineralocorticoid receptor-dependent cardiovascular and chronic kidney disease. Hypertens Res. 2019;42(3):293–300.

    Article  CAS  PubMed  Google Scholar 

  3. Kagawa CM, Cella JA, Van Arman CG. Action of new steroids in blocking effects of aldosterone and desoxycorticosterone on salt. Science. 1957;126(3281):1015–6.

    Article  CAS  PubMed  Google Scholar 

  4. Conn JW. Primary aldosteronism. J Lab Clin Med. 1955;45(4):661–4.

    CAS  PubMed  Google Scholar 

  5. de Gasparo M, Joss U, Ramjoue HP, Whitebread SE, Haenni H, Schenkel L, et al. Three new epoxy-spirolactone derivatives: characterization in vivo and in vitro. J Pharmacol Exp Ther. 1987;240(2):650–6.

    PubMed  Google Scholar 

  6. Stier CT Jr. Eplerenone: a selective aldosterone blocker. Cardiovasc Drug Rev. 2003;21(3):169–84.

    Article  CAS  PubMed  Google Scholar 

  7. Kolkhof P, Barfacker L. 30 Years of the mineralocorticoid receptor: mineralocorticoid receptor antagonists: 60 years of research and development. J Endocrinol. 2017;234(1):T125–T40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Savoia C, Touyz RM, Amiri F, Schiffrin EL. Selective mineralocorticoid receptor blocker eplerenone reduces resistance artery stiffness in hypertensive patients. Hypertension. 2008;51(2):432–9.

    Article  CAS  PubMed  Google Scholar 

  9. Flack JM, Oparil S, Pratt JH, Roniker B, Garthwaite S, Kleiman JH, et al. Efficacy and tolerability of eplerenone and losartan in hypertensive black and white patients. J Am Coll Cardiol. 2003;41(7):1148–55.

    Article  CAS  PubMed  Google Scholar 

  10. Weinberger MH, White WB, Ruilope LM, MacDonald TM, Davidson RC, Roniker B, et al. Effects of eplerenone versus losartan in patients with low-renin hypertension. Am Heart J. 2005;150(3):426–33.

    Article  CAS  PubMed  Google Scholar 

  11. Williams B, MacDonald TM, Morant S, Webb DJ, Sever P, McInnes G, et al. Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-blind, crossover trial. Lancet. 2015;386(10008):2059–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. Circulation. 2018;138(17):e484–594.

    PubMed  Google Scholar 

  13. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J. 2018;39(33):3021–104.

    Article  PubMed  Google Scholar 

  14. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341(10):709–17.

    Article  CAS  PubMed  Google Scholar 

  15. Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348(14):1309–21.

    Article  CAS  PubMed  Google Scholar 

  16. Pitt B, Reichek N, Willenbrock R, Zannad F, Phillips RA, Roniker B, et al. Effects of eplerenone, enalapril, and eplerenone/enalapril in patients with essential hypertension and left ventricular hypertrophy: the 4E-left ventricular hypertrophy study. Circulation. 2003;108(15):1831–8.

    Article  CAS  PubMed  Google Scholar 

  17. Zannad F, McMurray JJ, Krum H, van Veldhuisen DJ, Swedberg K, Shi H, et al. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med. 2011;364(1):11–21.

    Article  CAS  PubMed  Google Scholar 

  18. Eschalier R, McMurray JJ, Swedberg K, van Veldhuisen DJ, Krum H, Pocock SJ, et al. Safety and efficacy of eplerenone in patients at high risk for hyperkalemia and/or worsening renal function: analyses of the EMPHASIS-HF study subgroups (Eplerenone in Mild Patients Hospitalization And SurvIval Study in Heart Failure). J Am Coll Cardiol. 2013;62(17):1585–93.

    Article  CAS  PubMed  Google Scholar 

  19. Tsutsui H, Ito H, Kitakaze M, Komuro I, Murohara T, Izumi T, et al. Double-blind, randomized, placebo-controlled trial evaluating the efficacy and safety of eplerenone in Japanese patients with chronic heart failure (J-EMPHASIS-HF). Circ J. 2017;82(1):148–58.

    Article  PubMed  Google Scholar 

  20. Ezekowitz JA, McAlister FA. Aldosterone blockade and left ventricular dysfunction: a systematic review of randomized clinical trials. Eur Heart J. 2009;30(4):469–77.

    Article  CAS  PubMed  Google Scholar 

  21. Hu LJ, Chen YQ, Deng SB, Du JL, She Q. Additional use of an aldosterone antagonist in patients with mild to moderate chronic heart failure: a systematic review and meta-analysis. Br J Clin Pharmacol. 2013;75(5):1202–12.

    Article  CAS  PubMed  Google Scholar 

  22. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355(3):251–9.

    Article  CAS  PubMed  Google Scholar 

  23. Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B, et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med. 2014;370(15):1383–92.

    Article  CAS  PubMed  Google Scholar 

  24. Doi R, Masuyama T, Yamamoto K, Doi Y, Mano T, Sakata Y, et al. Development of different phenotypes of hypertensive heart failure: systolic versus diastolic failure in Dahl salt-sensitive rats. J Hypertens. 2000;18(1):111–20.

    Article  CAS  PubMed  Google Scholar 

  25. Ohtani T, Ohta M, Yamamoto K, Mano T, Sakata Y, Nishio M, et al. Elevated cardiac tissue level of aldosterone and mineralocorticoid receptor in diastolic heart failure: beneficial effects of mineralocorticoid receptor blocker. Am J Phys Regul Integr Comp Phys. 2007;292(2):R946–54.

    CAS  Google Scholar 

  26. Kawaguchi M, Hay I, Fetics B, Kass DA. Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation. 2003;107(5):714–20.

    Article  PubMed  Google Scholar 

  27. Ando K, Ohtsu H, Uchida S, Kaname S, Arakawa Y, Fujita T, et al. Anti-albuminuric effect of the aldosterone blocker eplerenone in non-diabetic hypertensive patients with albuminuria: a double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2014;2(12):944–53.

    Article  CAS  PubMed  Google Scholar 

  28. Montalescot G, Pitt B, Lopez de Sa E, Hamm CW, Flather M, Verheugt F, et al. Early eplerenone treatment in patients with acute ST-elevation myocardial infarction without heart failure: the Randomized Double-Blind Reminder Study. Eur Heart J. 2014;35(34):2295–302.

    Article  CAS  PubMed  Google Scholar 

  29. Kang YM, Zhang ZH, Xue B, Weiss RM, Felder RB. Inhibition of brain proinflammatory cytokine synthesis reduces hypothalamic excitation in rats with ischemia-induced heart failure. Am J Physiol Heart Circ Physiol. 2008;295(1):H227–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gomez-Sanchez EP. Brain mineralocorticoid receptors in cognition and cardiovascular homeostasis. Steroids. 2014;91:20–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yu Y, Wei SG, Zhang ZH, Gomez-Sanchez E, Weiss RM, Felder RB. Does aldosterone upregulate the brain renin-angiotensin system in rats with heart failure? Hypertension. 2008;51(3):727–33.

    Article  CAS  PubMed  Google Scholar 

  32. Huang BS, White RA, Jeng AY, Leenen FH. Role of central nervous system aldosterone synthase and mineralocorticoid receptors in salt-induced hypertension in Dahl salt-sensitive rats. Am J Phys Regul Integr Comp Phys. 2009;296(4):R994–R1000.

    CAS  Google Scholar 

  33. Huang BS, Leenen FH. Blockade of brain mineralocorticoid receptors or Na+ channels prevents sympathetic hyperactivity and improves cardiac function in rats post-MI. Am J Physiol Heart Circ Physiol. 2005;288(5):H2491–7.

    Article  CAS  PubMed  Google Scholar 

  34. Chander PN, Rocha R, Ranaudo J, Singh G, Zuckerman A, Stier CT Jr. Aldosterone plays a pivotal role in the pathogenesis of thrombotic microangiopathy in SHRSP. J Am Soc Nephrol. 2003;14(8):1990–7.

    Article  CAS  PubMed  Google Scholar 

  35. Rocha R, Chander PN, Khanna K, Zuckerman A, Stier CT Jr. Mineralocorticoid blockade reduces vascular injury in stroke-prone hypertensive rats. Hypertension. 1998;31(1 Pt 2):451–8.

    Article  CAS  PubMed  Google Scholar 

  36. Oyamada N, Sone M, Miyashita K, Park K, Taura D, Inuzuka M, et al. The role of mineralocorticoid receptor expression in brain remodeling after cerebral ischemia. Endocrinology. 2008;149(8):3764–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Iwanami J, Mogi M, Okamoto S, Gao XY, Li JM, Min LJ, et al. Pretreatment with eplerenone reduces stroke volume in mouse middle cerebral artery occlusion model. Eur J Pharmacol. 2007;566(1–3):153–9.

    Article  CAS  PubMed  Google Scholar 

  38. Cascella T, Palomba S, Tauchmanova L, Manguso F, Di Biase S, Labella D, et al. Serum aldosterone concentration and cardiovascular risk in women with polycystic ovarian syndrome. J Clin Endocrinol Metab. 2006;91(11):4395–400.

    Article  CAS  PubMed  Google Scholar 

  39. Goodfriend TL, Calhoun DA. Resistant hypertension, obesity, sleep apnea, and aldosterone: theory and therapy. Hypertension. 2004;43(3):518–24.

    Article  CAS  PubMed  Google Scholar 

  40. Bochud M, Nussberger J, Bovet P, Maillard MR, Elston RC, Paccaud F, et al. Plasma aldosterone is independently associated with the metabolic syndrome. Hypertension. 2006;48(2):239–45.

    Article  CAS  PubMed  Google Scholar 

  41. Kidambi S, Kotchen JM, Grim CE, Raff H, Mao J, Singh RJ, et al. Association of adrenal steroids with hypertension and the metabolic syndrome in blacks. Hypertension. 2007;49(3):704–11.

    Article  CAS  PubMed  Google Scholar 

  42. Guo C, Ricchiuti V, Lian BQ, Yao TM, Coutinho P, Romero JR, et al. Mineralocorticoid receptor blockade reverses obesity-related changes in expression of adiponectin, peroxisome proliferator-activated receptor-gamma, and proinflammatory adipokines. Circulation. 2008;117(17):2253–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sueta D, Nakamura T, Dong YF, Kataoka K, Koibuchi N, Yamamoto E, et al. Amlodipine enhances amelioration of vascular insulin resistance, oxidative stress, and metabolic disorders by candesartan in metabolic syndrome rats. Am J Hypertens. 2012;25(6):704–10.

    Article  CAS  PubMed  Google Scholar 

  44. Sueta D, Koibuchi N, Hasegawa Y, Toyama K, Uekawa K, Katayama T, et al. Telmisartan exerts sustained blood pressure control and reduces blood pressure variability in metabolic syndrome by inhibiting sympathetic activity. Am J Hypertens. 2014;27(12):1464–71.

    Article  CAS  PubMed  Google Scholar 

  45. Nagase M, Yoshida S, Shibata S, Nagase T, Gotoda T, Ando K, et al. Enhanced aldosterone signaling in the early nephropathy of rats with metabolic syndrome: possible contribution of fat-derived factors. J Am Soc Nephrol. 2006;17(12):3438–46.

    Article  CAS  PubMed  Google Scholar 

  46. Sueta D, Kataoka K, Koibuchi N, Toyama K, Uekawa K, Katayama T, et al. Novel mechanism for disrupted circadian blood pressure rhythm in a rat model of metabolic syndrome--the critical role of angiotensin II. J Am Heart Assoc. 2013;2(3):e000035.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Zulian E, Sartorato P, Benedini S, Baro G, Armanini D, Mantero F, et al. Spironolactone in the treatment of polycystic ovary syndrome: effects on clinical features, insulin sensitivity and lipid profile. J Endocrinol Investig. 2005;28(1):49–53.

    Article  CAS  Google Scholar 

  48. Fujita T. Aldosterone in salt-sensitive hypertension and metabolic syndrome. J Mol Med (Berl). 2008;86(6):729–34.

    Article  CAS  Google Scholar 

  49. Sueta D, Hokimoto S. Onco-cardiology: present and future. Int J Cardiol. 2016;215:38–40.

    Article  PubMed  Google Scholar 

  50. Sueta D, Hokimoto S, Utsunomiya D, Tabata N, Akasaka T, Sakamoto K, et al. New aspects of onco-cardiology. Int J Cardiol. 2016;206:68–70.

    Article  PubMed  Google Scholar 

  51. Yeh ET, Bickford CL. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol. 2009;53(24):2231–47.

    Article  CAS  PubMed  Google Scholar 

  52. Zamorano JL, Lancellotti P, Rodriguez Munoz D, Aboyans V, Asteggiano R, Galderisi M, et al. 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for practice guidelines: the Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(36):2768–801.

    Article  PubMed  Google Scholar 

  53. Lopez-Fernandez T, Martin Garcia A, Santaballa Beltran A, Montero Luis A, Garcia Sanz R, Mazon Ramos P, et al. Cardio-onco-hematology in clinical practice. Position paper and recommendations. Rev Esp Cardiol (Engl Ed). 2017;70(6):474–86.

    Article  Google Scholar 

  54. Lipshultz SE, Rifai N, Dalton VM, Levy DE, Silverman LB, Lipsitz SR, et al. The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N Engl J Med. 2004;351(2):145–53.

    Article  CAS  PubMed  Google Scholar 

  55. Nakamae H, Tsumura K, Terada Y, Nakane T, Nakamae M, Ohta K, et al. Notable effects of angiotensin II receptor blocker, valsartan, on acute cardiotoxic changes after standard chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisolone. Cancer. 2005;104(11):2492–8.

    Article  CAS  PubMed  Google Scholar 

  56. Cardinale D, Colombo A, Sandri MT, Lamantia G, Colombo N, Civelli M, et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation. 2006;114(23):2474–81.

    Article  CAS  PubMed  Google Scholar 

  57. Kalay N, Basar E, Ozdogru I, Er O, Cetinkaya Y, Dogan A, et al. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2006;48(11):2258–62.

    Article  CAS  PubMed  Google Scholar 

  58. Kaya MG, Ozkan M, Gunebakmaz O, Akkaya H, Kaya EG, Akpek M, et al. Protective effects of nebivolol against anthracycline-induced cardiomyopathy: a randomized control study. Int J Cardiol. 2013;167(5):2306–10.

    Article  PubMed  Google Scholar 

  59. Bosch X, Rovira M, Sitges M, Domenech A, Ortiz-Perez JT, de Caralt TM, et al. Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: the OVERCOME trial (preventiOn of left Ventricular dysfunction with Enalapril and caRvedilol in patients submitted to intensive ChemOtherapy for the treatment of Malignant hEmopathies). J Am Coll Cardiol. 2013;61(23):2355–62.

    Article  CAS  PubMed  Google Scholar 

  60. Gulati G, Heck SL, Ree AH, Hoffmann P, Schulz-Menger J, Fagerland MW, et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 x 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur Heart J. 2016;37(21):1671–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pituskin E, Mackey JR, Koshman S, Jassal D, Pitz M, Haykowsky MJ, et al. Multidisciplinary approach to novel therapies in cardio-oncology research (MANTICORE 101-breast): a randomized trial for the prevention of trastuzumab-associated cardiotoxicity. J Clin Oncol. 2017;35(8):870–7.

    Article  CAS  PubMed  Google Scholar 

  62. Avila MS, Ayub-Ferreira SM, de Barros Wanderley MR Jr, das Dores Cruz F, Goncalves Brandao SM, VOC R, et al. Carvedilol for prevention of chemotherapy-related cardiotoxicity: the CECCY trial. J Am Coll Cardiol. 2018;71(20):2281–90.

    Article  CAS  PubMed  Google Scholar 

  63. Felker GM, Thompson RE, Hare JM, Hruban RH, Clemetson DE, Howard DL, et al. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med. 2000;342(15):1077–84.

    Article  CAS  PubMed  Google Scholar 

  64. Cardinale D, Colombo A, Lamantia G, Colombo N, Civelli M, De Giacomi G, et al. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol. 2010;55(3):213–20.

    Article  CAS  PubMed  Google Scholar 

  65. Akpek M, Ozdogru I, Sahin O, Inanc M, Dogan A, Yazici C, et al. Protective effects of spironolactone against anthracycline-induced cardiomyopathy. Eur J Heart Fail. 2015;17(1):81–9.

    Article  CAS  PubMed  Google Scholar 

  66. Davis MK, Villa D, Tsang TSM, Starovoytov A, Gelmon K, Virani SA. Effect of eplerenone on diastolic function in women receiving anthracycline-based chemotherapy for breast cancer. Cardio Oncol. 2019;1(2):295–8.

    Google Scholar 

  67. Kolkhof P, Nowack C, Eitner F. Nonsteroidal antagonists of the mineralocorticoid receptor. Curr Opin Nephrol Hypertens. 2015;24(5):417–24.

    Article  CAS  PubMed  Google Scholar 

  68. Dietz JD, Du S, Bolten CW, Payne MA, Xia C, Blinn JR, et al. A number of marketed dihydropyridine calcium channel blockers have mineralocorticoid receptor antagonist activity. Hypertension. 2008;51(3):742–8.

    Article  CAS  PubMed  Google Scholar 

  69. Arai K, Homma T, Morikawa Y, Ubukata N, Tsuruoka H, Aoki K, et al. Pharmacological profile of CS-3150, a novel, highly potent and selective non-steroidal mineralocorticoid receptor antagonist. Eur J Pharmacol. 2015;761:226–34.

    Article  CAS  PubMed  Google Scholar 

  70. Yamada M, Takei M, Suzuki E, Takakusa H, Kotsuma M, Washio T, et al. Pharmacokinetics, distribution, and disposition of esaxerenone, a novel, highly potent and selective non-steroidal mineralocorticoid receptor antagonist, in rats and monkeys. Xenobiotica. 2017;47(12):1090–103.

    Article  CAS  PubMed  Google Scholar 

  71. Kato M, Furuie H, Shimizu T, Miyazaki A, Kobayashi F, Ishizuka H. Single- and multiple-dose escalation study to assess pharmacokinetics, pharmacodynamics and safety of oral esaxerenone in healthy Japanese subjects. Br J Clin Pharmacol. 2018;84(8):1821–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yamada M, Mendell J, Takakusa H, Shimizu T, Ando O. Pharmacokinetics, metabolism, and excretion of [(14)C]esaxerenone, a novel mineralocorticoid receptor blocker in humans. Drug Metab Dispos. 2019;47(3):340–9.

    Article  CAS  PubMed  Google Scholar 

  73. Pérez-Gordillo FL, Maria Jesús Pérez DV, Gerona-Navarro G, Rodríguez Y, DLR DA, González-Muñiz R, et al. Advances in the development of non-steroidal mineralocorticoid receptor. In: Antagonists; 2019.

    Google Scholar 

  74. Orena S, Maurer TS, She L, Eudy R, Bernardo V, Dash D, et al. PF-03882845, a non-steroidal mineralocorticoid receptor antagonist, prevents renal injury with reduced risk of hyperkalemia in an animal model of nephropathy. Front Pharmacol. 2013;4:115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Wang EB, Chaudhary A, Waterhouse TH, Dickinson GL. Population pharmacokinetics of LY2623091 in patients with hypertension and chronic kidney disease. J Clin Pharmacol. 2017;57(6):739–46.

    Article  CAS  PubMed  Google Scholar 

  76. Dickinson GL, Phillips DL, Posada MM, Chaudhary A, Hall SD. Physiologically based pharmacokinetic modeling to understand the observed drug–drug interaction of LY2623091 with CYP3A inhibitors itraconazole and diltiazem. Int J Pharm. 2017;2(4):233–45.

    CAS  Google Scholar 

  77. [Internet]. https://adisinsight.springer.com/drugs/800033156 [Accessed: December, 2019].

  78. [Internet]. https://ncats.nih.gov/files/PF-03882845.pdf [Accessed: December, 2019].

  79. Bamberg K, Johansson U, Edman K, William-Olsson L, Myhre S, Gunnarsson A, et al. Preclinical pharmacology of AZD9977: a novel mineralocorticoid receptor modulator separating organ protection from effects on electrolyte excretion. PLoS One. 2018;13(2):e0193380.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Erlandsson F, Albayaty M, Chialda L, Ericsson H, Amilon C, Nelander K, et al. Clinical safety, tolerability, pharmacokinetics and effects on urinary electrolyte excretion of AZD9977, a novel, selective mineralocorticoid receptor modulator. Br J Clin Pharmacol. 2018;84(7):1486–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. [Internet]. https://www.clinicaltrials.gov/ct2/results?cond=&term=azd9977 [Accessed: December, 2019].

  82. [Internet]. https://clinicaltrials.gov/ct2/results?term=KBP-5074&Search=Search [Accessed: December, 2019].

  83. Iijima T, Yamamoto Y, Akatsuka H, Kawaguchi T. Benzoxazines and related nitrogen-containing heterobicyclic compounds useful as mineralocorticoid receptor modulating agents. Google Patents; 2012.

  84. Funder JW. Mineralocorticoid-receptor blockade, hypertension and heart failure. Nat Clin Pract Endocrinol Metab. 2005;1(1):4–5.

    Article  PubMed  Google Scholar 

  85. Barfacker L, Kuhl A, Hillisch A, Grosser R, Figueroa-Perez S, Heckroth H, et al. Discovery of BAY 94-8862: a nonsteroidal antagonist of the mineralocorticoid receptor for the treatment of cardiorenal diseases. ChemMedChem. 2012;7(8):1385–403.

    Article  PubMed  CAS  Google Scholar 

  86. Pitt B, Filippatos G, Gheorghiade M, Kober L, Krum H, Ponikowski P, et al. Rationale and design of ARTS: a randomized, double-blind study of BAY 94-8862 in patients with chronic heart failure and mild or moderate chronic kidney disease. Eur J Heart Fail. 2012;14(6):668–75.

    Article  CAS  PubMed  Google Scholar 

  87. Arai K, Tsuruoka H, Homma T. CS-3150, a novel non-steroidal mineralocorticoid receptor antagonist, prevents hypertension and cardiorenal injury in Dahl salt-sensitive hypertensive rats. Eur J Pharmacol. 2015;769:266–73.

    Article  CAS  PubMed  Google Scholar 

  88. Arai K, Morikawa Y, Ubukata N, Tsuruoka H, Homma T. CS-3150, a novel nonsteroidal mineralocorticoid receptor antagonist, shows preventive and therapeutic effects on renal injury in deoxycorticosterone acetate/salt-induced hypertensive rats. J Pharmacol Exp Ther. 2016;358(3):548–57.

    Article  CAS  PubMed  Google Scholar 

  89. Li L, Guan Y, Kobori H, Morishita A, Kobara H, Masaki T, et al. Effects of the novel nonsteroidal mineralocorticoid receptor blocker, esaxerenone (CS-3150), on blood pressure and urinary angiotensinogen in low-renin Dahl salt-sensitive hypertensive rats. Hypertens Res. 2018.

  90. Bhuiyan AS, Rafiq K, Kobara H, Masaki T, Nakano D, Nishiyama A. Effect of a novel nonsteroidal selective mineralocorticoid receptor antagonist, esaxerenone (CS-3150), on blood pressure and renal injury in high salt-treated type 2 diabetic mice. Hypertens Res. 2019.

  91. Ito S, Itoh H, Rakugi H, Okuda Y, Yoshimura M, Yamakawa S. Double-blind randomized phase 3 study comparing esaxerenone (CS-3150) and eplerenone in patients with essential hypertension (ESAX-HTN study). Hypertension. 2020;75(1):51–8.

    Article  CAS  PubMed  Google Scholar 

  92. Pitt B, Kober L, Ponikowski P, Gheorghiade M, Filippatos G, Krum H, et al. Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist BAY 94-8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: a randomized, double-blind trial. Eur Heart J. 2013;34(31):2453–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bakris GL, Agarwal R, Chan JC, Cooper ME, Gansevoort RT, Haller H, et al. Effect of finerenone on albuminuria in patients with diabetic nephropathy: a randomized clinical trial. JAMA. 2015;314(9):884–94.

    Article  CAS  PubMed  Google Scholar 

  94. Katayama S, Yamada D, Nakayama M, Yamada T, Myoishi M, Kato M, et al. A randomized controlled study of finerenone versus placebo in Japanese patients with type 2 diabetes mellitus and diabetic nephropathy. J Diabetes Complicat. 2017;31(4):758–65.

    Article  Google Scholar 

  95. Filippatos G, Anker SD, Bohm M, Gheorghiade M, Kober L, Krum H, et al. A randomized controlled study of finerenone vs. eplerenone in patients with worsening chronic heart failure and diabetes mellitus and/or chronic kidney disease. Eur Heart J. 2016;37(27):2105–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sato N, Ajioka M, Yamada T, Kato M, Myoishi M, Yamada T, et al. A randomized controlled study of finerenone vs. eplerenone in Japanese patients with worsening chronic heart failure and diabetes and/or chronic kidney disease. Circ J. 2016;80(5):1113–22.

    Article  CAS  PubMed  Google Scholar 

  97. Kolkhof P, Delbeck M, Kretschmer A, Steinke W, Hartmann E, Barfacker L, et al. Finerenone, a novel selective nonsteroidal mineralocorticoid receptor antagonist protects from rat cardiorenal injury. J Cardiovasc Pharmacol. 2014;64(1):69–78.

    Article  CAS  PubMed  Google Scholar 

  98. Grune J, Beyhoff N, Smeir E, Chudek R, Blumrich A, Ban Z, et al. Selective mineralocorticoid receptor cofactor modulation as molecular basis for finerenone’s antifibrotic activity. Hypertension. 2018;71(4):599–608.

    Article  CAS  PubMed  Google Scholar 

  99. Grune J, Benz V, Brix S, Salatzki J, Blumrich A, Hoft B, et al. Steroidal and nonsteroidal mineralocorticoid receptor antagonists cause differential cardiac gene expression in pressure overload-induced cardiac hypertrophy. J Cardiovasc Pharmacol. 2016;67(5):402–11.

    Article  CAS  PubMed  Google Scholar 

  100. Kolkhof P, Jaisser F, Kim SY, Filippatos G, Nowack C, Pitt B. Steroidal and novel non-steroidal mineralocorticoid receptor antagonists in heart failure and cardiorenal diseases: comparison at bench and bedside. Handb Exp Pharmacol. 2017;243:271–305.

    Article  CAS  PubMed  Google Scholar 

  101. Pei H, Wang W, Zhao D, Wang L, Su GH, Zhao Z. The use of a novel non-steroidal mineralocorticoid receptor antagonist finerenone for the treatment of chronic heart failure: a systematic review and meta-analysis. Medicine (Baltimore). 2018;97(16):e0254.

    Article  CAS  Google Scholar 

  102. Nariai T, Fujita K, Mori M, Katayama S, Hori S, Matsui K. SM-368229, a novel promising mineralocorticoid receptor antagonist, shows antihypertensive efficacy with minimal effect on serum potassium level in rats. J Cardiovasc Pharmacol. 2012;59(5):458–64.

    Article  CAS  PubMed  Google Scholar 

  103. Liu LC, Schutte E, Gansevoort RT, van der Meer P, Voors AA. Finerenone: third-generation mineralocorticoid receptor antagonist for the treatment of heart failure and diabetic kidney disease. Expert Opin Investig Drugs. 2015;24(8):1123–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all paramedical staff and clinical secretaries for their kind support during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Sueta.

Ethics declarations

Conflict of Interest

K.T. has received honoraria from Amgen Astellas BioPharma K.K.; Bayer Yakuhin, Ltd.; Daiichi Sankyo Co., Ltd.; MSD K.K.; and Sanofi K.K. and has received grants from AstraZeneca K.K.; Astellas Pharma Inc.; Bayer Yakuhin, Ltd.; Boehringer Ingelheim, Japan; Boston Scientific Japan K.K.; Chugai Pharmaceutical Co., Ltd.; Daiichi Sankyo Co., Ltd.; Eisai Co., Ltd., Kowa Pharmaceutical Co., Ltd.; Mitsubishi Tanabe Pharma; MSD K.K.; Pfizer Japan Inc.; Sanofi K.K.; Shionogi & Co., Ltd.; and Takeda Pharmaceutical Co., Ltd. The remaining authors have nothing to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Prevention of Hypertension: Public Health Challenges

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sueta, D., Yamamoto, E. & Tsujita, K. Mineralocorticoid Receptor Blockers: Novel Selective Nonsteroidal Mineralocorticoid Receptor Antagonists. Curr Hypertens Rep 22, 21 (2020). https://doi.org/10.1007/s11906-020-1023-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-020-1023-y

Keywords

Navigation