Skip to main content
Log in

Predictors and Consequences of Pediatric Hypertension: Have Advanced Echocardiography and Vascular Testing Arrived?

  • Pediatric Hypertension (B Falkner, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Pediatric hypertension is relatively common and associated with future adult hypertension. Elevated blood pressure in youth predicts future adult cardiovascular disease and blood pressure control can prevent progression of pediatric kidney disease. However, pediatric blood pressure is highly variable within a given child and among children in a population.

Recent Findings

Therefore, modalities to index aggregate and cumulative blood pressure status are of potential benefit in identifying youth in danger of progression from a risk factor of subclinical phenotypic alteration to clinically apparent event.

Summary

In this review, we advocate for the health risk stratification roles of echocardiographically assessed cardiac remodeling, arterial stiffness assessment, and assessment by ultrasound of arterial thickening in children and adolescents with hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sharma AK, Metzger DL, Rodd CJ. Prevalence and severity of high blood pressure among children based on the 2017 American Academy of Pediatrics Guidelines. JAMA Pediatr. 2018;172:557–65.

    Article  Google Scholar 

  2. Juhola J, Magnussen CG, Viikari JSA, Kähönen M, Hutri-Kähönen N, Jula A, et al. Tracking of serum lipid levels, blood pressure, and body mass index from childhood to adulthood: the Cardiovascular Risk in Young Finns Study. J Pediatr. 2011;159:584–90.

    Article  CAS  Google Scholar 

  3. •• Sundstrom J, Neovius M, Tynelius P, Rasmussen F. Association of blood pressure in late adolescence with subsequent mortality: cohort study of Swedish male conscripts. BMJ. 2011;342:d643–3 Population-based study in Swedish adolescents and young adult men demonstrating that elevated diastolic blood pressure was associated with increased mortality risk.

    Article  Google Scholar 

  4. Gray L, Lee I-M, Sesso HD, Batty GD. Blood pressure in early adulthood, hypertension in middle age, and future cardiovascular disease mortality: HAHS (Harvard Alumni Health Study). J Am Coll Cardiol. 2011;58:2396–403.

    Article  Google Scholar 

  5. Franks PW, Hanson RL, Knowler WC, Sievers ML, Bennett PH, Looker HC. Childhood obesity, other cardiovascular risk factors, and premature death. N Engl J Med. 2010;362:485–93.

    Article  CAS  Google Scholar 

  6. Leyvraz M, Wahlen R, Bloetzer C, Paradis G, Bovet P, Chiolero A. Persistence of elevated blood pressure during childhood and adolescence: a school-based multiple cohorts study. J Hypertens. 2018;36:1306–10.

    Article  CAS  Google Scholar 

  7. Zachariah JP, Graham DA, de Ferranti SD, Vasan RS, Newburger JW, Mitchell GF. Temporal trends in pulse pressure and mean arterial pressure during the rise of pediatric obesity in US children. J Am Heart Assoc. 2014;3:e000725.

    Article  Google Scholar 

  8. Zachariah JP, Wang Y, Penny DJ, Baranowski T. Relation between lead exposure and trends in blood pressure in children. Am J Cardiol. 2018;122:1890–5.

    Article  CAS  Google Scholar 

  9. Kelly RK, Thomson R, Smith KJ, Dwyer T, Venn A, Magnussen CG. Factors affecting tracking of blood pressure from childhood to adulthood: the childhood determinants of adult health study. J Pediatr. 2015;167:1422–8 e2.

    Article  Google Scholar 

  10. Stabouli S, Kotsis V, Rizos Z, Toumanidis S, Karagianni C, Constantopoulos A, et al. Left ventricular mass in normotensive, prehypertensive and hypertensive children and adolescents. Pediatr Nephrol. 2009;24:1545–51.

    Article  Google Scholar 

  11. Kupferman JC, Paterno K, Mahgerefteh J, Pagala M, Golden M, Lytrivi ID, et al. Improvement of left ventricular mass with antihypertensive therapy in children with hypertension. Pediatr Nephrol. 2010;25:1513–8.

    Article  Google Scholar 

  12. Lee H, Kong Y-H, Kim K-H, Huh J, Kang I-S, Song J. Left ventricular hypertrophy and diastolic function in children and adolescents with essential hypertension. Clin Hypertens. 2015;21:21.

    Article  Google Scholar 

  13. Bjelakovic B, Jaddoe VWV, Vukomanovic V, Lukic S, Prijic S, Krstic M, et al. The relationship between currently recommended ambulatory systolic blood pressure measures and left ventricular mass index in pediatric hypertension. Curr Hypertens Rep. 2015;17:25.

    Article  Google Scholar 

  14. Brady TM, Appel LJ, Holmes KW, Fivush B, Miller ER. Association between adiposity and left ventricular mass in children with hypertension. J Clin Hypertens. 2016;18:625–33.

    Article  Google Scholar 

  15. Gupta-Malhotra M, Hashmi SS, Poffenbarger T, McNiece-Redwine K. Left ventricular hypertrophy phenotype in childhood-onset essential hypertension. J Clin Hypertens. 2016;18:449–55.

    Article  Google Scholar 

  16. Jing L, Nevius CD, Friday CM, Suever JD, Pulenthiran A, Mejia-Spiegeler A, et al. Ambulatory systolic blood pressure and obesity are independently associated with left ventricular hypertrophic remodeling in children. J Cardiovasc Magn Reson. 2017;19:86.

    Article  Google Scholar 

  17. Foster BJ, Khoury PR, Kimball TR, Mackie AS, Mitsnefes M. New reference centiles for left ventricular mass relative to lean body mass in children. J Am Soc Echocardiogr. 2016;29:441–7 e2.

    Article  Google Scholar 

  18. Cuspidi C, Rescaldani M, Sala C. Prevalence of echocardiographic left-atrial enlargement in hypertension: a systematic review of recent clinical studies. Am J Hypertens. 2013;26:456–64.

    Article  Google Scholar 

  19. Daniels SR, Witt SA, Glascock B, Khoury PR, Kimball TR. Left atrial size in children with hypertension: the influence of obesity, blood pressure, and left ventricular mass. J Pediatr. 2002;141:186–90.

    Article  Google Scholar 

  20. Gidding SS, Palermo RA, DeLoach SS, Keith SW, Falkner B. Associations of cardiac structure with obesity, blood pressure, inflammation, and insulin resistance in African-American adolescents. Pediatr Cardiol. 2014;35:307–14.

    Article  Google Scholar 

  21. Chinali M, de Simone G, Roman MJ, Best LG, Lee ET, Russell M, et al. Cardiac markers of pre-clinical disease in adolescents with the metabolic syndrome. J Am Coll Cardiol. 2008;52:932–8.

    Article  CAS  Google Scholar 

  22. de Simone G, Damiano S, Losi M-A, Trimarco B, Grimaldi MG, Canciello G, et al. Left atrial dilatation: a target organ damage in young to middle-age hypertensive patients. The Campania Salute Network. Int J Cardiol. 2018;265:229–33.

    Article  Google Scholar 

  23. Kizer JR, Bella JN, Palmieri V, Liu JE, Best LG, Lee ET, et al. Left atrial diameter as an independent predictor of first clinical cardiovascular events in middle-aged and elderly adults: the Strong Heart Study (SHS). Am Heart J. 2006;151:412–8.

    Article  Google Scholar 

  24. Gidding SS, Carnethon MR, Daniels S, Liu K, Jacobs DR, Sidney S, et al. Low cardiovascular risk is associated with favorable left ventricular mass, left ventricular relative wall thickness, and left atrial size: the CARDIA study. J Am Soc Echocardiogr. 2010;23:816–22.

    Article  Google Scholar 

  25. • Cameli M, Ciccone MM, Maiello M, Modesti PA, Muiesan ML, Scicchitano P, et al. Speckle tracking analysis. J Cardiovasc Med. 2016;17:339–43 Review of speckle tracking echocardiography and strain, with description of use in the evaluation of systemic hypertension.

    Article  Google Scholar 

  26. Tadic M, Cuspidi C, Radojkovic J, Rihor B, Kocijanic V, Celic V. Masked hypertension and left atrial dysfunction: a hidden association. J Clin Hypertens. 2017;19:305–11.

    Article  Google Scholar 

  27. Tadic M, Cuspidi C, Pencic-Popovic B, Celic V, Mancia G. The relationship between nighttime hypertension and left atrial function. J Clin Hypertens. 2017;19:1096–104.

    Article  Google Scholar 

  28. Demir M, Aktaş İ, Yıldırım A. Left atrial mechanical function and stiffness in patients with nondipper hypertension: a speckle tracking study. Clin Exp Hypertens. 2017;39:319–24.

    Article  Google Scholar 

  29. Açar G, Bulut M, Arslan K, Alizade E, Ozkan B, Alici G, et al. Comparison of left atrial mechanical function in nondipper versus dipper hypertensive patients: a speckle tracking study. Echocardiography. 2013;30:164–70.

    Article  Google Scholar 

  30. Xu T-Y, Sun JP, Lee AP-W, Yang XS, Ji L, Zhang Z, et al. Left atrial function as assessed by speckle-tracking echocardiography in hypertension. Medicine (Baltimore). 2015;94:e526.

    Article  Google Scholar 

  31. Hope KD, Wang Y, Banerjee MM, Montero AE, Pandian NG, Banerjee A. Left atrial mechanics in children: insights from new applications of strain imaging. Int J Cardiovasc Imaging. 2019;35:57–65.

    Article  Google Scholar 

  32. Zhang P, Li D, Su Y, Wang X, Sun J, Xu Y, et al. Assessment of myocardial strain in children with risk factors for atherosclerosis with use of 3D speckle tracking echocardiography. Echocardiography. 2018;35:487–93.

    Article  CAS  Google Scholar 

  33. Navarini S, Bellsham-Revell H, Chubb H, Gu H, Sinha MD, Simpson JM. Myocardial deformation measured by 3-dimensional speckle tracking in children and adolescents with systemic arterial hypertension. Hypertension. 2017;70:1142–7.

    Article  CAS  Google Scholar 

  34. •• Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carroll AE, Daniels SR, et al. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics. 2017;140:e20171904 The most current AAP Clinical Practice Guidelines for Hypertension screening in children and young adults. States the current role for echocardiography in the evaluation of pediatric hypertension. Other imaging modalities briefly mentioned.

    Article  Google Scholar 

  35. • Skrzypczyk P, Pańczyk-Tomaszewska M. Methods to evaluate arterial structure and function in children – State-of-the art knowledge. Adv Med Sci. 2017;62:280–94 Very helpful and thorough review of the many different imaging modalities available for use in the evaluation of arterial function in pediatric patients.

    Article  Google Scholar 

  36. •• Urbina EM, Williams RV, Alpert BS, Collins RT, Daniels SR, Hayman L, et al. Noninvasive assessment of subclinical atherosclerosis in children and adolescents. Hypertension. 2009;54:919–50 Outstanding review on methodologies to assess pediatric arterial structure and function.

    Article  CAS  Google Scholar 

  37. Reusz GS, Cseprekal O, Temmar M, Kis E, Cherif AB, Thaleb A, et al. Reference values of pulse wave velocity in healthy children and teenagers. Hypertension. 2010;56:217–24.

    Article  CAS  Google Scholar 

  38. Liang Y, Hou D, Shan X, Zhao X, Hu Y, Jiang B, et al. Cardiovascular remodeling relates to elevated childhood blood pressure: Beijing Blood Pressure Cohort Study. Int J Cardiol. 2014;177:836–9.

    Article  Google Scholar 

  39. Totaro S, Khoury PR, Kimball TR, Dolan LM, Urbina EM. Arterial stiffness is increased in young normotensive subjects with high central blood pressure. J Am Soc Hypertens. 2015;9:285–92.

    Article  Google Scholar 

  40. Kulsum-Mecci N, Goss C, Kozel BA, Garbutt JM, Schechtman KB, Dharnidharka VR. Effects of obesity and hypertension on pulse wave velocity in children. J Clin Hypertens. 2017;19:221–6.

    Article  Google Scholar 

  41. Lurbe E, Torro MI, Alvarez-Pitti J, Redon P, Redon J. Central blood pressure and pulse wave amplification across the spectrum of peripheral blood pressure in overweight and obese youth. J Hypertens. 2016;34:1389–95.

    Article  CAS  Google Scholar 

  42. Stabouli S, Papakatsika S, Kotronis G, Papadopoulou-Legbelou K, Rizos Z, Kotsis V. Arterial stiffness and SBP variability in children and adolescents. J Hypertens. 2015;33:88–95.

    Article  CAS  Google Scholar 

  43. Stergiou GS, Kollias A, Giovas PP, Papagiannis J, Roussias LG. Ambulatory arterial stiffness index, pulse pressure and pulse wave velocity in children and adolescents. Hypertens Res. 2010;33:1272–7.

    Article  Google Scholar 

  44. Phillips AA, Chirico D, Coverdale NS, Fitzgibbon LK, Shoemaker JK, Wade TJ, et al. The association between arterial properties and blood pressure in children. Appl Physiol Nutr Metab. 2015;40:72–8.

    Article  Google Scholar 

  45. Urbina EM, Khoury PR, McCoy C, Daniels SR, Kimball TR, Dolan LM. Cardiac and vascular consequences of pre-hypertension in youth. J Clin Hypertens. 2011;13:332–42.

    Article  Google Scholar 

  46. Aatola H, Koivistoinen T, Tuominen H, Juonala M, Lehtimäki T, Viikari JSA, et al. Influence of child and adult elevated blood pressure on adult arterial stiffness. Hypertension. 2017;70:531–6.

    Article  CAS  Google Scholar 

  47. Köchli S, Endes K, Steiner R, Engler L, Infanger D, Schmidt-Trucksäss A, et al. Obesity, high blood pressure, and physical activity determine vascular phenotype in young children. Hypertension. 2019;73:153–61.

    Article  Google Scholar 

  48. • Elmenhorst J, Hulpke-Wette M, Barta C, Dalla Pozza R, Springer S, Oberhoffer R. Percentiles for central blood pressure and pulse wave velocity in children and adolescents recorded with an oscillometric device. Atherosclerosis. 2015;238:9–16 Reference ranges for pulse wave velocity in children and adolescents.

    Article  CAS  Google Scholar 

  49. Urbina EM, Gao Z, Khoury PR, Martin LJ, Dolan LM. Insulin resistance and arterial stiffness in healthy adolescents and young adults. Diabetologia. 2012;55:625–31.

    Article  CAS  Google Scholar 

  50. Reference Values for Arterial Stiffness’ Collaboration. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: “establishing normal and reference values”. Eur Heart J. 2010;31:2338–50.

    Article  Google Scholar 

  51. Lai C-C, Sun D, Cen R, Wang J, Li S, Fernandez-Alonso C, et al. Impact of long-term burden of excessive adiposity and elevated blood pressure from childhood on adulthood left ventricular remodeling patterns. the Bogalusa Heart Study J Am Coll Cardiol. 2014;64:1580–7.

    Article  Google Scholar 

  52. • Mitchell GF, Hwang S-J, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, et al. Arterial stiffness and cardiovascular events. Circulation. 2010;121:505–11 Data from the Framingham Heart Study demonstrating that higher PWV in adults was associated with an increased risk of first cardiovascular event.

    Article  Google Scholar 

  53. Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L, et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertens (Dallas, Tex 1979). 2001;37:1236–41.

    Article  CAS  Google Scholar 

  54. Sorof JM, Poffenbarger T, Franco K, Bernard L, Portman RJ. Isolated systolic hypertension, obesity, and hyperkinetic hemodynamic states in children. J Pediatr. 2002;140:660–6.

    Article  Google Scholar 

  55. Stein JH, Korcarz CE, Hurst RT, Lonn E, Kendall CB, Mohler ER, et al. Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force. Endorsed by the Society for Vascula. J Am Soc Echocardiogr. 2008;21:93–111 quiz 189-90.

    Article  Google Scholar 

  56. • Touboul P-J, Hennerici MG, Meairs S, Adams H, Amarenco P, Bornstein N, et al. Mannheim carotid intima-media thickness and plaque consensus (2004–2006–2011). Cerebrovasc Dis. 2012;34:290–6 The Mannheim Consensus on measurement of carotid intima-medial thickness in adults, with discussions on standardization of imaging techniques and the differentiation between atherosclerotic plaque and non-atherosclerotic medial hypertrophy.

    Article  Google Scholar 

  57. Goff DC, Lloyd-Jones DM, Bennett G, Coady S, D’Agostino RB, Gibbons R, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk. J Am Coll Cardiol. 2014;63:2935–59.

    Article  Google Scholar 

  58. •• Dalla Pozza R, Ehringer-Schetitska D, Fritsch P, Jokinen E, Petropoulos A, Oberhoffer R, et al. Intima media thickness measurement in children: a statement from the Association for European Paediatric Cardiology (AEPC) Working Group on Cardiovascular Prevention endorsed by the Association for European Paediatric Cardiology. Atherosclerosis. 2015;238:380–7 Statement from the Association for European Paediatric Cardiology on cIMT with recommendations provided on patient selection for cIMT measurement, scanning and measuring techniques.

    Article  CAS  Google Scholar 

  59. Sass C, Herbeth B, Chapet O, Siest G, Visvikis S, Zannad F. Intima-media thickness and diameter of carotid and femoral arteries in children, adolescents and adults from the Stanislas cohort: effect of age, sex, anthropometry and blood pressure. J Hypertens. 1998;16:1593–602.

    Article  CAS  Google Scholar 

  60. Böhm B, Hartmann K, Buck M, Oberhoffer R. Sex differences of carotid intima-media thickness in healthy children and adolescents. Atherosclerosis. 2009;206:458–63.

    Article  Google Scholar 

  61. Jourdan C, Wühl E, Litwin M, Fahr K, Trelewicz J, Jobs K, et al. Normative values for intima-media thickness and distensibility of large arteries in healthy adolescents. J Hypertens. 2005;23:1707–15.

    Article  CAS  Google Scholar 

  62. Baroncini LAV, Sylvestre L de C, Pecoits Filho R. Assessment of intima-media thickness in healthy children aged 1 to 15 years. Arq Bras Cardiol. 2016;106:327–32.

    PubMed  PubMed Central  Google Scholar 

  63. Ishizu T, Ishimitsu T, Yanagi H, Seo Y, Obara K, Moriyama N, et al. Effect of age on carotid arterial intima-media thickness in childhood. Heart Vessel. 2004;19:189–95.

    Article  Google Scholar 

  64. • Doyon A, Kracht D, Bayazit AK, Deveci M, Duzova A, Krmar RT, et al. Carotid artery intima-media thickness and distensibility in children and adolescents. Hypertension. 2013;62:550–6 Largest study reporting cIMT measures in healthy children, with reference ranges and percentile curves created based on age and gender.

    Article  CAS  Google Scholar 

  65. Den Ruijter HM, Peters SAE, Anderson TJ, Britton AR, Dekker JM, Eijkemans MJ, et al. Common carotid intima-media thickness measurements in cardiovascular risk prediction. JAMA. 2012;308:796.

    Article  Google Scholar 

  66. O’Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson SK. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. N Engl J Med. 1999;340:14–22.

    Article  Google Scholar 

  67. Litwin M, Niemirska A, Sladowska J, Antoniewicz J, Daszkowska J, Wierzbicka A, et al. Left ventricular hypertrophy and arterial wall thickening in children with essential hypertension. Pediatr Nephrol. 2006;21:811–9.

    Article  Google Scholar 

  68. Loureiro C, Campino C, Martinez-Aguayo A, Godoy I, Aglony M, Bancalari R, et al. Positive association between aldosterone-renin ratio and carotid intima-media thickness in hypertensive children. Clin Endocrinol. 2013;78:352–7.

    Article  CAS  Google Scholar 

  69. • Day TG, Park M, Kinra S. The association between blood pressure and carotid intima-media thickness in children: a systematic review. Cardiol Young. 2017;27:1295–305 Review article summarizing studies published to date on the association between hypertension and cIMT in the pediatric population.

    Article  Google Scholar 

  70. Ferreira JP, Girerd N, Bozec E, Machu JL, Boivin J, London GM, et al. Intima–media thickness is linearly and continuously associated with systolic blood pressure in a population-based cohort (STANISLAS Cohort Study). J Am Heart Assoc. 2016;5:e003529.

  71. Gil TY, Sung CY, Shim SS, Hong YM. Intima-media thickness and pulse wave velocity in hypertensive adolescents. J Korean Med Sci. 2008;23:35–40.

    Article  Google Scholar 

  72. Lande MB, Carson NL, Roy J, Meagher CC. Effects of childhood primary hypertension on carotid intima media thickness. Hypertension. 2006;48:40–4.

    Article  CAS  Google Scholar 

  73. Sorof JM, Alexandrov AV, Garami Z, Turner JL, Grafe RE, Lai D, et al. Carotid ultrasonography for detection of vascular abnormalities in hypertensive children. Pediatr Nephrol. 2003;18:1020–4.

    Article  Google Scholar 

  74. Litwin M, Trelewicz J, Wawer Z, Antoniewicz J, Wierzbicka A, Rajszys P, et al. Intima-media thickness and arterial elasticity in hypertensive children: controlled study. Pediatr Nephrol. 2004;19:767–74.

    Article  Google Scholar 

  75. Baroncini LAV, Sylvestre L de C, Baroncini CV, Pecoits Filho R. Assessment of carotid intima-media thickness as an early marker of vascular damage in hypertensive children. Arq Bras Cardiol. 2017;108:452–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Stabouli S, Kotsis V, Karagianni C, Zakopoulos N, Konstantopoulos A. Blood pressure and carotid artery intima-media thickness in children and adolescents: the role of obesity. Hell J Cardiol. 2012;53:41–7.

    Google Scholar 

  77. Sorof JM, Alexandrov AV, Cardwell G, Portman RJ. Carotid artery intimal-medial thickness and left ventricular hypertrophy in children with elevated blood pressure. Pediatrics. 2003;111:61–6.

    Article  Google Scholar 

  78. Páll D, Juhász M, Lengyel S, Molnár C, Paragh G, Fülesdi B, et al. Assessment of target-organ damage in adolescent white-coat and sustained hypertensives. J Hypertens. 2010;28:2139–44.

    Article  Google Scholar 

  79. Juhola J, Magnussen CG, Berenson GS, Venn A, Burns TL, Sabin MA, et al. Combined effects of child and adult elevated blood pressure on subclinical atherosclerosis. Circulation. 2013;128:217–24.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin P. Zachariah.

Ethics declarations

Conflict of Interest

Kyle D. Hope and Justin P. Zachariah declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pediatric Hypertension

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hope, K.D., Zachariah, J.P. Predictors and Consequences of Pediatric Hypertension: Have Advanced Echocardiography and Vascular Testing Arrived?. Curr Hypertens Rep 21, 54 (2019). https://doi.org/10.1007/s11906-019-0958-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-019-0958-3

Keywords

Navigation