Skip to main content

Advertisement

Log in

Incorporation of Novel Vascular Measures into Clinical Management: Recent Insights from the Framingham Heart Study

  • Blood Pressure Monitoring and Management (John Cockcroft, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The review discusses evidence from the Framingham Heart Study that supports the assessment and utility of novel vascular and blood pressure measures to inform clinical management of blood pressure–related cardiovascular disease.

Recent Findings

Recent Framingham Heart Study investigations provide new insights into the associations of novel and traditional vascular and blood pressure measures, such as measures of aortic stiffness, components of blood pressure waves, and orthostatic change in blood pressure, with cardiovascular disease events and brain structure and function. Novel vascular measures provide opportunities for additional investigation and potential development of new interventions that are more precisely targeted at underlying pathophysiology.

Summary

Inclusion of novel vascular measures should be considered in clinical practice to screen for early, subclinical disease and to stratify high-risk individuals for targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Mahmood SS, Levy D, Vasan RS, Wang TJ. The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective. Lancet. 2014;383:999–1008. https://doi.org/10.1016/S0140-6736(13)61752-3.

    Article  PubMed  Google Scholar 

  2. Kannel WB. Contribution of the Framingham study to preventive cardiology. J Am Coll Cardiol. 1990;15:206–11. https://doi.org/10.1016/0735-1097(90)90203-2.

    Article  CAS  PubMed  Google Scholar 

  3. Bruenn HG. Clinical notes on the illness and death of President Franklin D. Roosevelt. Ann Intern Med. 1970;72:579–91.

    Article  CAS  Google Scholar 

  4. Bumgarner J. The health of Presidents. Jefferson, N.C: McFarland; 1994.

    Google Scholar 

  5. Kannel WB, Dawber TR, Kagan A, Revotskie N, Stokes J 3rd. Factors of risk in the development of coronary heart disease—six year follow-up experience. The Framingham study. Ann Intern Med. 1961;55:33–50.

    Article  CAS  Google Scholar 

  6. Dawber TR, Moore FE, Mann GV. Coronary heart disease in the Framingham study. Am J Public Health Nations Health. 1957;47:4–24.

    Article  CAS  Google Scholar 

  7. Kannel WB, Dawber TR, Cohen ME, McNamara PM. Vascular disease of the brain—epidemiologic aspects: the Farmingham study. Am J Public Health Nations Health. 1965;55:1355–66.

    Article  CAS  Google Scholar 

  8. Kannel WB. Fifty years of Framingham study contributions to understanding hypertension. J Hum Hypertens. 2000;14:83–90.

    Article  CAS  Google Scholar 

  9. Nichols W, O’Rourke M, Vlachopoulos C. McDonald’s blood flow in arteries. Theoretical, experimental and clinical principles. Sixth ed. London: Hodder Arnold; 2011.

    Google Scholar 

  10. Mitchell GF, Wang N, Palmisano JN, Larson MG, Hamburg NM, Vita JA, et al. Hemodynamic correlates of blood pressure across the adult age spectrum: noninvasive evaluation in the Framingham Heart Study. Circulation. 2010;122:1379–86. https://doi.org/10.1161/CIRCULATIONAHA.109.914507.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mitchell GF, Hwang SJ, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, et al. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation. 2010;121:505–11. https://doi.org/10.1161/Circulationaha.109.886655.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Weber T, Wassertheurer S, Rammer M, Haiden A, Hametner B, Eber B. Wave reflections, assessed with a novel method for pulse wave separation, are associated with end-organ damage and clinical outcomes. Hypertension. 2012;60:534–41. https://doi.org/10.1161/HYPERTENSIONAHA.112.194571.

    Article  CAS  PubMed  Google Scholar 

  13. Russo C, Jin ZZ, Palmieri V, Homma S, Rundek T, Elkind MSV, et al. Arterial stiffness and wave reflection: sex differences and relationship with left ventricular diastolic function. Hypertension. 2012;60:362–8. https://doi.org/10.1161/Hypertensionaha.112.191148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Regnault V, Thomas F, Safar ME, Osborne-Pellegrin M, Khalil RA, Pannier B, et al. Sex difference in cardiovascular risk: role of pulse pressure amplification. J Am Coll Cardiol. 2012;59:1771–7. https://doi.org/10.1016/j.jacc.2012.01.044.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kaess BM, Rong J, Larson MG, Hamburg NM, Vita JA, Levy D, et al. Aortic stiffness, blood pressure progression, and incident hypertension. JAMA. 2012;308:875–81. https://doi.org/10.1001/2012.jama.10503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Glasser SP, Halberg DL, Sands C, Gamboa CM, Muntner P, Safford M. Is pulse pressure an independent risk factor for incident acute coronary heart disease events? The REGARDS Study. Am J Hypertens. 2013;27:555–63. https://doi.org/10.1093/ajh/hpt168.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Berard E, Bongard V, Ruidavets JB, Amar J, Ferrieres J. Pulse wave velocity, pulse pressure and number of carotid or femoral plaques improve prediction of cardiovascular death in a population at low risk. J Hum Hypertens. 2013;27:529–34. https://doi.org/10.1038/Jhh.2013.8.

    Article  CAS  PubMed  Google Scholar 

  18. Baba Y, Ishikawa S, Kayaba K, Gotoh T, Kajii E. High pulse pressure is associated with increased risk of stroke in Japanese: the JMS Cohort Study. Blood Press. 2011;20:10–4. https://doi.org/10.3109/08037051.2010.516075.

    Article  PubMed  Google Scholar 

  19. Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63:636–46. https://doi.org/10.1016/j.jacc.2013.09.063.

    Article  PubMed  Google Scholar 

  20. Tsao CW, Lyass A, Larson MG, Levy D, Hamburg NM, Vita JA, et al. Relation of central arterial stiffness to incident heart failure in the community. J Am Heart Assoc. 2015;4. https://doi.org/10.1161/JAHA.115.002189.

  21. Liao D, Arnett DK, Tyroler HA, Riley WA, Chambless LE, Szklo M, et al. Arterial stiffness and the development of hypertension The ARIC Study. Hypertension. 1999;34:201–6.

    Article  CAS  Google Scholar 

  22. Najjar SS, Scuteri A, Shetty V, Wright JG, Muller DC, Fleg JL, et al. Pulse wave velocity is an independent predictor of the longitudinal increase in systolic blood pressure and of incident hypertension in the Baltimore Longitudinal Study of Aging. J Am Coll Cardiol. 2008;51:1377–83. https://doi.org/10.1016/j.jacc.2007.10.065.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Takase H, Dohi Y, Toriyama T, Okado T, Tanaka S, Sonoda H, et al. Brachial-ankle pulse wave velocity predicts increase in blood pressure and onset of hypertension. Am J Hypertens. 2011;24:667–73. https://doi.org/10.1038/ajh.2011.19.

    Article  PubMed  Google Scholar 

  24. • Andersson C, Quiroz R, Enserro D, Larson MG, Hamburg NM, Vita JA, et al. Association of parental hypertension with arterial stiffness in nonhypertensive offspring: the Framingham Heart Study. Hypertension. 2016;68:584–9. https://doi.org/10.1161/HYPERTENSIONAHA.116.07426 The study showed greater aortic stiffness among offspring of hypertensive parents compared with offspring of non-hypertensive parents.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jankowski P, Kawecka-Jaszcz K, Czarnecka D, Brzozowska-Kiszka M, Styczkiewicz K, Loster M, et al. Pulsatile but not steady component of blood pressure predicts cardiovascular events in coronary patients. Hypertension. 2008;51:848–55. https://doi.org/10.1161/HYPERTENSIONAHA.107.101725.

    Article  CAS  PubMed  Google Scholar 

  26. Safar ME, Blacher J, Pannier B, Guerin AP, Marchais SJ, Guyonvarc’h PM, et al. Central pulse pressure and mortality in end-stage renal disease. Hypertension. 2002;39:735–8.

    Article  CAS  Google Scholar 

  27. Roman MJ, Devereux RB, Kizer JR, Lee ET, Galloway JM, Ali T, et al. Central pressure more strongly relates to vascular disease and outcome than does brachial pressure: the Strong Heart Study. Hypertension. 2007;50:197–203. https://doi.org/10.1161/HYPERTENSIONAHA.107.089078.

    Article  CAS  PubMed  Google Scholar 

  28. Mitchell GF. Does measurement of central blood pressure have treatment consequences in the clinical praxis? Curr Hypertens Rep. 2015;17:66. https://doi.org/10.1007/s11906-015-0573-x.

    Article  PubMed  Google Scholar 

  29. Bos WJW, Verrij E, Vincent HH, Westerhof BE, Parati G, van Montfrans GA. How to assess mean blood pressure properly at the brachial artery level. J Hypertens. 2007;25:751–5. https://doi.org/10.1097/HJH.0b013e32803fb621.

    Article  CAS  PubMed  Google Scholar 

  30. Segers P, Mahieu D, Kips J, Rietzschel E, De Buyzere M, De Bacquer D, et al. Amplification of the pressure pulse in the upper limb in healthy, middle-aged men and women. Hypertension. 2009;54:414–20. https://doi.org/10.1161/HYPERTENSIONAHA.109.133009.

    Article  CAS  PubMed  Google Scholar 

  31. •• Mitchell GF, Hwang SJ, Larson MG, Hamburg NM, Benjamin EJ, Vasan RS, et al. Transfer function-derived central pressure and cardiovascular disease events: the Framingham Heart Study. J Hypertens. 2016;34:1528–34. https://doi.org/10.1097/HJH.0000000000000968 This study showed that central blood pressure measures do not provide additional predictive information beyond that provided by peripheral blood pressure measures.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. • Breton-Romero R, Wang N, Palmisano J, Larson MG, Vasan RS, Mitchell GF, et al. Cross-sectional associations of flow reversal, vascular function, and arterial stiffness in the Framingham Heart Study. Arterioscler Thromb Vasc Biol. 2016;36:2452–9. https://doi.org/10.1161/ATVBAHA.116.307948 This study shows that brachial artery flow reversal during diastole was associated with impaired vasodilator function and higher aortic stiffness.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mitchell GF, Vita JA, Larson MG, Parise H, Keyes MJ, Warner E, et al. Cross-sectional relations of peripheral microvascular function, cardiovascular disease risk factors, and aortic stiffness: the Framingham Heart Study. Circulation. 2005;112:3722–8. https://doi.org/10.1161/CIRCULATIONAHA.105.551168.

    Article  PubMed  Google Scholar 

  34. Franklin SS, Jacobs MJ, Wong ND, L’Italien GJ, Lapuerta P. Predominance of isolated systolic hypertension among middle-aged and elderly US hypertensives: analysis based on National Health and Nutrition Examination Survey (NHANES) III. Hypertension. 2001;37:869–74.

    Article  CAS  Google Scholar 

  35. Franklin SS, Pio JR, Wong ND, Larson MG, Leip EP, Vasan RS, et al. Predictors of new-onset diastolic and systolic hypertension: the Framingham Heart Study. Circulation. 2005;111:1121–7. https://doi.org/10.1161/01.CIR.0000157159.39889.EC.

    Article  PubMed  Google Scholar 

  36. Franklin SS. Isolated systolic hypertension and the J-curve of cardiovascular disease risk. Artery Res. 2010;4:1–6. https://doi.org/10.1016/j.artres.2010.01.001.

    Article  Google Scholar 

  37. Franklin SS, Larson MG, Khan SA, Wong ND, Leip EP, Kannel WB, et al. Does the relation of blood pressure to coronary heart disease risk change with aging? The Framingham Heart Study. Circulation. 2001;103:1245–9.

    Article  CAS  Google Scholar 

  38. Franklin SS, Lopez VA, Wong ND, Mitchell GF, Larson MG, Vasan RS, et al. Single versus combined blood pressure components and risk for cardiovascular disease: the Framingham Heart Study. Circulation. 2009;119:243–U69. https://doi.org/10.1161/Circulationaha.108.797936.

    Article  PubMed  Google Scholar 

  39. Domanski M, Mitchell G, Pfeffer M, Neaton JD, Norman J, Svendsen K, et al. Pulse pressure and cardiovascular disease-related mortality—follow-up study of the Multiple Risk Factor Intervention Trial (MRFIT). JAMA. 2002;287:2677–83. https://doi.org/10.1001/jama.287.20.2677.

    Article  PubMed  Google Scholar 

  40. Messerli FH, Mancia G, Conti CR, Hewkin AC, Kupfer S, Champion A, et al. Dogma disputed: can aggressively lowering blood pressure in hypertensive patients with coronary artery disease be dangerous? Ann Intern Med. 2006;144:884–93.

    Article  Google Scholar 

  41. Franklin SS, Gokhale SS, Chow VH, Larson MG, Levy D, Vasan RS, et al. Does low diastolic blood pressure contribute to the risk of recurrent hypertensive cardiovascular disease events? The Framingham Heart Study. Hypertension. 2015;65:299–305. https://doi.org/10.1161/HYPERTENSIONAHA.114.04581.

    Article  CAS  PubMed  Google Scholar 

  42. Tsao CW, Seshadri S, Beiser AS, Westwood AJ, Decarli C, Au R, et al. Relations of arterial stiffness and endothelial function to brain aging in the community. Neurology. 2013;81:984–91. https://doi.org/10.1212/WNL.0b013e3182a43e1c.

    Article  PubMed  PubMed Central  Google Scholar 

  43. • McGrath ER, Beiser AS, De Carli C, Plourde KL, Vasan RS, Greenberg SM, et al. Blood pressure from mid- to late life and risk of incident dementia. Neurology. 2017;89:2447–54. https://doi.org/10.1212/WNL.0000000000004741 This study showed that elevated blood pressure during midlife and persistently elevated blood pressure into late life were associated with higher risk for dementia among non-hypertensive individuals. During mid- to late- life, a steep decline in blood pressure may be a marker of dementia.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Das RR, Seshadri S, Beiser AS, Kelly-Hayes M, Au R, Himali JJ, et al. Prevalence and correlates of silent cerebral infarcts in the Framingham offspring study. Stroke. 2008;39:2929–35. https://doi.org/10.1161/STROKEAHA.108.516575.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jeerakathil T, Wolf PA, Beiser A, Massaro J, Seshadri S, D’Agostino RB, et al. Stroke risk profile predicts white matter hyperintensity volume: the Framingham study. Stroke. 2004;35:1857–61. https://doi.org/10.1161/01.STR.0000135226.53499.85.

    Article  PubMed  Google Scholar 

  46. Seshadri S, Wolf PA, Beiser A, Elias MF, Au R, Kase CS, et al. Stroke risk profile, brain volume, and cognitive function: the Framingham Offspring Study. Neurology. 2004;63:1591–9.

    Article  CAS  Google Scholar 

  47. Mitchell GF. Effects of central arterial aging on the structure and function of the peripheral vasculature: implications for end-organ damage. J Appl Physiol. 2008;105:1652–60. https://doi.org/10.1152/japplphysiol.90549.2008.

    Article  PubMed  PubMed Central  Google Scholar 

  48. • Pase MP, Himali JJ, Mitchell GF, Beiser A, Maillard P, Tsao C, et al. Association of aortic stiffness with cognition and brain aging in young and middle-aged adults: the Framingham Third Generation Cohort Study. Hypertension. 2016;67:513–9. https://doi.org/10.1161/HYPERTENSIONAHA.115.06610 This study showed higher aortic stiffness was associated with worse cognitive function and more markers of subclinical brain injury in young to middle-aged adults.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. • Pase MP, Beiser A, Himali JJ, Tsao C, Satizabal CL, Vasan RS, et al. Aortic stiffness and the risk of incident mild cognitive impairment and dementia. Stroke. 2016;47:2256–61. https://doi.org/10.1161/STROKEAHA.116.013508 This study showed that aortic stiffness was an independent predictor of incident mild cognitive impairment. Higher aortic stiffness was also associated with incident dementia in nondiabetic patients.

    Article  PubMed  PubMed Central  Google Scholar 

  50. •• Tsao CW, Himali JJ, Beiser AS, Larson MG, De Carli C, Vasan RS, et al. Association of arterial stiffness with progression of subclinical brain and cognitive disease. Neurology. 2016;86:619–26. https://doi.org/10.1212/WNL.0000000000002368 This longitudinal study showed that higher arterial stiffness and pressure pulsatility were associated with progression of subclinical vascular brain injury and greater neurocognitive decline.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ngandu T, Lehtisalo J, Solomon A, Levalahti E, Ahtiluoto S, Antikainen R, et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet. 2015;385:2255–63. https://doi.org/10.1016/S0140-6736(15)60461-5.

    Article  PubMed  Google Scholar 

  52. • Pase MP, Davis-Plourde K, Himali JJ, Satizabal CL, Aparicio H, Seshadri S, et al. Vascular risk at younger ages most strongly associates with current and future brain volume. Neurology. 2018;91:e1479–e86. https://doi.org/10.1212/WNL.0000000000006360 This study showed that higher vascular risk factor burden (according to the Framingham Stroke Risk Profile) was associated with lower brain volume throughout the lifespan.

    Article  PubMed  Google Scholar 

  53. •• Dufouil C, Beiser A, LA ML, Wolf PA, Tzourio C, Howard VJ, et al. Revised Framingham stroke risk profile to reflect temporal trends. Circulation. 2017;135:1145–59. https://doi.org/10.1161/CIRCULATIONAHA.115.021275 This study presents an updated Framingham Stroke Risk Profile to predict stroke risk.

    Article  PubMed  PubMed Central  Google Scholar 

  54. •• Gorelick PB, Furie KL, Iadecola C, Smith EE, Waddy SP, Lloyd-Jones DM, et al. Defining optimal brain health in adults: a presidential advisory from the American Heart Association/American Stroke Association. Stroke. 2017;48:e284–303. https://doi.org/10.1161/STR.0000000000000148 This paper provides guidance on how to maintain brain health, including assessment and targeting of potentially modifiable vascular risk factors.

    Article  PubMed  PubMed Central  Google Scholar 

  55. • Maillard P, Mitchell GF, Himali JJ, Beiser A, Tsao CW, Pase MP, et al. Effects of arterial stiffness on brain integrity in young adults from the Framingham Heart Study. Stroke. 2016;47:1030–6. https://doi.org/10.1161/STROKEAHA.116.012949 This study showed that higher aortic stiffness was associated with measures of reduced white matter and gray matter integrity among young, healthy adults.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Maillard P, Fletcher E, Harvey D, Carmichael O, Reed B, Mungas D, et al. White matter hyperintensity penumbra. Stroke. 2011;42:1917–22. https://doi.org/10.1161/STROKEAHA.110.609768.

    Article  PubMed  PubMed Central  Google Scholar 

  57. • Cooper LL, Woodard T, Sigurdsson S, van Buchem MA, Torjesen AA, Inker LA, et al. Cerebrovascular damage mediates relations between aortic stiffness and memory. Hypertension. 2016;67:176–82. https://doi.org/10.1161/Hypertensionaha.115.06398 This study showed that the observed associations between higher aortic stiffness and worse memory were mediated by mechanistic pathways that include cerebral microvascular remodeling and microvascular parenchymal damage.

    Article  CAS  PubMed  Google Scholar 

  58. • Maillard P, Mitchell GF, Himali JJ, Beiser A, Fletcher E, Tsao CW, et al. Aortic stiffness, increased white matter free water, and altered microstructural integrity: a continuum of injury. Stroke. 2017;48:1567–73. https://doi.org/10.1161/STROKEAHA.116.016321 This study examines free water, fractional anisotropy, and white matter integrity in the brain and presents a model that suggests how higher aortic stiffness and blood pressure leads to white matter injury.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ofori E, Pasternak O, Planetta PJ, Li H, Burciu RG, Snyder AF, et al. Longitudinal changes in free-water within the substantia nigra of Parkinson’s disease. Brain. 2015;138:2322–31. https://doi.org/10.1093/brain/awv136.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Burciu RG, Ofori E, Shukla P, Pasternak O, Chung JW, McFarland NR, et al. Free-water and BOLD imaging changes in Parkinson’s disease patients chronically treated with a MAO-B inhibitor. Hum Brain Mapp. 2016;37:2894–903. https://doi.org/10.1002/hbm.23213.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Woodard T, Sigurdsson S, Gotal JD, Torjesen AA, Inker LA, Aspelund T, et al. Mediation analysis of aortic stiffness and renal microvascular function. J Am Soc Nephrol. 2015;26:1181–7. https://doi.org/10.1681/ASN.2014050450.

    Article  CAS  PubMed  Google Scholar 

  62. • Cooper LL, Palmisano JN, Benjamin EJ, Larson MG, Levy D, Vasan RS, et al. Microvascular function mediates relations between aortic stiffness and cardiovascular events. Circ Cardiovasc Imaging. 2016;9:e004979 This study shows that the observed associations between higher aortic stiffness and higher risk of CVD events are partially mediated by pathways of microvascular damage and remodeling.

    Article  Google Scholar 

  63. • Mitchell GF. Aortic stiffness, pressure and flow pulsatility and target organ damage. J Appl Physiol (1985). 2018;125(6):1871–80. https://doi.org/10.1152/japplphysiol.00108.2018 This review summarizes recent studies relating aortic stiffness to cardiovascular, brain and kidney disease.

    Article  Google Scholar 

  64. Smith JJ, Porth CM, Erickson M. Hemodynamic response to the upright posture. J Clin Pharmacol. 1994;34:375–86.

    Article  CAS  Google Scholar 

  65. Eigenbrodt ML, Rose KM, Couper DJ, Arnett DK, Smith R, Jones D. Orthostatic hypotension as a risk factor for stroke—the Atherosclerosis Risk in Communities (ARIC) Study, 1987-1996. Stroke. 2000;31:2307–13.

    Article  CAS  Google Scholar 

  66. Kapoor WN. Syncope in older persons. J Am Geriatr Soc. 1994;42:426–36.

    Article  CAS  Google Scholar 

  67. Boddaert J, Tamim H, Verny M, Belmin J. Arterial stiffness is associated with orthostatic hypotension in elderly subjects with history of falls. J Am Geriatr Soc. 2004;52:568–72. https://doi.org/10.1111/j.1532-5415.2004.52163.x.

    Article  PubMed  Google Scholar 

  68. Mattace-Raso FUS, van der Cammen TJM, Knetsch AM, van den Meiracker AH, Schalekamp MADH, Hofman A, et al. Arterial stiffness as the candidate underlying mechanism for postural blood pressure changes and orthostatic hypotension in older adults: the Rotterdam study. J Hypertens. 2006;24:339–44. https://doi.org/10.1097/01.hjh.0000202816.25706.64.

    Article  CAS  PubMed  Google Scholar 

  69. Okada Y, Galbreath MM, Shibata S, Jarvis SS, VanGundy TB, Meier RL, et al. Relationship between sympathetic baroreflex sensitivity and arterial stiffness in elderly men and women. Hypertension. 2012;59:98–U246. https://doi.org/10.1161/Hypertensionaha.111.176560.

    Article  CAS  PubMed  Google Scholar 

  70. Monahan KD, Tanaka H, Dinenno FA, Seals DR. Central arterial compliance is associated with age-related and habitual exercise-related differences in cardiovagal baroreflex sensitivity. Circulation. 2001;104:1627–32. https://doi.org/10.1161/hc3901.096670.

    Article  CAS  PubMed  Google Scholar 

  71. Mattace-Raso FU, van den Meiracker AH, Bos WJ, van der Cammen TJ, Westerhof BE, Elias-Smale S, et al. Arterial stiffness, cardiovagal baroreflex sensitivity and postural blood pressure changes in older adults: the Rotterdam study. J Hypertens. 2007;25:1421–6. https://doi.org/10.1097/HJH.0b013e32811d6a07.

    Article  CAS  PubMed  Google Scholar 

  72. • Torjesen A, Cooper LL, Rong J, Larson MG, Hamburg NM, Levy D, et al. Relations of arterial stiffness with postural change in mean arterial pressure in middle-aged adults: the Framingham Heart Study. Hypertension. 2017;69:685–90. https://doi.org/10.1161/HYPERTENSIONAHA.116.08116 This study shows that higher aortic stiffness was associated with a blunted orthostatic increase in mean arterial pressure in middle-aged individuals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. • Cooper LL, Himali JJ, Torjesen A, Tsao CW, Beiser A, Hamburg NM, et al. Inter-relations of orthostatic blood pressure change, aortic stiffness, and brain structure and function in young adults. J Am Heart Assoc. 2017;6:e006206. https://doi.org/10.1161/JAHA.117.006206 This study showed that the brain is sensitive to orthostatic change in mean arterial pressure upon standing, which may be dependent on age and extent of aortic stiffness.

    Article  PubMed  PubMed Central  Google Scholar 

  74. James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311:507–20. https://doi.org/10.1001/jama.2013.284427.

    Article  CAS  PubMed  Google Scholar 

  75. Krakoff LR, Gillespie RL, Ferdinand KC, Fergus IV, Akinboboye O, Williams KA, et al. 2014 hypertension recommendations from the eighth joint national committee panel members raise concerns for elderly black and female populations. J Am Coll Cardiol. 2014;64:394–402. https://doi.org/10.1016/j.jacc.2014.06.014.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wright JT Jr, Fine LJ, Lackland DT, Ogedegbe G, Dennison Himmelfarb CR. Evidence supporting a systolic blood pressure goal of less than 150 mm Hg in patients aged 60 years or older: the minority view. Ann Intern Med. 2014;160:499–503. https://doi.org/10.7326/M13-2981.

    Article  PubMed  Google Scholar 

  77. Finks S, Ripley TL. Sorting it out: what JNC 8 is and what it is not. J Manag Care Spec Pharm. 2015;21:110–2. https://doi.org/10.18553/jmcp.2015.21.2.110.

    Article  PubMed  Google Scholar 

  78. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA. 2003;289:2560–72. https://doi.org/10.1001/jama.289.19.2560.

    Article  CAS  Google Scholar 

  79. •• Nayor M, Duncan MS, Musani SK, Xanthakis V, Lavalley MP, Larson MG, et al. Incidence of cardiovascular disease in individuals affected by recent changes to US blood pressure treatment guidelines. J Hypertens. 2018;36:436–43. https://doi.org/10.1097/HJH.0000000000001570 This study showed that patients treated according to the less aggressive blood pressure target recommended by the most recent JCN8 may have substantial residual CVD risk.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sakhuja A, Textor SC, Taler SJ. Uncontrolled hypertension by the 2014 evidence-based guideline: results from NHANES 2011-2012. J Hypertens. 2015;33:644–51; discussion 52. https://doi.org/10.1097/HJH.0000000000000442.

    Article  CAS  PubMed  Google Scholar 

  81. Group SR, Wright JT Jr, Williamson JD, Whelton PK, Snyder JK, Sink KM, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373:2103–16. https://doi.org/10.1056/NEJMoa1511939.

    Article  CAS  Google Scholar 

  82. •• Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. J Am Coll Cardiol. 2018;71:e127–248. https://doi.org/10.1016/j.jacc.2017.11.006 This paper presents updated clinical guidelines for high blood pressure.

    Article  PubMed  Google Scholar 

  83. •• Niiranen TJ, Henglin M, Claggett B, Muggeo VMR, McCabe E, Jain M, et al. Trajectories of blood pressure elevation preceding hypertension onset: an analysis of the Framingham Heart Study Original Cohort. JAMA Cardiol. 2018;3:427–31. https://doi.org/10.1001/jamacardio.2018.0250 This study showed that resting systolic blood pressure that exceeds the range of approximately 120-125 mm Hg may represent a critical threshold above which vascular remodeling and incipient hypertension occurs.

    Article  PubMed  Google Scholar 

  84. • Niiranen TJ, Kalesan B, Hamburg NM, Benjamin EJ, Mitchell GF, Vasan RS. Relative contributions of arterial stiffness and hypertension to cardiovascular disease: the Framingham Heart Study. J Am Heart Assoc. 2016;5. https://doi.org/10.1161/JAHA.116.004271 This study suggest that elevated aortic stiffness may partially explain residual risk of CVD among patients with well-controlled hypertension.

  85. Guerin AP, Blacher J, Pannier B, Marchais SJ, Safar ME, London GM. Impact of aortic stiffness attenuation on survival of patients in end-stage renal failure. Circulation. 2001;103:987–92.

    Article  CAS  Google Scholar 

  86. Wang KL, Cheng HM, Sung SH, Chuang SY, Li CH, Spurgeon HA, et al. Wave reflection and arterial stiffness in the prediction of 15-year all-cause and cardiovascular mortalities: a community-based study. Hypertension. 2010;55:799–805. https://doi.org/10.1161/HYPERTENSIONAHA.109.139964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chirinos JA, Kips JG, Jacobs DR, Brumback L, Duprez DA, Kronmal R, et al. Arterial wave reflections and incident cardiovascular events and heart failure: MESA (Multiethnic Study of Atherosclerosis). J Am Coll Cardiol. 2012;60:2170–7. https://doi.org/10.1016/j.jacc.2012.07.054.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Cooper LL, Rong J, Benjamin EJ, Larson MG, Levy D, Vita JA, et al. Components of hemodynamic load and cardiovascular events: the Framingham Heart Study. Circulation. 2015;131:354–61. https://doi.org/10.1161/CIRCULATIONAHA.114.011357.

    Article  PubMed  Google Scholar 

  89. Lloyd-Jones DM, Evans JC, Larson MG, O’Donnell CJ, Roccella EJ, Levy D. Differential control of systolic and diastolic blood pressure—factors associated with lack of blood pressure control in the community. Hypertension. 2000;36:594–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leroy L. Cooper or Gary F. Mitchell.

Ethics declarations

Conflict of Interest

Dr. Mitchell reports grants from National Institutes of Health and from Novartis, is a consultant to Merck and Servier, and is Owner and Employee of Cardiovascular Engineering, Inc. Dr. Cooper declares no conflict of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Blood Pressure Monitoring and Management

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cooper, L.L., Mitchell, G.F. Incorporation of Novel Vascular Measures into Clinical Management: Recent Insights from the Framingham Heart Study. Curr Hypertens Rep 21, 19 (2019). https://doi.org/10.1007/s11906-019-0919-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-019-0919-x

Keywords

Navigation