Skip to main content
Log in

Role of Carotid Body in Intermittent Hypoxia-Related Hypertension

  • Secondary Hypertension: Nervous System Mechanisms (M Wyss, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Obstructive sleep apnea (OSA), a common breathing disorder, is recognized as an independent risk factor for systemic hypertension. Among the alterations induced by OSA, the chronic intermittent hypoxia (CIH) is considered the main factor for the hypertension. Exposure of rodents to CIH is the gold-standard method to study the mechanisms involved in the cardiovascular alterations induced by OSA. Although it is well known that CIH produces hypertension, the underlying mechanisms are not totally elucidated. It is likely that the CIH-induced systemic oxidative stress and inflammation may elicit endothelial dysfunction and increase the arterial blood pressure. In addition, OSA patients and animals exposed to CIH show sympathetic hyperactivity and potentiated cardiorespiratory responses to acute hypoxia, suggesting that CIH enhances the peripheral hypoxic chemoreflex. Recent experimental evidences support the proposal that CIH selectively enhances carotid body (CB) chemosensory reactivity to oxygen, which in turn increases sympathetic outflow leading to neurogenic hypertension. In this review, we will discuss the supporting evidence for a critical role of the CB in the generation and maintenance of the hypertension induced by CIH, also, the contribution of oxidative stress to enhance CB chemosensory drive and the activation of sympathetic-related centers in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Somers VK, et al. Sleep apnea and cardiovascular disease. Circulation. 2008;118:1080–111. A complete review of the cardiovascular consequences of OSA.

    Article  PubMed  Google Scholar 

  2. Dempsey JA, et al. Pathophysiology of sleep apnea. Physiol Rev. 2010;90:47–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Garvey JF, et al. Cardiovascular disease in obstructive sleep apnoea syndrome: the role of intermittent hypoxia and inflammation. Eur Respir J. 2009;33:1195–205.

    Article  CAS  PubMed  Google Scholar 

  4. Gozal D, Kheirandish-Gozal L. Cardiovascular morbidity in obstructive sleep apnea: oxidative stress, inflammation, and much more. Am J Respir Crit Care Med. 2008;177:369–75.

    Article  CAS  PubMed  Google Scholar 

  5. •• Fletcher EC, et al. Carotid chemoreceptors, systemic blood pressure, and chronic episodic hypoxia mimicking sleep apnea. J Appl Physiol. 1992;72:1978–84. Provide the first evidence that the carotid body is involved in the hypertension induced by chronic intermittent hypoxia.

    CAS  PubMed  Google Scholar 

  6. Del Rio R, Moya EA, Iturriaga R. Carotid body and cardiorespiratory alterations in intermittent hypoxia: the oxidative link. Eur Respir J. 2010;36:143–50.

    Article  CAS  PubMed  Google Scholar 

  7. Dumitrascu R, et al. Obstructive sleep apnea, oxidative stress and cardiovascular disease: lessons from animal studies. Oxidative Med Cell Longev. 2013;2013:234631–7.

    Article  Google Scholar 

  8. Dematteis M, et al. Cardiovascular consequences of sleep-disordered breathing: contribution of animal models to understanding the human disease. ILAR J. 2009;50:262–81.

    Article  CAS  PubMed  Google Scholar 

  9. Iturriaga R, Moya EA, Del Rio R. Carotid body potentiation induced by intermittent hypoxia: implications for cardiorespiratory changes induced by sleep apnoea. Clin Exp Pharmacol Physiol. 2009;36:1197–204.

    Article  CAS  PubMed  Google Scholar 

  10. •• Peng YJ, et al. Induction of sensory long-term facilitation in the carotid body by intermittent hypoxia: implications for recurrent apneas. Proc Natl Acad Sci U S A. 2003;100:10073–8. Provide the first evidence that chronic intermittent hypoxia enhances the carotid body chemosensory discharges.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Prabhakar NR, et al. Cardiovascular alterations by chronic intermittent hypoxia: importance of carotid body chemoreflexes. Clin Exp Pharmacol Physiol. 2005;32:447–9.

    Article  CAS  PubMed  Google Scholar 

  12. Schulz R, et al. Sleep apnea and cardiovascular disease—results from animal studies. Pneumologie. 2008;62:18–22.

    Article  CAS  PubMed  Google Scholar 

  13. Hinojosa-Laborde C, Mifflin SW. Sex differences in blood pressure response to intermittent hypoxia in rats. Hypertension. 2005;46:1016–21.

    Article  CAS  PubMed  Google Scholar 

  14. Kuo TB, et al. Reactive oxygen species are the cause of the enhanced cardiorespiratory response induced by intermittent hypoxia in conscious rats. Respir Physiol Neurobiol. 2011;175:70–9.

    Article  PubMed  Google Scholar 

  15. Lai CJ, et al. Enhanced sympathetic outflow and decreased baroreflex sensitivity are associated with intermittent hypoxia-induced systemic hypertension in conscious rats. J Appl Physiol. 2006;100:1974–82.

    Article  CAS  PubMed  Google Scholar 

  16. Marcus NJ, et al. Effect of AT1 receptor blockade on intermittent hypoxia-induced endothelial dysfunction. Respir Physiol Neurobiol. 2012;183:67–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. •• Del Rio R, et al. Carotid body ablation abrogates hypertension and autonomic alterations induced by intermittent hypoxia in rats. Hypertension. 2016;68:436–45. Provide the first evidence that the carotid body is involved in the maintenance of the persistent hypertension induced by chronic intermittent hypoxia.

    Article  CAS  PubMed  Google Scholar 

  18. Lavie L, et al. Obstructive sleep apnoea syndrome—an oxidative stress disorder. Sleep Med Rev. 2003;7:35–51.

    Article  PubMed  Google Scholar 

  19. Jelic S, et al. Inflammation, oxidative stress, and repair capacity of the vascular endothelium in obstructive sleep apnea. Circulation. 2008;117:2270–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Minoguchi K, et al. Increased carotid intima-media thickness and serum inflammatory markers in obstructive sleep apnea. Am J Respir Crit Care Med. 2005;172:625–30.

    Article  PubMed  Google Scholar 

  21. Monneret D, et al. The impact of obstructive sleep apnea on homocysteine and carotid remodeling in metabolic syndrome. Respir Physiol Neurobiol. 2012;180:298–304.

    Article  CAS  PubMed  Google Scholar 

  22. Dopp JM, et al. Xanthine oxidase inhibition attenuates endothelial dysfunction caused by chronic intermittent hypoxia in rats. Respiration. 2011;82:458–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Krause BJ, et al. Arginase/eNOS imbalance contributes to endothelial dysfunction in chronic intermittent hypoxia in rats. J Hypertens. 2015;33:515–24.

    Article  CAS  PubMed  Google Scholar 

  24. Narkiewicz K, et al. Contribution of tonic chemoreflex activation to sympathetic activity and blood pressure in patients with obstructive sleep apnea. Circulation. 1998;97:943–5.

    Article  CAS  PubMed  Google Scholar 

  25. Narkiewicz K, et al. Selective potentiation of peripheral chemoreflex sensitivity in obstructive sleep apnea. Circulation. 1999;99:1183–9.

    Article  CAS  PubMed  Google Scholar 

  26. Rey S, et al. Chronic intermittent hypoxia enhances cat chemosensory and ventilatory responses to hypoxia. J Physiol. 2004;560:577–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rey S, et al. Dynamic time-varying analysis of heart rate and blood pressure variability in cats exposed to short-term chronic intermittent hypoxia. Am J Physiol Regul Integr Comp Physiol. 2008;295:R28–37.

    Article  CAS  PubMed  Google Scholar 

  28. Dick TE, et al. Acute intermittent hypoxia increases both phrenic and sympathetic nerve activities in the rat. Exp Physiol. 2007;92:87–97.

    Article  PubMed  Google Scholar 

  29. Marcus NJ, et al. Chronic intermittent hypoxia augments chemoreflex control of sympathetic activity: role of the angiotensin II type 1 receptor. Respir Physiol Neurobiol. 2010;171:36–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Moya EA, et al. Intermittent hypoxia-induced carotid body chemosensory potentiation and hypertension are critically dependent on peroxynitrite formation. Oxidative Med Cell Longev. 2016;2016:9802136–9.

    Article  Google Scholar 

  31. Del Rio R, Moya EA, Iturriaga R. Differential expression of pro-inflammatory cytokines, endothelin-1 and nitric oxide synthases in the rat carotid body exposed to intermittent hypoxia. Brain Res. 2011;1395:74–85.

    Article  CAS  PubMed  Google Scholar 

  32. Iturriaga R, Andrade DC, Del Rio R. Enhanced carotid body chemosensory activity and the cardiovascular alterations induced by intermittent hypoxia. Front Physiol. 2014;5:468–9.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Iturriaga R, Alcayaga J. Neurotransmission in the carotid body: transmitters and modulators between glomus cells and petrosal ganglion nerve terminals. Brain Res Rev. 2004;47:46–53.

    Article  CAS  PubMed  Google Scholar 

  34. Iturriaga R, Varas R, Alcayaga J. Electrical and pharmacological properties of petrosal ganglion neurons that innervate the carotid body. Respir Physiol Neurobiol. 2007;157:130–9.

    Article  CAS  PubMed  Google Scholar 

  35. Ortiz FA, et al. Inhibition of rat carotid body glomus cells TASK-like channels by acute hypoxia is enhanced by chronic intermittent hypoxia. Respir Physiol Neurobiol. 2013;185:600–7.

    Article  PubMed  Google Scholar 

  36. McGuire M, et al. Chronic intermittent hypoxia enhances ventilatory long-term facilitation in awake rats. J Appl Physiol. 2003;95:1499–508.

    Article  PubMed  Google Scholar 

  37. Mitchell GS. Intermittent hypoxia and respiratory plasticity. J Appl Physiol. 2001;90:2466–75.

    CAS  PubMed  Google Scholar 

  38. Chen L, et al. Oxidative stress and left ventricular function with chronic intermittent hypoxia in rats. Am J Respir Crit Care Med. 2005;172:915–20.

    Article  PubMed  Google Scholar 

  39. Huang J, et al. Sympathetic response to chemostimulation in conscious rats exposed to chronic intermittent hypoxia. Respir Physiol Neurobiol. 2009;166:102–6.

    Article  CAS  PubMed  Google Scholar 

  40. Peng YJ, et al. NADPH oxidase is required for the sensory plasticity of the carotid body by chronic intermittent hypoxia. J Neurosc. 2009;29:4903–10.

    Article  CAS  Google Scholar 

  41. Troncoso-Brindeiro CM, et al. Reactive oxygen species contribute to sleep apnea-induced hypertension in rats. Am J Physiol Heart Circ Physiol. 2007;293:H2971–6.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gonzalez C, et al. Chemoreception in the context of the general biology of ROS. Respir Physiol Neurobiol. 2007;157:30–44.

    Article  CAS  PubMed  Google Scholar 

  43. Pawar A, et al. Reactive oxygen species-dependent endothelin signaling is required for augmented hypoxic sensory response of the neonatal carotid body by intermittent hypoxia. Am J Physiol Regul Integr Comp Physiol. 2009;296:R735–42.

    Article  CAS  PubMed  Google Scholar 

  44. Rey S, Del Rio R, Iturriaga R. Contribution of endothelin-1 to the enhanced carotid body chemosensory responses induced by chronic intermittent hypoxia. Brain Res. 2006;1086:152–9.

    Article  CAS  PubMed  Google Scholar 

  45. Lam SY, et al. Chronic hypoxia upregulates the expression and function of proinflammatory cytokines in the rat carotid body. Histochem Cell Biol. 2008;130:549–59.

    Article  CAS  PubMed  Google Scholar 

  46. Lam SY, et al. Chronic intermittent hypoxia induces local inflammation of the rat carotid body via functional upregulation of proinflammatory cytokine pathways. Histochem Cell Biol. 2012;137:303–17.

    Article  CAS  PubMed  Google Scholar 

  47. Fung ML. The role of local renin-angiotensin system in arterial chemoreceptors in sleep-breathing disorders. Front Physiol. 2014;5:336.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Del Rio R, Moya EA, Iturriaga R. Contribution of inflammation on carotid body chemosensory potentiation induced by intermittent hypoxia. Adv Exp Med Biol. 2012;758:199–205.

    Article  CAS  PubMed  Google Scholar 

  49. Peng YJ, et al. Regulation of hypoxia-inducible factor-α isoforms and redox state by carotid body neural activity in rats. J Physiol. 2014;592(Pt 17):3841–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Peng YJ, et al. Role of oxidative stress-induced endothelin-converting enzyme activity in the alteration of carotid body function by chronic intermittent hypoxia. Exp Physiol. 2013;98:1620–30.

    Article  CAS  PubMed  Google Scholar 

  51. Iturriaga R. Intermittent hypoxia: endothelin-1 and hypoxic carotid body chemosensory potentiation. Exp Physiol. 2013;98:1550–1.

    Article  CAS  PubMed  Google Scholar 

  52. Allahdadi KJ, et al. Endothelin type A receptor antagonist normalizes blood pressure in rats exposed to eucapnic intermittent hypoxia. Am J Physiol Heart Circ Physiol. 2008;295:H434–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lam SY, et al. Upregulation of a local renin–angiotensin system in the rat carotid body during chronic intermittent hypoxia. Exp Physiol. 2014;99:220–31.

    Article  CAS  PubMed  Google Scholar 

  54. Lam SY, et al. Hypoxia-inducible factor (HIF)-1α and endothelin-1 expression in the rat carotid body during intermittent. Adv Exp Med Biol. 2006;280:21–7.

    Article  Google Scholar 

  55. Ryan S, Taylor CT, Mcnicholas WT. Systemic inflammation: a key factor in the pathogenesis of cardiovascular complications in obstructive sleep apnoea syndrome? Thorax. 2009;64:631–6.

    CAS  PubMed  Google Scholar 

  56. Iturriaga R, Moya EA, Del Rio R. Inflammation and oxidative stress during intermittent hypoxia: the impact on chemoreception. Exp Physiol. 2015;100:149–55.

    Article  CAS  PubMed  Google Scholar 

  57. Mifflin S, Cunningham JT, Toney GM, et al. Neurogenic mechanisms underlying the rapid onset of sympathetic responses to intermittent hypoxia. J Appl Physiol. 2015;119:1441–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shell B, Faulk K, Cunningham T. Neural control of blood pressure in chronic intermittent hypoxia. Curr Hypertens Rep. 2016;18:19.

    Article  PubMed  PubMed Central  Google Scholar 

  59. • Zoccal DB, et al. Increased sympathetic outflow in juvenile rats submitted to chronic intermittent hypoxia correlates with enhanced expiratory activity. J Physiol. 2008;586:3253–65. This study to show that the increased sympathetic outflow evoked by chronic intermittent hypoxia is associated with enhanced expiratory neuron activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Greenberg HE, et al. Chronic intermittent hypoxia increases sympathetic responsiveness to hypoxia and hypercapnia. J Appl Physiol. 1999;86:298–305.

    CAS  PubMed  Google Scholar 

  61. Bathina CS, et al. Knockdown of tyrosine hydroxylase in the nucleus of the solitary tract reduces elevated blood pressure during chronic intermittent hypoxia. Am J Physiol Regul Integr Comp Physiol. 2013;305:R1031–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Knight WD, et al. Chronic intermittent hypoxia increases blood pressure and expression of FosB/ΔFosB in central autonomic regions. Am J Physiol Regul Integr Comp Physiol. 2011;301:R131–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sharpe AL, et al. Chronic intermittent hypoxia increases sympathetic control of blood pressure: role of neuronal activity in the hypothalamic paraventricular nucleus. Am J Physiol Heart Circ Physiol. 2013;305:H1772–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dampney RA, et al. Medullary and supramedullary mechanisms regulating sympathetic vasomotor tone. Acta Physiol Scand. 2003;177:209–18.

    Article  CAS  PubMed  Google Scholar 

  65. Kishi T, et al. Increased reactive oxygen species in rostral ventrolateral medulla contribute to neural mechanisms of hypertension in stroke-prone spontaneously hypertensive rats. Circulation. 2004;109:2357–62.

    Article  CAS  PubMed  Google Scholar 

  66. Tai MH, et al. Increased superoxide anion in rostral ventrolateral medulla contributes to hypertension in spontaneously hypertensive rats via interactions with nitric oxide. Free Radic Biol Med. 2005;38:450–62.

    Article  CAS  PubMed  Google Scholar 

  67. Cheng WH, et al. Angiotensin II inhibits neuronal nitric oxide synthase activation through the ERK1/2-RSK signaling pathway to modulate central control of blood pressure. Circ Res. 2010;106:788–95.

    Article  CAS  PubMed  Google Scholar 

  68. Chan SHH, Chan JYH. Brain stem oxidative stress and its associated signaling in the regulation of sympathetic vasomotor tone. J Appl Physiol. 2012;113:1921–8.

    Article  CAS  PubMed  Google Scholar 

  69. Kimura Y, et al. Overexpression of inducible nitric oxide synthase in rostral ventrolateral medulla causes hypertension and sympathoexcitation via an increase in oxidative stress. Circ Res. 2005;96:252–60.

    Article  CAS  PubMed  Google Scholar 

  70. Chan SH, et al. Oxidative impairment of mitochondrial electron transport chain complexes in rostral ventrolateral medulla contributes to neurogenic hypertension. Hypertension. 2009;53:217–27.

    Article  CAS  PubMed  Google Scholar 

  71. Chan SH, et al. Reduction in molecular synthesis or enzyme activity of superoxide dis- mutases and catalase contributes to oxidative stress and neurogenic hypertension in spontaneously hypertensive rats. Free Radic Biol Med. 2006;40:2028–39.

    Article  CAS  PubMed  Google Scholar 

  72. Knight WD, et al. Central losartan attenuates increases in arterial pressure and expression of FosB/QFosB along the autonomic axis associated with chronic intermittent hypoxia. Am J Physiol Regul Integr Comp Physiol. 2013;305:R1051–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Phillips SA, et al. Chronic intermittent hypoxia alters NE reactivity and mechanics of skeletal muscle resistance arteries. J Appl Physiol. 2006;100:1117–23.

    Article  CAS  PubMed  Google Scholar 

  74. • Iturriaga, et al. Carotid body chemoreceptors, sympathetic neural activation, and cardiometabolic disease. Biol Res. 2016;49:13. A comprehensive review of the new role for the carotid body in sympathetic-related human diseases.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Abdala AP, et al. Hypertension is critically dependent on the carotid body input in the spontaneously hypertensive rat. J Physiol. 2012;590:4269–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Paton JFR, et al. Revelations about carotid body function through its pathological role in resistant. Curr Hypertens Rep. 2013;15:273–80.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Mcbryde FD, et al. The carotid body as a putative therapeutic target for the treatment of neurogenic hypertension. Nat Commun. 2013;4:2395.

    Article  PubMed  Google Scholar 

  78. Schultz HD, Li YL, Ding Y. Arterial chemoreceptors and sympathetic nerve activity: implications for hypertension and heart failure. Hypertension. 2007;50:6–13.

    Article  CAS  PubMed  Google Scholar 

  79. Del Rio R, Marcus NJ, Schultz HD. Carotid chemoreceptor ablation improves survival in heart failure: rescuing autonomic control of cardiorespiratory function. J Am Coll Cardiol. 2013;62:2422–30.

    Article  PubMed  Google Scholar 

  80. Porzionato A, Macchi V, De Caro R. Role of the carotid body in obesity-related sympathoactivation. Hypertension. 2013;61:e57.

    Article  CAS  PubMed  Google Scholar 

  81. Ribeiro MJ, et al. Carotid body denervation prevents the development of insulin resistance and hypertension induced by hypercaloric diets. Diabetes. 2013;62:2905–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grant 1150040 from the National Fund for Scientific and Technological Development of Chile (FONDECYT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Iturriaga.

Ethics declarations

Conflict of Interest

R Iturriaga, MP Oyarce, and ACR Dias declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Secondary Hypertension: Nervous System Mechanisms

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iturriaga, R., Oyarce, M.P. & Dias, A.C.R. Role of Carotid Body in Intermittent Hypoxia-Related Hypertension. Curr Hypertens Rep 19, 38 (2017). https://doi.org/10.1007/s11906-017-0735-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-017-0735-0

Keywords

Navigation