Skip to main content

Advertisement

Log in

DOCA-Salt Hypertension: an Update

  • Secondary Hypertension: Nervous System Mechanisms (M Wyss, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Hypertension is a multifaceted disease that is involved in ∼40% of cardiovascular mortalities and is the result of both genetic and environmental factors. Because of its complexity, hypertension has been studied by using various models and approaches, each of which tends to focus on individual organs or tissues to isolate the most critical and treatable causes of hypertension and the related damage to end-organs. Animal models of hypertension have ranged from Goldblatt’s kidney clip models in which the origin of the disease is clearly renal to animals that spontaneously develop hypertension either through targeted genetic manipulations, such as the TGR(mRen2)27, or selective breeding resulting in more enigmatic origins, as exemplified by the spontaneously hypertensive rat (SHR). These two genetically derived models simulate the less-common human primary hypertension in which research has been able to define a Mendelian linkage. Several models are more neurogenic or endocrine in nature and illustrate that crosstalk between the nervous system and hormones can cause a significant rise in blood pressure (BP). This review will examine one of these neurogenic models of hypertension, i.e., the deoxycorticosterone acetate (DOCA), reduced renal mass, and high-salt diet (DOCA-salt) rodent model, one of the most common experimental models used today. Although the DOCA-salt model is mainly believed to be neurogenic and has been shown to impact the central and peripheral nervous systems, it also significantly involves many other body organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently have been highlighted as: • Of importance, •• Of major importance

  1. Carretero OA, Oparil S. Essential hypertension part I: definition and etiology. Circulation. 2000:329–35

  2. Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci. 2006;7(5):335–46.

    Article  CAS  PubMed  Google Scholar 

  3. Drenjancevic-Peric I, Jelakovic B, Lombard JH, Kunert MP, Kibel A, Gros M. High-salt diet and hypertension: focus on the renin-angiotensin system. Kidney Blood Press Res. 2011;34(1):1–11. doi:10.1159/000320387.

    Article  CAS  PubMed  Google Scholar 

  4. Zicha J, Kunes J, Lebl M, Pohlova I, Slaninova J, Jelinek J. Antidiuretic and pressor actions of vasopressin in age-dependent DOCA-salt hypertension. Am J Phys. 1989;256(1 Pt 2):R138–45.

    CAS  Google Scholar 

  5. Anderson PG, Bishop SP, Digerness SB. Coronary vascular function and morphology in hydralazine treated DOCA salt rats. J Mol Cell Cardiol. 1988;20(10):955–67.

    Article  CAS  PubMed  Google Scholar 

  6. • Xia H, Sriramula S, Chhabra K, Lazartigues E. Brain ACE2 shedding contributes to the development of neurogenic hypertension. Circ Res. 2013;113:1087–96. This study highlights how ACE2 and Ang1-7 are downregulated in hypertension and could be major beneficial players in future therapeutics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. • Grobe JL, Buehrer BA, Hilzendeger AM, Liu X, Davis DR, Xu D, et al. Angiotensinergic signaling in the brain mediates metabolic effects of deoxycorticosterone (DOCA)-salt in C57 mice. Hypertension. 2011;57(3):600–7. doi:10.1161/hypertensionaha.110.165829. This emphasizes the critical players in the CNS contributing to DOCA-salt hypertension.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weinberger MH, Miller JZ, Luft FC, Grim CE, Fineberg NS. Definitions and characteristics of sodium sensitivity and blood pressure resistance. Hypertension. 1986;8(6 Pt 2):II127–34.

    CAS  PubMed  Google Scholar 

  9. Poch E, Gonzalez D, Giner V, Bragulat E, Coca A, de La Sierra A. Molecular basis of salt sensitivity in human hypertension. Evaluation of renin-angiotensin-aldosterone system gene polymorphisms. Hypertension. 2001;38(5):1204–9.

    Article  CAS  PubMed  Google Scholar 

  10. Funder J, New MI. Low renin hypertension (LRH): shades of John Laragh. Trends Endocrinol Metab. 2008;19(3):83. doi:10.1016/j.tem.2008.01.008.

    Article  CAS  PubMed  Google Scholar 

  11. Turkkan JS, Goldstein DS. Production and reversal of DOCA-salt hypertension in baboons. Clin Exp Hypertens A. 1987;9(1):125–40.

    CAS  PubMed  Google Scholar 

  12. Abrams JM, Engeland WC, Osborn JW. Effect of intracerebroventricular benzamil on cardiovascular and central autonomic responses to DOCA-salt treatment. Am J Physiol Regul Integr Comp Physiol. 2010;299(6):R1500–10. doi:10.1152/ajpregu.00431.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. • Dampney RA. Central neural control of the cardiovascular system: current perspectives. Adv Physiol Educ. 2016;40(3):283–96. doi:10.1152/advan.00027.2016. A detailed review of the cardiovascular and circulatory components involved in the pathogenesis of hypertension.

    Article  PubMed  Google Scholar 

  14. Takeda K, Nakamura Y, Hayashi J, Kawasaki S, Nakata T, Oguro M, et al. Effects of salt and DOCA on hypothalamic and baroreflex control of blood pressure. Clin Exp Hypertens A. 1988;10(Suppl 1):289–99.

    PubMed  Google Scholar 

  15. •• Takeda K, Nakamura Y, Oguro M, Kawasaki S, Hayashi J, Tanabe S, et al. Central attenuation of baroreflex precedes the development of hypertension in DOCA-salt-treated rats. Am J Hypertens. 1988;1(3 Pt 3):23S–5S. An early study showing that changes in the central nervous system predate those in the periphery in the pathogenesis of hypertension.

    Article  CAS  PubMed  Google Scholar 

  16. O'Donaughy TL, Brooks VL. Deoxycorticosterone acetate-salt rats: hypertension and sympathoexcitation driven by increased NaCl levels. Hypertension. 2006;47(4):680–5. doi:10.1161/01.HYP.0000214362.18612.6e.

    Article  PubMed  Google Scholar 

  17. Scrogin KE, Grygielko ET, Brooks VL. Osmolality: a physiological long-term regulator of lumbar sympathetic nerve activity and arterial pressure. Am J Phys. 1999;276(6 Pt 2):R1579–86.

    CAS  Google Scholar 

  18. Weinberger MH, Fineberg NS, Fineberg SE, Weinberger M. Salt sensitivity, pulse pressure, and death in normal and hypertensive humans. Hypertension. 2001;37(2 Pt 2):429–32.

    Article  CAS  PubMed  Google Scholar 

  19. Fink GD, Johnson RJ, Galligan JJ. Mechanisms of increased venous smooth muscle tone in desoxycorticosterone acetate-salt hypertension. Hypertension. 2000;35(1 Pt 2):464–9.

    Article  CAS  PubMed  Google Scholar 

  20. Fink GD, Pawloski CM, Blair ML, Mangiapane ML. The area postrema in deoxycorticosterone-salt hypertension in rats. Hypertension. 1987;9(6 Pt 2):III206–9.

    CAS  PubMed  Google Scholar 

  21. Berecek KH, Barron KW, Webb RL, Brody MJ. Vasopressin-central nervous system interactions in the development of DOCA hypertension. Hypertension. 1982;4(3 Pt 2):131–7.

    CAS  PubMed  Google Scholar 

  22. Ciriello J. Contribution of forebrain mechanisms in the maintenance of deoxycorticosterone acetate-salt hypertension. Clin Exp Hypertens A. 1988;10(Suppl 1):169–78.

    PubMed  Google Scholar 

  23. Bruner CA, Mangiapane ML, Fink GD, Webb RC. Area postrema ablation and vascular reactivity in deoxycorticosterone-salt-treated rats. Hypertension. 1988;11(6 Pt 2):668–73.

    Article  CAS  PubMed  Google Scholar 

  24. Fink GD, Bruner CA, Mangiapane ML. Area postrema is critical for angiotensin-induced hypertension in rats. Hypertension. 1987;9:355–61.

    Article  CAS  PubMed  Google Scholar 

  25. Ueno Y, Mohara O, Brosnihan KB, Ferrario CM. Characteristics of hormonal and neurogenic mechanisms of deoxycorticosterone-induced hypertension. Hypertension. 1988;11(2 Pt 2):I172–7.

    Article  CAS  PubMed  Google Scholar 

  26. Hamlyn JM, Blaustein MP. Sodium chloride, extracellular fluid volume, and blood pressure regulation. Am J Phys. 1986;251(4 Pt 2):F563–75.

    CAS  Google Scholar 

  27. Falcon JC, Phillips MI, Hoffman WE, Brody MJ. Effects of intraventricular angiotensin II mediated by the sympathetic nervous system. Am J Phys. 1978;235:H392–H9.

    CAS  Google Scholar 

  28. Esler M, Kaye D. Sympathetic nervous system activation in essential hypertension, cardiac failure and psychosomatic heart disease. J Cardiovasc Pharmacol. 2000;35(7 Suppl. 4):S1–7.

    Article  CAS  PubMed  Google Scholar 

  29. Albrecht vBuHOD. The CNS renin-angiotensin system 2006.

  30. Chapleau MW, Abboud FM. Neuro-cardiovascular regulation: from molecules to man. Ann NY Acad Sci. 2001:1. New York.

  31. Gutkind JS, Kurihara M, Saavedra JM. Increased angiotensin II receptors in brain nuclei of DOCA-salt hypertensive rats. Am J Hypertens. 1988;255(3 Pt 2):H646–H50.

    CAS  Google Scholar 

  32. Mangiapane ML, Simpson JB. Subfornical organ lesions reduce the pressor effect of systemic angiotensin II. Neuroendocrinology. 1980;31(6):380–4.

    Article  CAS  PubMed  Google Scholar 

  33. Li W, Liu J, Hammond SL, Tjalkens RB, Saifudeen Z, Feng Y. Angiotensin II regulates brain (pro)renin receptor expression through activation of cAMP response element-binding protein. Am J Physiol Regul Integr Comp Physiol. 2015;309(2):R138–47. doi:10.1152/ajpregu.00319.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chan JY, Wang LL, Lee HY, Chan SH. Augmented upregulation by c-fos of angiotensin subtype 1 receptor in nucleus tractus solitarii of spontaneously hypertensive rats. Hypertension. 2002;40(3):335–41.

    Article  CAS  PubMed  Google Scholar 

  35. Hilzendeger AM, Morgan DA, Brooks L, Dellsperger D, Liu X, Grobe JL, et al. A brain leptin-renin angiotensin system interaction in the regulation of sympathetic nerve activity. Am J Physiol Heart Circ Physiol. 2012;303(2):H197–206. doi:10.1152/ajpheart.00974.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Park CG, Leenen FH. Effects of centrally administered losartan on deoxycorticosterone-salt hypertension rats. J Korean Med Sci. 2001;16(5):553–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Somers MJ, Mavromatis K, Galis ZS, Harrison DG. Vascular superoxide production and vasomotor function in hypertension induced by deoxycorticosterone acetate-salt. Circulation. 2000;101(14):1722–8.

    Article  CAS  PubMed  Google Scholar 

  38. Basso N, Ruiz P, Kurnjek ML, Cannata MA, Taquini AC. The brain renin-angiotensin system and the development of DOC-salt hypertension. Clin Exp Hypertens A. 1985;7(9):1259–68.

    CAS  PubMed  Google Scholar 

  39. Tada Y, Wada K, Shimada K, Makino H, Liang EI, Murakami S, et al. Roles of hypertension in the rupture of intracranial aneurysms. Stroke. 2014;45(2):579–86. doi:10.1161/STROKEAHA.113.003072.

    Article  PubMed  Google Scholar 

  40. Basso N, Ruiz P, Mangiarua E, Taquini AC. Renin-like activity in the rat brain during the development of DOC-salt hypertension. Hypertension. 1981;3(6 Pt 2):II-14-7.

    PubMed  Google Scholar 

  41. Itaya Y, Suzuki H, Matsukawa S, Kondo K, Saruta T. Central renin-angiotensin system and the pathogenesis of DOCA-salt hypertension in rats. Am J Phys. 1986;251(2 Pt 2):H261–H8.

    CAS  Google Scholar 

  42. Danser AH. The role of the (pro)renin receptor in hypertensive disease. Am J Hypertens. 2015;28(10):1187–96. doi:10.1093/ajh/hpv045.

    Article  PubMed  Google Scholar 

  43. Li W, Sullivan MN, Zhang S, Worker CJ, Xiong Z, Speth RC, et al. Intracerebroventricular infusion of the (pro)renin receptor antagonist PRO20 attenuates deoxycorticosterone acetate-salt-induced hypertension. Hypertension. 2015;65(2):352–61. doi:10.1161/HYPERTENSIONAHA.114.04458.

    Article  CAS  PubMed  Google Scholar 

  44. Li W, Peng H, Mehaffey EP, Kimball CD, Grobe JL, van Gool JM, et al. Neuron-specific (pro)renin receptor knockout prevents the development of salt-sensitive hypertension. Hypertension. 2014;63(2):316–23. doi:10.1161/HYPERTENSIONAHA.113.02041.

    Article  CAS  PubMed  Google Scholar 

  45. Feng Y, Xia H, Cai Y, Halabi CM, Becker LK, Santos RAS, et al. Brain-selective overexpression of human angiotensin-converting enzyme type 2 attenuates neurogenic hypertension. Circ Res. 2010;106(2):373–82. doi:10.1161/circresaha.109.208645.

    Article  CAS  PubMed  Google Scholar 

  46. Xu P, Sriramula S, Lazartigues E. ACE2/Ang-(1-7)/Mas pathway in the brain: the axis of good. Am J Physiology-Regul Integr Comp Physiol. 2011;300(4):R804–17. doi:10.1152/ajpregu.00222.2010.

    Article  CAS  Google Scholar 

  47. Ferrario CM. ACE2: more of Ang-(1-7) or less Ang II? Curr Opin Nephrol Hypertens. 2011;20(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  48. Lange DL, Haywood JR, Hinojosa-Laborde C. Endothelin enhances and inhibits adrenal catecholamine release in deoxycorticosterone acetate-salt hypertensive rats. Hypertension. 2000;35(1 Pt 2):385–90.

    Article  CAS  PubMed  Google Scholar 

  49. de Champlain J, Eid H, Papin D. Potentiated endothelin-1-induced phosphoinositide hydrolysis in atria and mesenteric artery of DOCA-salt hypertensive rats. J Hypertens Suppl. 1989;7(6):S136–7.

    Article  CAS  PubMed  Google Scholar 

  50. Lange DL, Haywood JR, Hinojosa-Laborde C. Role of the adrenal medullae in male and female DOCA-salt hypertensive rats. Hypertension. 1998;31(1 Pt 2):403–8.

    Article  CAS  PubMed  Google Scholar 

  51. Moreau P, Drolet G, Yamaguchi N, de Champlain J. Role of presynaptic beta 2-adrenergic facilitation in the development and maintenance of DOCA-salt hypertension. Am J Hypertens. 1993;6(12):1016–24.

    Article  CAS  PubMed  Google Scholar 

  52. Hofbauer KG, Studer W, Mah SC, Michel JB, Wood JM, Stalder R. The significance of vasopressin as a pressor agent. J Cardiovasc Pharmacol. 1984;6(Suppl 2):S429–38.

    Article  PubMed  Google Scholar 

  53. Mohring J, Mohring B, Petri M, Haack D. Vasopressor role of ADH in the pathogenesis of malignant DOC hypertension. Am J Phys. 1977;232(3):F260–9.

    CAS  Google Scholar 

  54. Mimura Y, Ogura T, Yamauchi T, Otsuka F, Oishi T, Harada K, et al. Effect of vasopressin V1- and V2-receptor stimulation on blood pressure in DOCA-salt hypertensive rats. Acta Med Okayama. 1995;49(4):187–94.

    CAS  PubMed  Google Scholar 

  55. Rao MR. Effects of tetrandrine on cardiac and vascular remodeling. Acta Pharmacol Sin. 2002;23(12):1075–85.

    CAS  PubMed  Google Scholar 

  56. Lee LK, Kim MY, Kim JH, Lee JU, Park BS, Yang SM, et al. A review of deoxycorticosterone acetate-salt hypertension and its relevance for cardiovascular physiotherapy research. J Phys Ther Sci. 2015;27(1):303–7. doi:10.1589/jpts.27.303.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Reiter U, Reiter G, Manninger M, Adelsmayr G, Schipke J, Alogna A, et al. Early-stage heart failure with preserved ejection fraction in the pig: a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson. 2016;18(1):63. doi:10.1186/s12968-016-0283-9.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Moreno MU, Eiros R, Gavira JJ, Gallego C, Gonzalez A, Ravassa S, et al. The hypertensive myocardium: from microscopic lesions to clinical complications and outcomes. Med Clin North Am. 2017;101(1):43–52. doi:10.1016/j.mcna.2016.08.002.

    Article  PubMed  Google Scholar 

  59. Koito H, Yutaka H. CT and MRI findings of pulmonary hypertension. Nihon Rinsho. 2001;59(6):1107–12.

    CAS  PubMed  Google Scholar 

  60. Bright R. Observations on the treatment of fever. Case of simple fever, protracted by irritation of the bowels, and attended by relapse. Guy's Hospital Reports. 1836;1:1–8.

    Google Scholar 

  61. • Coffman TM. The inextricable role of the kidney in hypertension. J Clin Invest. 2014;124(6):2341–7. doi:10.1172/JCI72274. A brief review that touches upon multiple alterations of the kidney during hypertension, including some mechanistic and physiological findings.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Mullins LJ, Conway BR, Menzies RI, Denby L, Mullins JJ. Renal disease pathophysiology and treatment: contributions from the rat. Dis Model Mech. 2016;9(12):1419–33. doi:10.1242/dmm.027276.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Pavlov TS, Staruschenko A. Involvement of ENaC in the development of salt-sensitive hypertension. Am J Physiol Renal Physiol. 2016; doi:10.1152/ajprenal.00427.2016.

    PubMed  Google Scholar 

  64. Yemane H, Busauskas M, Burris SK, Knuepfer MM. Neurohumoral mechanisms in deoxycorticosterone acetate (DOCA)-salt hypertension in rats. Exp Physiol. 2010;95(1):51–5. doi:10.1113/expphysiol.2008.046334.

    Article  CAS  PubMed  Google Scholar 

  65. Kandlikar SS, Fink GD. Splanchnic sympathetic nerves in the development of mild DOCA-salt hypertension. Am J Physiol Heart Circ Physiol. 2011;301(5):H1965–73. doi:10.1152/ajpheart.00086.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kandlikar SS, Fink GD. Mild DOCA-salt hypertension: sympathetic system and role of renal nerves. Am J Physiol Heart Circ Physiol. 2011;300(5):H1781–7. doi:10.1152/ajpheart.00972.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Banek CT, Knuepfer MM, Foss JD, Fiege JK, Asirvatham-Jeyaraj N, Van Helden D, et al. Resting afferent renal nerve discharge and renal inflammation: elucidating the role of afferent and efferent renal nerves in deoxycorticosterone acetate salt hypertension. Hypertension. 2016;68(6):1415–23. doi:10.1161/HYPERTENSIONAHA.116.07850.

    Article  CAS  PubMed  Google Scholar 

  68. Mahfoud F, Brilakis N, Bohm M, Narkiewicz K, Ruilope L, Schlaich M, et al. TCT-761 long-term (3-year) safety and effectiveness from the Global SYMPLICITY Registry of renal denervation in a real world patient population with uncontrolled hypertension. J Am Coll Cardiol. 2016;68(18S):B308. doi:10.1016/j.jacc.2016.09.791.

    Article  Google Scholar 

  69. Warchol-Celinska E, Januszewicz A, Prejbisz A, Kadziela J. Renal denervation after the symplicity HTN-3 trial. Postepy Kardiol Interwencyjnej. 2014;10(2):75–7. doi:10.5114/pwki.2014.43509.

    PubMed  PubMed Central  Google Scholar 

  70. Rohrwasser A, Morgan T, Dillon HF, Zhao L, Callaway CW, Hillas E, et al. Elements of a paracrine tubular renin-angiotensin system along the entire nephron. Hypertension. 1999;34(6):1265–74.

    Article  CAS  PubMed  Google Scholar 

  71. Liu L, Gonzalez AA, McCormack M, Seth DM, Kobori H, Navar LG, et al. Increased renin excretion is associated with augmented urinary angiotensin II levels in chronic angiotensin II-infused hypertensive rats. Am J Physiol Renal Physiol. 2011;301(6):F1195–201. doi:10.1152/ajprenal.00339.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Song K, Stuart D, Abraham N, Wang F, Wang S, Yang T, et al. Collecting duct renin does not mediate DOCA-salt hypertension or renal injury. PLoS One. 2016;11(7):e0159872. doi:10.1371/journal.pone.0159872.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Malik KU, Jennings BL, Yaghini FA, Sahan-Firat S, Song CY, Estes AM, et al. Contribution of cytochrome P450 1B1 to hypertension and associated pathophysiology: a novel target for antihypertensive agents. Prostaglandins Other Lipid Mediat. 2012;98(3–4):69–74. doi:10.1016/j.prostaglandins.2011.12.003.

    Article  CAS  PubMed  Google Scholar 

  74. Harrison D. Sy 17-2 inflammation, immunity and hypertension. J Hypertens. 2016;34(Suppl 1- ISH 2016 Abstract Book):e535. doi:10.1097/01.hjh.0000501473.77203.33.

    Article  PubMed  Google Scholar 

  75. •• Marvar PJ, Thabet SR, Guzik TJ, Lob HE, McCann LA, Weyand C, et al. Central and peripheral mechanisms of T-lymphocyte activation and vascular inflammation produced by angiotensin II-induced hypertension. Circ Res. 2010;107(2):263–70. doi:10.1161/CIRCRESAHA.110.217299. This study examines the role of the immune system in the development of hypertension and the necessity of T cells to disease pathogenesis

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dikalov SI, Nazarewicz RR, Bikineyeva A, Hilenski L, Lassegue B, Griendling KK, et al. Nox2-induced production of mitochondrial superoxide in angiotensin II-mediated endothelial oxidative stress and hypertension. Antioxid Redox Signal. 2014;20(2):281–94. doi:10.1089/ars.2012.4918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, et al. Role of the T cell in the genesis of angiotensin II-induced hypertension and vascular dysfunction. J Exp Med. 2007;204(10):2449–60. doi:10.1084/jem.20070657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Krishnan SM, Dowling JK, Ling YH, Diep H, Chan CT, Ferens D, et al. Inflammasome activity is essential for one kidney/deoxycorticosterone acetate/salt-induced hypertension in mice. Br J Pharmacol. 2016;173(4):752–65. doi:10.1111/bph.13230.

    Article  CAS  PubMed  Google Scholar 

  79. Youn JC. Sy 17-3 role of cmv induced T cell senescence in the pathophysiology of cardiovascular disease. J Hypertens. 2016;34(Suppl 1- ISH 2016 Abstract Book):e535. doi:10.1097/01.hjh.0000501474.77203.fd.

    Article  PubMed  Google Scholar 

  80. Pinto YM, Paul M, Ganten D. Lessons from rat models of hypertension: from Goldblatt to genetic engineering. Cardiovasc Res. 1998;39(1):77–88.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Lazartigues.

Ethics declarations

Conflict of Interest

Drs. Basting and Lazartigues declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Secondary Hypertension:Nervous System Mechanisms

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basting, T., Lazartigues, E. DOCA-Salt Hypertension: an Update. Curr Hypertens Rep 19, 32 (2017). https://doi.org/10.1007/s11906-017-0731-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-017-0731-4

Keywords

Navigation