Skip to main content
Log in

Baroreflex Activation Therapy in Congestive Heart Failure: Novel Findings and Future Insights

  • Secondary Hypertension: Nervous System Mechanisms (M Wyss, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Congestive heart failure is characterized by hemodynamic and non-hemodynamic abnormalities, the latter including an activation of the sympathetic influences to the heart and peripheral circulation coupled with an impairment of baroreceptor control of autonomic function. Evidence has been provided that both these alterations are hallmark features of the disease with a specific relevance for the disease progression as well as for the development of life-threatening cardiac arrhythmias. In addition, a number of studies have documented in heart failure the adverse prognostic role of the sympathetic and baroreflex alterations, which both are regarded as major independent determinants of cardiovascular morbidity and mortality. This represents the pathophysiological and clinical background for the use of carotid baroreceptor activation therapy in the treatment of congestive heart failure. Promising data collected in experimental animal models of heart failure have supported the recent performance of pilot small-scale clinical studies, aimed at providing initial information in this area. The results of these studies demonstrated the clinical safety and efficacy of the intervention which has been tested in large-scale clinical studies. The present paper will critically review the background and main results of the published studies designed at defining the clinical impact of baroreflex activation therapy in congestive heart failure patients. Emphasis will be given to the strengths and limitations of such studies, which represent the background for the ongoing clinical trials testing the long-term effects of the device in heart failure patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Grassi G, Seravalle G, Brambilla G, Pini C, Alimento M, Facchetti R, et al. Marked sympathetic activation and baroreflex dysfunction in true resistant hypertension. Int J Cardiol. 2014;177(3):1020–5.

    Article  PubMed  Google Scholar 

  2. Heusser K, Tank J, Engeli S, Diedrich A, Menne J, Eckert S, et al. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function and blood pressure in hypertensive patients. Hypertension. 2010;55(3):619–26.

    Article  CAS  PubMed  Google Scholar 

  3. Bakris GL, Nadim MK, Haller H, Lovett EG, Schafer JE, Bisognano JD. Baroreflex activation therapy provides durable benefit in patients with resistant hypertension: results of long-term follow-up in the Rheos Pivotal Trial. J Am Soc Hypertens. 2012;6(2):152–8.

    Article  PubMed  Google Scholar 

  4. Hoppe UC, Brandt MC, Wachter R, Beige J, Rump LC, Kroon AA, et al. Minimally invasive system for baroreflex activation therapy chronically lowers blood pressure with pacemaker-like safety profile: results from the Barostim neo trial. J Am Soc Hypertens. 2012;6(4):270–6.

    Article  PubMed  Google Scholar 

  5. Hasking GJ, Esler MD, Jennings GL, Burton D, Johns JA, Korner PI. Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation. 1986;73(4):615–21.

    Article  CAS  PubMed  Google Scholar 

  6. Grassi G, Seravalle G, Cattaneo BM, Lanfranchi A, Vailati S, Giannattasio C, et al. Sympathetic activation and loss of reflex sympathetic control in mild congestive heart failure. Circulation. 1995;92(11):3206–11.

    Article  CAS  PubMed  Google Scholar 

  7. Florea VG, Cohn JN. The autonomic nervous system and heart failure. Circ Res. 2014;114(11):1815–26. Excellent review which discusses in depth the main features of the autonomic dysfunction profile characterizing congestive heart failure.

    Article  CAS  PubMed  Google Scholar 

  8. Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984;311(13):819–23.

    Article  CAS  PubMed  Google Scholar 

  9. Benedict CR, Johnstone DE, Weiner DH, Bourassa MG, Bittner V, Kay R, et al. Relation of neurohumoral activation to clinical variables and degree of ventricular dysfunction: a report from the registry of studies of left ventricular dysfunction. SOLVD Investigators J Am Coll Cardiol. 1994;23(6):1410–20.

    Article  CAS  PubMed  Google Scholar 

  10. Kaye DM, Lefkovits J, Jennings GL, Bergin P, Broughton A, Esler MD. Adverse consequences of high sympathetic nervous system activity in the failing human heart. J Am Coll Cardiol. 1995;26(5):1257–63.

    Article  CAS  PubMed  Google Scholar 

  11. Barretto AC, Santos AC, Munhoz R, Rondon M, Franco FG, Trmbetta IC, et al. Increased muscle sympathetic nerve activity predicts mortality in heart failure Patients. Int J Cardiol. 2009;135(3):302–7.

    Article  PubMed  Google Scholar 

  12. Zucker IH, Hackley JF, Cornish KG, Hiser BA, Anderson NR, Kieval R, et al. Chronic baroreceptor activation enhances survival in dogs with pacing-induced heart failure. Hypertension. 2007;50(5):904–10.

    Article  CAS  PubMed  Google Scholar 

  13. Sabbah HN, Gupta RC, Imai M, Irwin ED, Rastogi S, Rossing MA, et al. Chronic electrical stimulation of the carotid sinus baroreflex improves left ventricular function and promotes reversal of ventricular remodeling in dogs with advanced heart failure. Circ Heart Fail. 2011;4(1):65–70.

    Article  PubMed  Google Scholar 

  14. Iliescu R, Tudorancea I, Irwin ED, Lohmeier TE. Chronic baroreflex activation restores spontaneous baroreflex control and variability of heart rate in obesity-induced hypertension. Am J Physiol Heart Circ Physiol. 2013;305(7):H1080–1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kienzle MG, Ferguson DW, Birkett CL, Myers GA, Berg WJ, Mariano DJ. Clinical, hemodynamic and sympathetic neural correlates of heart rate variability in congestive heart failure. Am J Cardiol. 1992;69(8):761–7.

    Article  CAS  PubMed  Google Scholar 

  16. Grassi G, Seravalle G, Quarti-Trevano F, Dell’Oro R, Arenare F, Spaziani D, et al. Sympathetic and baroreflex cardiovascular control in hypertension-related left ventricular dysfunction. Hypertension. 2009;53(2):205–9.

    Article  CAS  PubMed  Google Scholar 

  17. Grassi G, Seravalle G, Bertinieri G, Turri C, Stella ML, Scopelliti F, et al. Sympathetic and reflex abnormalities in heart failure secondary to ischaemic or idiopathic dilated cardiomyopathy. Clin Sci. 2001;101(2):141–6.

    Article  CAS  PubMed  Google Scholar 

  18. Grassi G, Seravalle G, Quarti-Trevano F, Scopelliti F, Dell’Oro R, Bolla G, et al. Excessive sympathetic activation in heart failure with obesity and metabolic syndrome: characteristics and mechanisms. Hypertension. 2007;49(3):535–41.

    Article  CAS  PubMed  Google Scholar 

  19. Grassi G, Seravalle G, Dell’Oro R, Facchini A, Ilardo V, Mancia G. Sympathetic and baroreflex function in hypertensive or heart failure patients with ventricular arrhythmias. J Hypertens. 2004;22(9):1747–53.

    Article  CAS  PubMed  Google Scholar 

  20. Grassi G, Seravalle G, Quarti-Trevano F, Dell’Oro R. Sympathetic activation in congestive heart failure: evidence, consequences and therapeutic implications. Curr Vasc Pharmacology. 2009;7(2):137–45.

    Article  CAS  Google Scholar 

  21. Georgakopoulos D, Wagner D, Cates AW, Irwin E, Lovett EG. Effects of electrical stimulation of the carotid sinus baroreflex using the Rheos device on ventricular-vascular coupling and myocardial efficiency assessed by pressure-volume relations in non-vagotomized anesthetized dogs. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:2025–9.

    PubMed  Google Scholar 

  22. Segers P, Vermeersch SJ, Wachter R, Georgakopoulos D. Effect of carotid baroreceptor activation on ventricular function and central hemodynamics: a case report based on invasive pressure-volume loop analysis. Artery Res. 2011;5(2):166–7.

    Article  Google Scholar 

  23. Burgoyne S, Georgakopoulos D, Belenkie I, Tyberg JV. Systemic vascular effects of acute electrical baroreflex stimulation. Am J Physiol Heart Circ Physiol. 2014;307(2):H236–241.

    Article  CAS  PubMed  Google Scholar 

  24. Liao K, Yu L, He B, Huang B, Yang K, Saren G, et al. Carotid baroreceptor stimulation prevents arrhythmias induced by acute myocardial infarction through autonomic modulation. J Cardiovasc Pharmacol. 2014;64(5):431–7.

    Article  CAS  PubMed  Google Scholar 

  25. Gronda E, Seravalle G, Brambilla G, Costantino G, Casini A, Alsheraei A, et al. Chronic baroreflex activation effects on sympathetic nerve traffic, baroreflex function and cardiac haemodynamics in heart failure. A proof-of-concept study. Eur J Heart Failure. 2014;16(9):977–83. First-in-man study reporting the effects of carotid baroreceptor activation therapy on sympathetic nerve traffic, baroreflex function, echocardiographic and clinical variables.

    Article  Google Scholar 

  26. Gronda E, Seravalle G, Trevano FQ, Costantino G, Casini A, Alsheraei A, et al. Long-term chronic baroreflex activation: persistent efficacy in patients with heart failure and reduced ejection fraction. J Hypertens. 2015;33(8):1704–8.

    Article  CAS  PubMed  Google Scholar 

  27. Gronda E, Brambilla G, Seravalle G, Maloberti A, Cairo M, Costantino G, et al. Effects of chronic baroreceptor activation on arterial stiffness in severe heart failure. Clin Res Cardiol. 2016, in press.

  28. Wallbach M, Lehnig LY, Schroer C, Helms HJ, Lüders S, Patschan D, et al. Effects of baroreflex activation therapy on arterial stiffness and central hemodynamics in patients with resistant hypertension. Hypertension. 2015;33(1):181–6. Interesting study showing the favorable vascular effects of baroreflex activation therapy in resistant hypertension.

    Article  CAS  Google Scholar 

  29. Grassi G, Giannattasio C, Failla M, Pesenti A, Peretti G, Marinoni E, et al. Sympathetic modulation of radial artery compliance in congestive heart failure. Hypertension. 1995;26(2):348–54.

    Article  CAS  PubMed  Google Scholar 

  30. Marti CN, Gheroghiade M, Kalogeropoulos AP, Georgiopoulou VV, Quyyumi AA, Butler J. Endothelial dysfunction, arterial stiffness, and heart failure. J Am Coll Cardiol. 2012;60(16):1455–69.

    Article  CAS  PubMed  Google Scholar 

  31. Abraham WT, Zile MR, Weaver FA, Butter C, Ducharme A, Halbach M, et al. Baroreflex activation therapy for the treatment of heart failure with a reduced ejection fraction. J Am Coll Cardiol Heart Failure. 2015;3(6):487–96. First controlled randomized clinical trial performed in severe heart failure patients investigating the effects of the procedure on safety, tolerability and clinical efficacy.

    Article  Google Scholar 

  32. Pfister R, Diedrichs H, Schiedermair A, Rosenkranz S, Hellmich M, Erdmann E, et al. Prognostic impact of NT-proBNP and renal function in comparison to contemporary multi-marker risk scores in heart failure patients. Eur J Heart Fail. 2008;10(3):315–20.

    Article  CAS  PubMed  Google Scholar 

  33. Zile MR, Abraham WT, Weaver FA, Butter C, Ducharme A, Halbach M, et al. Baroreflex activation therapy for the treatment of heart failure with a reduced ejection fraction: safety and efficacy in patients with and without cardiac resynchronization therapy. Eur J Heart Fail. 2015;17(10):1066–74. Evidence that presence of cardiac resynchronization therapy may attenuate the favorable clinical impact of baroreflex activation in heart failure.

    Article  PubMed  Google Scholar 

  34. DeMazumder D, Kass DA, O’Rourke B, Tomaselli GF. Cardiac resynchronization therapy restores sympathovagal balance in the failing heart by differential remodeling of cholinergic signaling. Circ Res. 2015;116(10):1691–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Patel HC, Rosen SD, Hayward C, Vassiliou V, Smith GC, Wage RR, et al. Renal denervation in heart failure with preserved ejection fraction (RDT-PEF): a randomized controlled trial. Eur J Heart Fail 2016: in press. First report showing the lack of hemodynamic and clinical benefits of renal denervation in heart failure.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Grassi.

Ethics declarations

Conflict of Interest

Drs. Grassi, Brambilla, Pizzalla and Seravalle declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Secondary Hypertension: Nervous System Mechanisms

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grassi, G., Brambilla, G., Pizzalla, D.P. et al. Baroreflex Activation Therapy in Congestive Heart Failure: Novel Findings and Future Insights. Curr Hypertens Rep 18, 60 (2016). https://doi.org/10.1007/s11906-016-0667-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-016-0667-0

Keywords

Navigation