Skip to main content

Advertisement

Log in

Pharmacogenomics of Hypertension and Heart Disease

  • Hypertension and the Heart (SD Solomon and O Vardeny, Section Editors)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Heart disease is a leading cause of death in the United States, and hypertension is a predominant risk factor. Thus, effective blood pressure control is important to prevent adverse sequelae of hypertension, including heart failure, coronary artery disease, atrial fibrillation, and ischemic stroke. Over half of Americans have uncontrolled blood pressure, which may in part be explained by interpatient variability in drug response secondary to genetic polymorphism. As such, pharmacogenetic testing may be a supplementary tool to guide treatment. This review highlights the pharmacogenetics of antihypertensive response and response to drugs that treat adverse hypertension-related sequelae, particularly coronary artery disease and atrial fibrillation. While pharmacogenetic evidence may be more robust for the latter with respect to clinical implementation, there is increasing evidence of genetic variants that may help predict antihypertensive response. However, additional research and validation are needed before clinical implementation guidelines for antihypertensive therapy can become a reality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. CDC, NCHS. Underlying cause of death 1999–2013 on CDC WONDER Online Database, released 2015. Data are from the Multiple Cause of Death Files, 1999–2013, as compiled from data provided by the 57 vital statistics jurisdictions through the Vital Statistics Cooperative Program (2015). Accessed 1 Mar 2015.

  2. World Health Organization. Global status report on noncommunicable diseases 2010. Geneva: World Health Organization; 2011.

    Google Scholar 

  3. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Executive summary: heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation. 2015;131(4):434–41. doi:10.1161/CIR.0000000000000157.

    Article  Google Scholar 

  4. Materson BJ, Reda DJ, Cushman WC, Massie BM, Freis ED, Kochar MS, et al. Single-drug therapy for hypertension in men. A comparison of six antihypertensive agents with placebo. The Department of Veterans Affairs Cooperative Study Group on Antihypertensive Agents. N Engl J Med. 1993;328(13):914–21. doi:10.1056/NEJM199304013281303.

    Article  CAS  PubMed  Google Scholar 

  5. Thoenes M, Neuberger HR, Volpe M, Khan BV, Kirch W, Bohm M. Antihypertensive drug therapy and blood pressure control in men and women: an international perspective. J Hum Hypertens. 2010;24(5):336–44. doi:10.1038/jhh.2009.76.

    Article  CAS  PubMed  Google Scholar 

  6. Hsu CY, McCulloch CE, Darbinian J, Go AS, Iribarren C. Elevated blood pressure and risk of end-stage renal disease in subjects without baseline kidney disease. Arch Intern Med. 2005;165(8):923–8. doi:10.1001/archinte.165.8.923.

    Article  PubMed  Google Scholar 

  7. Lawes CM, Vander Hoorn S, Rodgers A, International society of Hypertension. Global burden of blood-pressure-related disease, 2001. Lancet. 2008;371(9623):1513–8. doi:10.1016/S0140-6736(08)60655-8.

    Article  PubMed  Google Scholar 

  8. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360(9349):1903–13.

    Article  PubMed  Google Scholar 

  9. Johnson JA. Advancing management of hypertension through pharmacogenomics. Ann Med. 2012;44 Suppl 1:S17–22. doi:10.3109/07853890.2011.653399.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311(5):507–20. doi:10.1001/jama.2013.284427.

    Article  CAS  PubMed  Google Scholar 

  11. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31(7):1281–357. doi:10.1097/01.hjh.0000431740.32696.cc.

    Article  CAS  PubMed  Google Scholar 

  12. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey Jr DE, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62(16):e147–239. doi:10.1016/j.jacc.2013.05.019.

    Article  PubMed  Google Scholar 

  13. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2012;33(14):1787–847. doi:10.1093/eurheartj/ehs104.

    Article  PubMed  Google Scholar 

  14. Fihn SD, Blankenship JC, Alexander KP, Bittl JA, Byrne JG, Fletcher BJ, et al. 2014 ACC/AHA/AATS/PCNA/SCAI/STS focused update of the guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines, and the American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation. 2014;130(19):1749–67. doi:10.1161/CIR.0000000000000095.

    Article  PubMed  Google Scholar 

  15. Amsterdam EA, Wenger NK, Brindis RG, Casey Jr DE, Ganiats TG, Holmes Jr DR, et al. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;130(25):e344–426. doi:10.1161/CIR.0000000000000134.

    Article  PubMed  Google Scholar 

  16. Task Force M, Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013;34(38):2949–3003. doi:10.1093/eurheartj/eht296.

    Article  Google Scholar 

  17. Relling MV, Klein TE. CPIC: Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research Network. Clin Pharmacol Ther. 2011;89(3):464–7. doi:10.1038/clpt.2010.279.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Relling MV. Personalized medicines using genome wide approaches—not really. Presented at: American Society for Clinical Pharmacology and Therapeutics Annual Meeting; March 6, 2015; New Orleans, Louisiana.

  19. Turner ST, Schwartz GL, Chapman AB, Beitelshees AL, Gums JG, Cooper-Dehoff RM, et al. Power to identify a genetic predictor of antihypertensive drug response using different methods to measure blood pressure response. J Transl Med. 2012;10:47. doi:10.1186/1479-5876-10-47.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Ritchie MD. The success of pharmacogenomics in moving genetic association studies from bench to bedside: study design and implementation of precision medicine in the post-GWAS era. Hum Genet. 2012;131(10):1615–26. doi:10.1007/s00439-012-1221-z.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Johnson JA, Zineh I, Puckett BJ, McGorray SP, Yarandi HN, Pauly DF. Beta 1-adrenergic receptor polymorphisms and antihypertensive response to metoprolol. Clin Pharmacol Ther. 2003;74(1):44–52. doi:10.1016/S0009-9236(03)00068-7.

    Article  CAS  PubMed  Google Scholar 

  22. Liu J, Liu ZQ, Yu BN, Xu FH, Mo W, Zhou G, et al. beta1-Adrenergic receptor polymorphisms influence the response to metoprolol monotherapy in patients with essential hypertension. Clin Pharmacol Ther. 2006;80(1):23–32. doi:10.1016/j.clpt.2006.03.004.

    Article  CAS  PubMed  Google Scholar 

  23. Svensson-Farbom P, Wahlstrand B, Almgren P, Dahlberg J, Fava C, Kjeldsen S, et al. A functional variant of the NEDD4L gene is associated with beneficial treatment response with beta-blockers and diuretics in hypertensive patients. J Hypertens. 2011;29(2):388–95. doi:10.1097/HJH.0b013e3283410390.

    Article  PubMed  Google Scholar 

  24. McDonough CW, Burbage SE, Duarte JD, Gong Y, Langaee TY, Turner ST, et al. Association of variants in NEDD4L with blood pressure response and adverse cardiovascular outcomes in hypertensive patients treated with thiazide diuretics. J Hypertens. 2013;31(4):698–704. doi:10.1097/HJH.0b013e32835e2a71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Turner ST, Bailey KR, Fridley BL, Chapman AB, Schwartz GL, Chai HS, et al. Genomic association analysis suggests chromosome 12 locus influencing antihypertensive response to thiazide diuretic. Hypertension. 2008;52(2):359–65. doi:10.1161/HYPERTENSIONAHA.107.104273.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Duarte JD, Turner ST, Tran B, Chapman AB, Bailey KR, Gong Y, et al. Association of chromosome 12 locus with antihypertensive response to hydrochlorothiazide may involve differential YEATS4 expression. Pharmacogenomics J. 2013;13(3):257–63. doi:10.1038/tpj.2012.4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Johnson JA, Liggett SB. Cardiovascular pharmacogenomics of adrenergic receptor signaling: clinical implications and future directions. Clin Pharmacol Ther. 2011;89(3):366–78. doi:10.1038/clpt.2010.315.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Pacanowski MA, Gong Y, Cooper-Dehoff RM, Schork NJ, Shriver MD, Langaee TY, et al. Beta-adrenergic receptor gene polymorphisms and beta-blocker treatment outcomes in hypertension. Clin Pharmacol Ther. 2008;84(6):715–21. doi:10.1038/clpt.2008.139.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. McDonough CW, Gong Y, Padmanabhan S, Burkley B, Langaee TY, Melander O, et al. Pharmacogenomic association of nonsynonymous SNPs in SIGLEC12, A1BG, and the selectin region and cardiovascular outcomes. Hypertension. 2013;62(1):48–54. doi:10.1161/HYPERTENSIONAHA.111.00823.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Rossier BC, Pradervand S, Schild L, Hummler E. Epithelial sodium channel and the control of sodium balance: interaction between genetic and environmental factors. Annu Rev Physiol. 2002;64:877–97. doi:10.1146/annurev.physiol.64.082101.143243.

    Article  CAS  PubMed  Google Scholar 

  31. Park JH, Roeder RG. GAS41 is required for repression of the p53 tumor suppressor pathway during normal cellular proliferation. Mol Cell Biol. 2006;26(11):4006–16. doi:10.1128/MCB.02185-05.

  32. Schulze JM, Wang AY, Kobor MS. YEATS domain proteins: a diverse family with many links to chromatin modification and transcription. Biochem Cell Biol. 2009;87(1):65–75. doi:10.1139/O08-111.

  33. Yu Z, Kong Q, Kone BC. Aldosterone reprograms promoter methylation to regulate alphaENaC transcription in the collecting duct. Am J Physiol Renal Physiol. 2013;305(7):F1006–13. doi:10.1152/ajprenal.00407.2013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Bubien JK. Epithelial Na+ channel (ENaC), hormones, and hypertension. J Biol Chem. 2010;285(31):23527–31. doi:10.1074/jbc.R109.025049.

  35. Schild L. The epithelial sodium channel and the control of sodium balance. Biochim Biophys Acta. 2010;1802(12):1159–65. doi:10.1016/j.bbadis.2010.06.014.

  36. Chittani M, Zaninello R, Lanzani C, Frau F, Ortu MF, Salvi E, et al. TET2 and CSMD1 genes affect SBP response to hydrochlorothiazide in never-treated essential hypertensives. J Hypertens. 2015. doi:10.1097/HJH.0000000000000541.

    PubMed  Google Scholar 

  37. Hong KW, Go MJ, Jin HS, Lim JE, Lee JY, Han BG, et al. Genetic variations in ATP2B1, CSK, ARSG and CSMD1 loci are related to blood pressure and/or hypertension in two Korean cohorts. J Hum Hypertens. 2010;24(6):367–72. doi:10.1038/jhh.2009.86.

    Article  CAS  PubMed  Google Scholar 

  38. Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature. 1997;389(6654):990–4. doi:10.1038/40187.

    Article  CAS  PubMed  Google Scholar 

  39. Shahnin MH, Rotroff DM, Gong Y, Langaee TY, McDonough CW, Beitelshees AL, et al. Integrating metabolomics and genomics reveals novel biomarkers of hydrochlorothiazide response in Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) study. [abstract]. Clin Pharmacol Ther. 2015;97(S1):S11. The authors took a unique approach, where genomics, metabolomics, and transcriptomics were integrated to identify novel biomarkers of HCTZ response.

    Google Scholar 

  40. Pushkin A, Carpenito G, Abuladze N, Newman D, Tsuprun V, Ryazantsev S, et al. Structural characterization, tissue distribution, and functional expression of murine aminoacylase III. Am J Physiol Cell Physiol. 2004;286(4):C848–56. doi:10.1152/ajpcell.00192.2003.

    Article  CAS  PubMed  Google Scholar 

  41. Hiltunen TP, Donner KM, Sarin AP, Saarela J, Ripatti S, Chapman AB, et al. Pharmacogenomics of hypertension: a genome-wide, placebo-controlled cross-over study, using four classes of antihypertensive drugs. J Am Heart Assoc. 2015;4(1), e001521. doi:10.1161/JAHA.115.001778. This is the only GWAS of antihypertensive drug response to utilize a double-blind, placebo-controlled cross-over study where each participant received four different classes of antihypertensives, each as monotherapy, in a randomized order.

  42. Hattangady NG, Olala LO, Bollag WB, Rainey WE. Acute and chronic regulation of aldosterone production. Mol Cell Endocrinol. 2012;350(2):151–62. doi:10.1016/j.mce.2011.07.034.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Frau F, Zaninello R, Salvi E, Ortu MF, Braga D, Velayutham D, et al. Genome-wide association study identifies CAMKID variants involved in blood pressure response to losartan: the SOPHIA study. Pharmacogenomics. 2014;15(13):1643–52. doi:10.2217/pgs.14.119. This GWAS of antihypertensive drug response identified a newly discovered variant, rs10752271, in the CAMK1D gene that was associated with SBP reduction to losartan. This was validated in silico in the GENRES cohort.

    Article  CAS  PubMed  Google Scholar 

  44. Karnes JH, McDonough CW, Gong Y, Vo TT, Langaee TY, Chapman AB, et al. Association of KCNJ1 variation with change in fasting glucose and new onset diabetes during HCTZ treatment. Pharmacogenomics J. 2013;13(5):430–6. doi:10.1038/tpj.2012.34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Karnes JH, Gong Y, Pacanowski MA, McDonough CW, Arwood MJ, Langaee TY, et al. Impact of TCF7L2 single nucleotide polymorphisms on hydrochlorothiazide-induced diabetes. Pharmacogenet Genomics. 2013;23(12):697–705. doi:10.1097/FPC.0000000000000012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Gong Y, McDonough CW, Beitelshees AL, Karnes JH, O’Connell JR, Turner ST, et al. PROX1 gene variant is associated with fasting glucose change after antihypertensive treatment. Pharmacotherapy. 2014;34(2):123–30. doi:10.1002/phar.1355.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Magnusson Y, Levin MC, Eggertsen R, Nystrom E, Mobini R, Schaufelberger M, et al. Ser49Gly of beta1-adrenergic receptor is associated with effective beta-blocker dose in dilated cardiomyopathy. Clin Pharmacol Ther. 2005;78(3):221–31. doi:10.1016/j.clpt.2005.06.004.

    Article  CAS  PubMed  Google Scholar 

  48. Sehnert AJ, Daniels SE, Elashoff M, Wingrove JA, Burrow CR, Horne B, et al. Lack of association between adrenergic receptor genotypes and survival in heart failure patients treated with carvedilol or metoprolol. J Am Coll Cardiol. 2008;52(8):644–51. doi:10.1016/j.jacc.2008.05.022.

    Article  CAS  PubMed  Google Scholar 

  49. Liggett SB, Mialet-Perez J, Thaneemit-Chen S, Weber SA, Greene SM, Hodne D, et al. A polymorphism within a conserved beta(1)-adrenergic receptor motif alters cardiac function and beta-blocker response in human heart failure. Proc Natl Acad Sci U S A. 2006;103(30):11288–93. doi:10.1073/pnas.0509937103.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Aleong RG, Sauer WH, Robertson AD, Liggett SB, Bristow MR. Adrenergic receptor polymorphisms and prevention of ventricular arrhythmias with bucindolol in patients with chronic heart failure. Circ Arrhythm Electrophysiol. 2013;6(1):137–43. doi:10.1161/CIRCEP.111.969618.

    Article  CAS  PubMed  Google Scholar 

  51. Aleong RG, Sauer WH, Sauer WH, Murphy GA, Port JD, Anand IS, et al. Prevention of atrial fibrillation by bucindolol is dependent on the beta(1)389 Arg/Gly adrenergic receptor polymorphism. JACC Heart Fail. 2013;1(4):338–44. doi:10.1016/j.jchf.2013.04.002.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Cresci S, Kelly RJ, Cappola TP, Diwan A, Dries D, Kardia SL, et al. Clinical and genetic modifiers of long-term survival in heart failure. J Am Coll Cardiol. 2009;54(5):432–44. doi:10.1016/j.jacc.2009.05.009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Liggett SB, Cresci S, Kelly RJ, Syed FM, Matkovich SJ, Hahn HS, et al. A GRK5 polymorphism that inhibits beta-adrenergic receptor signaling is protective in heart failure. Nat Med. 2008;14(5):510–7. doi:10.1038/nm1750.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Bristow MR, Murphy GA, Krause-Steinrauf H, Anderson JL, Carlquist JF, Thaneemit-Chen S, et al. An alpha2C-adrenergic receptor polymorphism alters the norepinephrine-lowering effects and therapeutic response of the beta-blocker bucindolol in chronic heart failure. Circ Heart Fail. 2010;3(1):21–8. doi:10.1161/CIRCHEARTFAILURE.109.885962.

    Article  CAS  PubMed  Google Scholar 

  55. Gelissen IC, McLachlan AJ. The pharmacogenomics of statins. Pharmacol Res:Off J Ital Pharmacol Soc. 2014;88:99–106. doi:10.1016/j.phrs.2013.12.002.

    Article  CAS  Google Scholar 

  56. Turner RM, Pirmohamed M. Cardiovascular pharmacogenomics: expectations and practical benefits. Clin Pharmacol Ther. 2014;95(3):281–93. doi:10.1038/clpt.2013.234.

    Article  CAS  PubMed  Google Scholar 

  57. Group SC, Link E, Parish S, Armitage J, Bowman L, Heath S, et al. SLCO1B1 variants and statin-induced myopathy—a genomewide study. N Engl J Med. 2008;359(8):789–99. doi:10.1056/NEJMoa0801936.

    Article  Google Scholar 

  58. Ramsey LB, Johnson SG, Caudle KE, Haidar CE, Voora D, Wilke RA, et al. The clinical pharmacogenetics implementation consortium guideline for SLCO1B1 and simvastatin-induced myopathy: 2014 update. Clin Pharmacol Ther. 2014;96(4):423–8. doi:10.1038/clpt.2014.125.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Danik JS, Chasman DI, MacFadyen JG, Nyberg F, Barratt BJ, Ridker PM. Lack of association between SLCO1B1 polymorphisms and clinical myalgia following rosuvastatin therapy. Am Heart J. 2013;165(6):1008–14. doi:10.1016/j.ahj.2013.01.025.

    Article  CAS  PubMed  Google Scholar 

  60. Voora D, Shah SH, Spasojevic I, Ali S, Reed CR, Salisbury BA, et al. The SLCO1B1*5 genetic variant is associated with statin-induced side effects. J Am Coll Cardiol. 2009;54(17):1609–16. doi:10.1016/j.jacc.2009.04.053.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Mangravite LM, Engelhardt BE, Medina MW, Smith JD, Brown CD, Chasman DI, et al. A statin-dependent QTL for GATM expression is associated with statin-induced myopathy. Nature. 2013;502(7471):377–80. doi:10.1038/nature12508.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Floyd JS, Bis JC, Brody JA, Heckbert SR, Rice K, Psaty BM. GATM locus does not replicate in rhabdomyolysis study. Nature. 2014;513(7518):E1–3. doi:10.1038/nature13629.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Luzum JA, Kitzmiller JP, Isackson PJ, Ma C, Medina MW, Dauki AM, et al. GATM polymorphism associated with the risk for statin-induced myopathy does not replicate in case–control analysis of 715 dyslipidemic individuals. Cell Metab. 2015;21(4):622–7. doi:10.1016/j.cmet.2015.03.003.

    Article  CAS  PubMed  Google Scholar 

  64. Patrono C, Baigent C, Hirsh J, Roth G, American College of Chest Physicians. Antiplatelet drugs: American College of Chest Physicians evidence-based clinical practice guidelines (8th edition). Chest. 2008;133(6 Suppl):199S–233S. doi:10.1378/chest.08-0672.

    Article  CAS  PubMed  Google Scholar 

  65. Yusuf S, Zhao F, Mehta SR, Chrolavicius S, Tognoni G, Fox KK, et al. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N Engl J Med. 2001;345(7):494–502. doi:10.1056/NEJMoa010746.

    Article  CAS  PubMed  Google Scholar 

  66. Chen ZM, Jiang LX, Chen YP, Xie JX, Pan HC, Peto R, et al. Addition of clopidogrel to aspirin in 45,852 patients with acute myocardial infarction: randomised placebo-controlled trial. Lancet. 2005;366(9497):1607–21. doi:10.1016/S0140-6736(05)67660-X.

    Article  CAS  PubMed  Google Scholar 

  67. Steinhubl SR, Berger PB, Mann 3rd JT, Fry ET, DeLago A, Wilmer C, et al. Early and sustained dual oral antiplatelet therapy following percutaneous coronary intervention: a randomized controlled trial. JAMA. 2002;288(19):2411–20.

    Article  CAS  PubMed  Google Scholar 

  68. Combescure C, Fontana P, Mallouk N, Berdague P, Labruyere C, Barazer I, et al. Clinical implications of clopidogrel non-response in cardiovascular patients: a systematic review and meta-analysis. J Thromb Haemost. 2010;8(5):923–33. doi:10.1111/j.1538-7836.2010.03809.x.

    CAS  PubMed  Google Scholar 

  69. Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD, Brandt JT, et al. Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med. 2009;360(4):354–62. doi:10.1056/NEJMoa0809171.

    Article  CAS  PubMed  Google Scholar 

  70. Mega JL, Simon T, Collet JP, Anderson JL, Antman EM, Bliden K, et al. Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: a meta-analysis. JAMA. 2010;304(16):1821–30. doi:10.1001/jama.2010.1543.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Scott SA, Sangkuhl K, Stein CM, Hulot JS, Mega JL, Roden DM, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin Pharmacol Ther. 2013;94(3):317–23. doi:10.1038/clpt.2013.105.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Weitzel KW, Elsey AR, Langaee TY, Burkley B, Nessl DR, Obeng AO, et al. Clinical pharmacogenetics implementation: approaches, successes, and challenges. Am J Med Genet C: Semin Med Genet. 2014;166C(1):56–67. doi:10.1002/ajmg.c.31390.

    Article  Google Scholar 

  73. Lieb W, Volzke H, Pulley JM, Roden DM, Kroemer HK. Strategies for personalized medicine-based research and implementation in the clinical workflow. Clin Pharmacol Ther. 2012;92(4):443–5. doi:10.1038/clpt.2012.119.

    Article  CAS  PubMed  Google Scholar 

  74. Shuldiner AR, Palmer K, Pakyz RE, Alestock TD, Maloney KA, O’Neill C, et al. Implementation of pharmacogenetics: the University of Maryland Personalized Anti-platelet Pharmacogenetics Program. Am J Med Genet C: Semin Med Genet. 2014;166C(1):76–84. doi:10.1002/ajmg.c.31396.

    Article  Google Scholar 

  75. Pulley JM, Denny JC, Peterson JF, Bernard GR, Vnencak-Jones CL, Ramirez AH, et al. Operational implementation of prospective genotyping for personalized medicine: the design of the Vanderbilt PREDICT project. Clin Pharmacol Ther. 2012;92(1):87–95. doi:10.1038/clpt.2011.371.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Lee JA, Lee CR, Reed BN, Plitt DC, Polasek MJ, Howell LA, et al. Implementation and evaluation of a CYP2C19 genotype-guided antiplatelet therapy algorithm in high-risk coronary artery disease patients. Pharmacogenomics. 2015;16(4):303–13. doi:10.2217/pgs.14.180.

    Article  CAS  PubMed  Google Scholar 

  77. Lepantalo A, Mikkelsson J, Resendiz JC, Viiri L, Backman JT, Kankuri E, et al. Polymorphisms of COX-1 and GPVI associate with the antiplatelet effect of aspirin in coronary artery disease patients. Thromb Haemost. 2006;95(2):253–9. doi:10.1267/THRO06020253.

    CAS  PubMed  Google Scholar 

  78. Verschuren JJ, Boden H, Wessels JA, van der Hoeven BL, Trompet S, Heijmans BT, et al. Value of platelet pharmacogenetics in common clinical practice of patients with ST-segment elevation myocardial infarction. Int J Cardiol. 2013;167(6):2882–8. doi:10.1016/j.ijcard.2012.07.020.

    Article  PubMed  Google Scholar 

  79. Sanchez-Borges M, Acevedo N, Vergara C, Jimenez S, Zabner-Oziel P, Monzon A, et al. The A-444C polymorphism in the leukotriene C4 synthase gene is associated with aspirin-induced urticaria. J Investig Allergol Clin Immunol. 2009;19(5):375–82.

    CAS  PubMed  Google Scholar 

  80. Mastalerz L, Setkowicz M, Sanak M, Szczeklik A. Hypersensitivity to aspirin: common eicosanoid alterations in urticaria and asthma. J Allergy Clin Immunol. 2004;113(4):771–5. doi:10.1016/j.jaci.2003.12.323.

    Article  CAS  PubMed  Google Scholar 

  81. Lewis JP, Ryan K, O’Connell JR, Horenstein RB, Damcott CM, Gibson Q, et al. Genetic variation in PEAR1 is associated with platelet aggregation and cardiovascular outcomes. Circ Cardiovasc Genet. 2013;6(2):184–92. doi:10.1161/CIRCGENETICS.111.964627.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Li Q, Chen BL, Ozdemir V, Ji W, Mao YM, Wang LC, et al. Frequency of genetic polymorphisms of COX1, GPIIIa and P2Y1 in a Chinese population and association with attenuated response to aspirin. Pharmacogenomics. 2007;8(6):577–86. doi:10.2217/14622416.8.6.577.

    Article  CAS  PubMed  Google Scholar 

  83. Jefferson BK, Foster JH, McCarthy JJ, Ginsburg G, Parker A, Kottke-Marchant K, et al. Aspirin resistance and a single gene. Am J Cardiol. 2005;95(6):805–8. doi:10.1016/j.amjcard.2004.11.045.

    Article  CAS  PubMed  Google Scholar 

  84. Higashi MK, Veenstra DL, Kondo LM, Wittkowsky AK, Srinouanprachanh SL, Farin FM, et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA. 2002;287(13):1690–8.

    Article  CAS  PubMed  Google Scholar 

  85. Scordo MG, Pengo V, Spina E, Dahl ML, Gusella M, Padrini R. Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Clin Pharmacol Ther. 2002;72(6):702–10. doi:10.1067/mcp.2002.129321.

    Article  CAS  PubMed  Google Scholar 

  86. Limdi NA, McGwin G, Goldstein JA, Beasley TM, Arnett DK, Adler BK, et al. Influence of CYP2C9 and VKORC1 1173C/T genotype on the risk of hemorrhagic complications in African-American and European-American patients on warfarin. Clin Pharmacol Ther. 2008;83(2):312–21. doi:10.1038/sj.clpt.6100290.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Cavallari LH, Langaee TY, Momary KM, Shapiro NL, Nutescu EA, Coty WA, et al. Genetic and clinical predictors of warfarin dose requirements in African Americans. Clin Pharmacol Ther. 2010;87(4):459–64. doi:10.1038/clpt.2009.223.

    Article  CAS  PubMed  Google Scholar 

  88. Wang D, Chen H, Momary KM, Cavallari LH, Johnson JA, Sadee W. Regulatory polymorphism in vitamin K epoxide reductase complex subunit 1 (VKORC1) affects gene expression and warfarin dose requirement. Blood. 2008;112(4):1013–21. doi:10.1182/blood-2008-03-144899.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Johnson JA, Gong L, Whirl-Carrillo M, Gage BF, Scott SA, Stein CM, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin Pharmacol Ther. 2011;90(4):625–9. doi:10.1038/clpt.2011.185.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Lenzini P, Wadelius M, Kimmel S, Anderson JL, Jorgensen AL, Pirmohamed M, et al. Integration of genetic, clinical, and INR data to refine warfarin dosing. Clin Pharmacol Ther. 2010;87(5):572–8. doi:10.1038/clpt.2010.13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Drozda K, Wong S, Patel SR, Bress AP, Nutescu EA, Kittles RA, et al. Poor warfarin dose prediction with pharmacogenetic algorithms that exclude genotypes important for African Americans. Pharmacogenet Genomics. 2015;25(2):73–81. doi:10.1097/FPC.0000000000000108.

    Article  CAS  PubMed  Google Scholar 

  92. Pirmohamed M, Burnside G, Eriksson N, Jorgensen AL, Toh CH, Nicholson T, et al. A randomized trial of genotype-guided dosing of warfarin. N Engl J Med. 2013;369(24):2294–303. doi:10.1056/NEJMoa1311386.

    Article  CAS  PubMed  Google Scholar 

  93. Kimmel SE, French B, Kasner SE, Johnson JA, Anderson JL, Gage BF, et al. A pharmacogenetic versus a clinical algorithm for warfarin dosing. N Engl J Med. 2013;369(24):2283–93. doi:10.1056/NEJMoa1310669.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Do EJ, Lenzini P, Eby CS, Bass AR, McMillin GA, Stevens SM, et al. Genetics informatics trial (GIFT) of warfarin to prevent deep vein thrombosis (DVT): rationale and study design. Pharmacogenomics J. 2012;12(5):417–24. doi:10.1038/tpj.2011.18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Nutescu EDJ, Cheng W, Sarangpur S, Gor D, Drozda K, Galanter W, et al. Novel genotype guided personalized warfarin service improves outcomes in an ethnically diverse population. Circulation. 2014;130, A16119.

    Google Scholar 

  96. Aslibekyan S, Claas SA, Arnett DK. To replicate or not to replicate: the case of pharmacogenetic studies: establishing validity of pharmacogenomic findings: from replication to triangulation. Circ Cardiovasc Genet. 2013;6(4):409–12. doi:10.1161/CIRCGENETICS.112.000010.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

LHC is supported by NIH grant U01 HG007269. JDD is supported by NIH grant K23 GM112014.

Compliance with Ethics Guidelines

Conflict of Interest

Arwood, Cavallari, and Duarte declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio D. Duarte.

Additional information

This article is part of the Topical Collection on Hypertension and the Heart

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arwood, M.J., Cavallari, L.H. & Duarte, J.D. Pharmacogenomics of Hypertension and Heart Disease. Curr Hypertens Rep 17, 76 (2015). https://doi.org/10.1007/s11906-015-0586-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-015-0586-5

Keywords

Navigation