Skip to main content

Advertisement

Log in

Genetics of Resistant Hypertension: a Novel Pharmacogenomics Phenotype

  • Resistant Hypertension (E Pimenta, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Resistant hypertension (RHTN), defined as an uncontrolled blood pressure despite the use of multiple antihypertensive medications, is an increasing clinical problem associated with increased cardiovascular (CV) risk, including stroke and target organ damage. Genetic variability in blood pressure (BP)-regulating genes and pathways may, in part, account for the variability in BP response to antihypertensive agents, when taken alone or in combination, and may contribute to the RHTN phenotype. Pharmacogenomics focuses on the identification of genetic factors responsible for inter-individual variability in drug response. Expanding pharmacogenomics research to include patients with RHTN taking multiple BP-lowering medications may identify genetic markers associated with RHTN. To date, the available evidence surrounding pharmacogenomics in RHTN is limited and primarily focused on candidate genes. In this review, we summarize the most current data in RHTN pharmacogenomics and offer some recommendations on how to advance the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Nwankwo S, Yoon S, Burt V, Gu Q. Hypertension among adults in the United States: National Health and Nutrition Examination Survey, 2011–2012. NCHS Data Brief. 2013;133:1–8.

    PubMed  Google Scholar 

  2. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M. Executive summary: Heart Disease and Stroke Statistics—2015 update: a report from the American Heart Association. Circulation. 2015;131(4):434–41.

    Article  Google Scholar 

  3. Joffres M, Falaschetti E, Gillespie C, Robitaille C, Loustalot F, Poulter N, et al. Hypertension prevalence, awareness, treatment and control in national surveys from England, the USA and Canada, and correlation with stroke and ischaemic heart disease mortality: a cross-sectional study. BMJ Open. 2013;3(8):e003423.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, et al. Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Circulation. 2008;117(25):e510–26.

    Article  PubMed  Google Scholar 

  5. Calhoun DA, Nishizaka MK, Zaman MA, Thakkar RB, Weissmann P. Hyperaldosteronism among black and white subjects with resistant hypertension. Hypertension. 2002;40(6):892–6.

    Article  CAS  PubMed  Google Scholar 

  6. Gaddam KK, Nishizaka MK, Pratt-Ubunama MN, Pimenta E, Aban I, Oparil S, et al. Characterization of resistant hypertension: association between resistant hypertension, aldosterone, and persistent intravascular volume expansion. Arch Intern Med. 2008;168(11):1159–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Oliva RV, Bakris GL. Sympathetic activation in resistant hypertension: theory and therapy. Semin Nephrol. 2014;34(5):550–9.

    Article  PubMed  Google Scholar 

  8. Tsioufis C, Kordalis A, Flessas D, Anastasopoulos I, Tsiachris D, Papademetriou V, et al. Pathophysiology of resistant hypertension: the role of sympathetic nervous system. Int J Hypertens. 2011;2011:642416.

    Article  PubMed Central  PubMed  Google Scholar 

  9. R. Modolo, A. P. de Faria, and H. Moreno, “Resistant hypertension: a volemic or nervous matter?” J. Am. Soc. Hypertens., Feb. 2015.

  10. N. R. Barbaro, V. Fontana, R. Modolo, A. P. De Faria, A. R. Sabbatini, F. H. Fonseca, G. F. Anhê, and H. Moreno, “Increased arterial stiffness in resistant hypertension is associated with inflammatory biomarkers.,” Blood Press., pp. 1–7, Jul. 2014.

  11. Salles GF, Fiszman R, Cardoso CRL, Muxfeldt ES. Relation of left ventricular hypertrophy with systemic inflammation and endothelial damage in resistant hypertension. Hypertension. 2007;50(4):723–8.

    Article  CAS  PubMed  Google Scholar 

  12. A. Whaley-Connell, M. S. Johnson, and J. R. Sowers, “Aldosterone: role in the cardiometabolic syndrome and resistant hypertension.,” Prog. Cardiovasc. Dis., vol. 52, no. 5, pp. 401–9, Jan.

  13. Weinshilboum R, Wang L. Pharmacogenomics: bench to bedside. Nat Rev Drug Discov. 2004;3(9):739–48.

    Article  CAS  PubMed  Google Scholar 

  14. Weinshilboum R. Inheritance and drug response. N Engl J Med. 2003;348(6):529–37.

    Article  PubMed  Google Scholar 

  15. Duarte JD, Turner ST, Tran B, Chapman AB, Bailey KR, Gong Y, et al. Association of chromosome 12 locus with antihypertensive response to hydrochlorothiazide may involve differential YEATS4 expression. Pharmacogenom J. 2013;13(3):257–63.

    Article  CAS  Google Scholar 

  16. Turner ST, Bailey KR, Schwartz GL, Chapman AB, Chai HS, Boerwinkle E. Genomic association analysis identifies multiple loci influencing antihypertensive response to an angiotensin II receptor blocker. Hypertension. 2012;59(6):1204–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Gong Y, McDonough CW, Wang Z, Hou W, Cooper-DeHoff RM, Langaee TY, et al. Hypertension susceptibility loci and blood pressure response to antihypertensives: results from the pharmacogenomic evaluation of antihypertensive responses study. Circ Cardiovasc Genet. 2012;5(6):686–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Turner ST, Boerwinkle E, O’Connell JR, Bailey KR, Gong Y, Chapman AB, et al. Genomic association analysis of common variants influencing antihypertensive response to hydrochlorothiazide. Hypertension. 2013;62(2):391–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Hiltunen TP, Donner KM, Sarin A-P, Saarela J, Ripatti S, Chapman AB, et al. Pharmacogenomics of hypertension: a genome-wide, placebo-controlled cross-over study, using four classes of antihypertensive drugs. J Am Heart Assoc. 2015;4(1):e001521.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Bubien JK. Epithelial Na+ channel (ENaC), hormones, and hypertension. J Biol Chem. 2010;285(31):23527–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Studer RA, Person E, Robinson-Rechavi M, Rossier BC. Evolution of the epithelial sodium channel and the sodium pump as limiting factors of aldosterone action on sodium transport. Physiol Genomics. 2011;43(13):844–54.

    Article  CAS  PubMed  Google Scholar 

  22. Sowers JR, Whaley-Connell A, Epstein M. Narrative review: the emerging clinical implications of the role of aldosterone in the metabolic syndrome and resistant hypertension. Ann Intern Med. 2009;150(11):776–83.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Hummler E. Epithelial sodium channel, salt intake, and hypertension. Curr Hypertens Rep. 2003;5(1):11–8.

    Article  PubMed  Google Scholar 

  24. Garty H, Palmer LG. Epithelial sodium channels: function, structure, and regulation. Physiol Rev. 1997;77(2):359–96.

    CAS  PubMed  Google Scholar 

  25. Rayner BL, Owen EP, King JA, Soule SG, Vreede H, Opie LH, et al. A new mutation, R563Q, of the beta subunit of the epithelial sodium channel associated with low-renin, low-aldosterone hypertension. J Hypertens. 2003;21(5):921–6.

    Article  CAS  PubMed  Google Scholar 

  26. Eide IK, Torjesen PA, Drolsum A, Babovic A, Lilledahl NP. Low-renin status in therapy-resistant hypertension: a clue to efficient treatment. J Hypertens. 2004;22(11):2217–26.

    Article  CAS  PubMed  Google Scholar 

  27. Spence JD. Physiologic tailoring of treatment in resistant hypertension. Curr Cardiol Rev. 2010;6(2):119–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Nishizaka MK, Zaman MA, Calhoun DA. Efficacy of low-dose spironolactone in subjects with resistant hypertension. Am J Hypertens. 2003;16(11 Pt 1):925–30.

    Article  CAS  PubMed  Google Scholar 

  29. Ori Y, Chagnac A, Korzets A, Zingerman B, Herman-Edelstein M, Bergman M, et al. Regression of left ventricular hypertrophy in patients with primary aldosteronism/low-renin hypertension on low-dose spironolactone. Nephrol Dial Transplant. 2013;28(7):1787–93.

    Article  CAS  PubMed  Google Scholar 

  30. Oxlund CS, Henriksen JE, Tarnow L, Schousboe K, Gram J, Jacobsen IA. Low dose spironolactone reduces blood pressure in patients with resistant hypertension and type 2 diabetes mellitus: a double blind randomized clinical trial. J Hypertens. 2013;31(10):2094–102.

    Article  CAS  PubMed  Google Scholar 

  31. Spence JD. Lessons from Africa: the importance of measuring plasma renin and aldosterone in resistant hypertension. Can J Cardiol. 2012;28(3):254–7.

    Article  CAS  PubMed  Google Scholar 

  32. Jones ESW, Owen EP, Rayner BL. The association of the R563Q genotype of the ENaC with phenotypic variation in Southern Africa. Am J Hypertens. 2012;25(12):1286–91.

    CAS  PubMed  Google Scholar 

  33. Strushkevich N, Gilep AA, Shen L, Arrowsmith CH, Edwards AM, Usanov SA, et al. Structural insights into aldosterone synthase substrate specificity and targeted inhibition. Mol Endocrinol. 2013;27(2):315–24.

    Article  CAS  PubMed  Google Scholar 

  34. Alvarez-Madrazo S, Mackenzie SM, Davies E, Fraser R, Lee W-K, Brown M, et al. Common polymorphisms in the CYP11B1 and CYP11B2 genes: evidence for a digenic influence on hypertension. Hypertension. 2013;61(1):232–9.

    Article  CAS  PubMed  Google Scholar 

  35. Fontana V, de Faria APC, Barbaro NR, Sabbatini AR, Modolo R, Lacchini R, et al. Modulation of aldosterone levels by −344 C/T CYP11B2 polymorphism and spironolactone use in resistant hypertension. J Am Soc Hypertens. 2014;8(3):146–51.

    Article  CAS  PubMed  Google Scholar 

  36. Ubaid-Girioli S, de Souza LA, Yugar-Toledo JC, Cláudio Martins L, Ferreira-Melo S, Rizzi Coelho O, et al. Aldosterone excess or escape: treating resistant hypertension. J Clin Hypertens. 2009;11(5):245–52.

    Article  CAS  Google Scholar 

  37. Zordoky BNM, El-Kadi AOS. Effect of cytochrome P450 polymorphism on arachidonic acid metabolism and their impact on cardiovascular diseases. Pharmacol Ther. 2010;125(3):446–63.

    Article  CAS  PubMed  Google Scholar 

  38. Laffer CL, Elijovich F, Eckert GJ, Tu W, Pratt JH, Brown NJ. Genetic variation in CYP4A11 and blood pressure response to mineralocorticoid receptor antagonism or ENaC inhibition: an exploratory pilot study in African Americans. J Am Soc Hypertens. 2014;8(7):475–80. A recent research evaluating the effect of variants in CYP4A11 on the effectiveness of spironolactone and amiloride.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Kumar N, Calhoun DA, Dudenbostel T. Management of patients with resistant hypertension: current treatment options. Integr Blood Press Control. 2013;6:139–51.

    PubMed Central  PubMed  Google Scholar 

  40. Vongpatanasin W. Resistant hypertension. JAMA. 2014;311(21):2216.

    Article  PubMed  Google Scholar 

  41. Pimenta E, Gaddam KK, Oparil S, Aban I, Husain S, Dell’Italia LJ, et al. Effects of dietary sodium reduction on blood pressure in subjects with resistant hypertension: results from a randomized trial. Hypertension. 2009;54(3):475–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Hall JE, Granger JP, do Carmo JM, da Silva AA, Dubinion J, George E, et al. Comprehensive physiology, vol. 2, no. 4. Hoboken: Wiley; 2012.

    Google Scholar 

  43. Armando I, Villar VAM, Jose PA. Genomics and pharmacogenomics of salt-sensitive hypertension. Curr Hypertens Rev. 2015;11(1):49–56.

    Article  CAS  PubMed  Google Scholar 

  44. Sanada H, Jones JE, Jose PA. Genetics of salt-sensitive hypertension. Curr Hypertens Rep. 2010;13(1):55–66.

    Article  Google Scholar 

  45. Cusi D, Barlassina C, Azzani T, Casari G, Citterio L, Devoto M, et al. Polymorphisms of alpha-adducin and salt sensitivity in patients with essential hypertension. Lancet (London, England). 1997;349(9062):1353–7.

    Article  CAS  Google Scholar 

  46. Kelly TN, Rice TK, Gu D, Hixson JE, Chen J, Liu D, et al. Novel genetic variants in the alpha-adducin and guanine nucleotide binding protein beta-polypeptide 3 genes and salt sensitivity of blood pressure. Am J Hypertens. 2009;22(9):985–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Schunkert H, Hense HW, Döring A, Riegger GA, Siffert W. Association between a polymorphism in the G protein beta3 subunit gene and lower renin and elevated diastolic blood pressure levels. Hypertension. 1998;32(3):510–3.

    Article  CAS  PubMed  Google Scholar 

  48. Turner ST, Schwartz GL, Chapman AB, Boerwinkle E. C825T polymorphism of the G protein 3-subunit and antihypertensive response to a thiazide diuretic. Hypertension. 2001;37(2):739–43.

    Article  CAS  PubMed  Google Scholar 

  49. Schelleman H, Stricker BHC, Verschuren WMM, de Boer A, Kroon AA, de Leeuw PW, et al. Interactions between five candidate genes and antihypertensive drug therapy on blood pressure. Pharmacogenom J. 2005;6(1):22–6.

    Article  Google Scholar 

  50. Y. Gong, C. W. Mcdonough, S. Padmanabhan, and J. A. Johnson, Handbook of pharmacogenomics and stratified medicine. Elsevier, 2014.

  51. Dahlberg J, Nilsson LO, von Wowern F, Melander O. Polymorphism in NEDD4L is associated with increased salt sensitivity, reduced levels of P-renin and increased levels of Nt-proANP. PLoS One. 2007;2(5):e432.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Svensson-Färbom P, Wahlstrand B, Almgren P, Dahlberg J, Fava C, Kjeldsen S, et al. A functional variant of the NEDD4L gene is associated with beneficial treatment response with β-blockers and diuretics in hypertensive patients. J Hypertens. 2011;29(2):388–95.

    Article  PubMed  Google Scholar 

  53. McDonough CW, Burbage SE, Duarte JD, Gong Y, Langaee TY, Turner ST, et al. Association of variants in NEDD4L with blood pressure response and adverse cardiovascular outcomes in hypertensive patients treated with thiazide diuretics. J Hypertens. 2013;31(4):698–704.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. J. C. Yugar-Toledo, J. F. V. Martin, J. E. Krieger, A. C. Pereira, C. Demacq, O. R. Coelho, E. Pimenta, D. A. Calhoun, and H. M. Júnior, “Gene variation in resistant hypertension: multilocus analysis of the angiotensin 1-converting enzyme, angiotensinogen, and endothelial nitric oxide synthase genes,” Jul. 2011.

  55. Sandrim VC, de Syllos RWC, Lisboa HRK, Tres GS, Tanus-Santos JE. Influence of eNOS haplotypes on the plasma nitric oxide products concentrations in hypertensive and type 2 diabetes mellitus patients. Nitric Oxide. 2007;16(3):348–55.

    Article  CAS  PubMed  Google Scholar 

  56. Giles TD, Sander GE, Nossaman BD, Kadowitz PJ. Impaired vasodilation in the pathogenesis of hypertension: focus on nitric oxide, endothelial-derived hyperpolarizing factors, and prostaglandins. J Clin Hypertens (Greenwich). 2012;14(4):198–205.

    Article  CAS  Google Scholar 

  57. Wilcox JN, Subramanian RR, Sundell CL, Tracey WR, Pollock JS, Harrison DG, et al. Expression of multiple isoforms of nitric oxide synthase in normal and atherosclerotic vessels. Arterioscler Thromb Vasc Biol. 1997;17(11):2479–88.

    Article  CAS  PubMed  Google Scholar 

  58. Ballinger SW, Patterson C, Yan C-N, Doan R, Burow DL, Young CG, et al. Hydrogen peroxide- and peroxynitrite-induced mitochondrial DNA damage and dysfunction in vascular endothelial and smooth muscle cells. Circ Res. 2000;86(9):960–6.

    Article  CAS  PubMed  Google Scholar 

  59. Oliveira-Paula GH, Lacchini R, Coeli-Lacchini FB, Junior HM, Tanus-Santos JE. Inducible nitric oxide synthase haplotype associated with hypertension and responsiveness to antihypertensive drug therapy. Gene. 2013;515(2):391–5.

    Article  CAS  PubMed  Google Scholar 

  60. Wang SS, Davis S, Cerhan JR, Hartge P, Severson RK, Cozen W, et al. Polymorphisms in oxidative stress genes and risk for non-Hodgkin lymphoma. Carcinogenesis. 2006;27(9):1828–34.

    Article  CAS  PubMed  Google Scholar 

  61. Kaise M, Miwa J, Suzuki N, Mishiro S, Ohta Y, Yamasaki T, et al. Inducible nitric oxide synthase gene promoter polymorphism is associated with increased gastric mRNA expression of inducible nitric oxide synthase and increased risk of gastric carcinoma. Eur J Gastroenterol Hepatol. 2007;19(2):139–45.

    Article  CAS  PubMed  Google Scholar 

  62. Fu L, Zhao Y, Lu J, Shi J, Li C, Liu H, et al. Functional single nucleotide polymorphism-1026C/A of inducible nitric oxide synthase gene with increased YY1-binding affinity is associated with hypertension in a Chinese Han population. J Hypertens. 2009;27(5):991–1000.

    Article  CAS  PubMed  Google Scholar 

  63. Li W, Liu H, Fu L, Li D, Zhao Y. Identification of Yin Yang 1-interacting partners at -1026C/A in the human iNOS promoter. Arch Biochem Biophys. 2010;498(2):119–26.

    Article  CAS  PubMed  Google Scholar 

  64. Brown KE, Dhaun N, Goddard J, Webb DJ. Potential therapeutic role of phosphodiesterase type 5 inhibition in hypertension and chronic kidney disease. Hypertension. 2014;63(1):5–11.

    Article  CAS  PubMed  Google Scholar 

  65. Oliver JJ, Melville VP, Webb DJ. Effect of regular phosphodiesterase type 5 inhibition in hypertension. Hypertension. 2006;48(4):622–7.

    Article  CAS  PubMed  Google Scholar 

  66. Oliver JJ, Hughes VEC, Dear JW, Webb DJ. Clinical potential of combined organic nitrate and phosphodiesterase type 5 inhibitor in treatment-resistant hypertension. Hypertension. 2010;56(1):62–7.

    Article  CAS  PubMed  Google Scholar 

  67. Safarinejad MR, Khoshdel A, Shekarchi B, Taghva A, Safarinejad S. Association of the T-786C, G894T and 4a/4b polymorphisms of the endothelial nitric oxide synthase gene with vasculogenic erectile dysfunction in Iranian subjects. BJU Int. 2011;107(12):1994–2001.

    Article  CAS  PubMed  Google Scholar 

  68. Sinici I, Güven EO, Serefoğlu E, Hayran M. T-786C polymorphism in promoter of eNOS gene as genetic risk factor in patients with erectile dysfunction in Turkish population. Urology. 2010;75(4):955–60.

    Article  PubMed  Google Scholar 

  69. H. Rosas-Vargas, R. M. Coral-Vazquez, R. Tapia, J. L. Borja, R. A. Salas, and F. Salamanca, “Glu298Asp endothelial nitric oxide synthase polymorphism is a risk factor for erectile dysfunction in the Mexican Mestizo population.,” J. Androl., vol. 25, no. 5, pp. 728–32, Jan.

  70. Lee Y-C, Wu W-J, Liu C-C, Wang C-J, Li W-M, Huang C-H, et al. The associations among eNOS G894T gene polymorphism, erectile dysfunction, and benign prostate hyperplasia-related lower urinary tract symptoms. J Sex Med. 2009;6(11):3158–65.

    Article  CAS  PubMed  Google Scholar 

  71. Metzger IF, Sertório JTC, Tanus-Santos JE. Modulation of nitric oxide formation by endothelial nitric oxide synthase gene haplotypes. Free Radic Biol Med. 2007;43(6):987–92.

    Article  CAS  PubMed  Google Scholar 

  72. Metzger IF, Ishizawa MH, Rios-Santos F, Carvalho WA, Tanus-Santos JE. Endothelial nitric oxide synthase gene haplotypes affect nitrite levels in black subjects. Pharmacogenom J. 2011;11(6):393–9.

    Article  CAS  Google Scholar 

  73. Metzger IF, Souza-Costa DC, Marroni AS, Nagassaki S, Desta Z, Flockhart DA, et al. Endothelial nitric oxide synthase gene haplotypes associated with circulating concentrations of nitric oxide products in healthy men. Pharmacogenet Genomics. 2005;15(8):565–70.

    Article  CAS  PubMed  Google Scholar 

  74. Souza-Costa DC, Belo VA, Silva PS, Metzger IF, Lanna CM, Machado MA, et al. eNOS haplotype associated with hypertension in obese children and adolescents. Int J Obes. 2010;35(3):387–92.

    Article  Google Scholar 

  75. Miyamoto Y, Saito Y, Nakayama M, Shimasaki Y, Yoshimura T, Yoshimura M, et al. Replication protein A1 reduces transcription of the endothelial nitric oxide synthase gene containing a -786TC mutation associated with coronary spastic angina. Hum Mol Genet. 2000;9(18):2629–37.

    Article  CAS  PubMed  Google Scholar 

  76. Quinaglia T, de Faria APC, Fontana V, Barbaro NR, Sabbatini AR, Sertório JT, et al. Acute cardiac and hemodynamic effects of sildenafil on resistant hypertension. Eur J Clin Pharmacol. 2013;69(12):2027–36.

    Article  CAS  PubMed  Google Scholar 

  77. Lynch AI, Irvin MR, Davis BR, Ford CE, Eckfeldt JH, Arnett DK. Genetic and adverse health outcome associations with treatment resistant hypertension in GenHAT. Int J Hypertens. 2013;2013:578578. A recent analysis from the Genetics of Hypertension Associated Treatment Study assessing the association of 78 candidate gene polymorphism with RHTN.

    Article  PubMed Central  PubMed  Google Scholar 

  78. D. Arnett, E. Boerwinkle, and B. Davis, “Pharmacogenetic approaches to hypertension therapy: design and rationale for the Genetics of Hypertension Associated Treatment (GenHAT) study,” …, 2002.

  79. B. Davis, J. Cutler, and D. Gordon, “Rationale and design for the antihypertensive and lipid lowering treatment to prevent heart attack trial (ALLHAT),” Am. J. …, 1996.

  80. Barbaro NR, Fontana V, Moreno H. Angiotensinogen variants among resistant hypertensive patients. Int J Hypertens. 2014;2014:424793.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Fontana V, McDonough CW, Gong Y, El Rouby NM, Sá ACC, Taylor KD, et al. Large-scale gene-centric analysis identifies polymorphisms for resistant hypertension. J Am Heart Assoc. 2014;3:6. An analysis from the INVEST-Genetic substudy assessing the association of approximately 50,000 SNPs in genes implicated in CV, metabolic and inflammatory processes with RHTN in 1,714 participants.

    Article  Google Scholar 

  82. Pepine CJ, Handberg EM, Cooper-DeHoff RM, Marks RG, Kowey P, Messerli FH, et al. A calcium antagonist vs. a non-calcium antagonist hypertension treatment strategy for patients with coronary artery disease. The International Verapamil-Trandolapril Study (INVEST): a randomized controlled trial. JAMA. 2003;290(21):2805–16.

    Article  CAS  PubMed  Google Scholar 

  83. Smith SM, Gong Y, Handberg E, Messerli FH, Bakris GL, Ahmed A, et al. Predictors and outcomes of resistant hypertension among patients with coronary artery disease and hypertension. J Hypertens. 2014;32(3):635–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. C. Merz and S. Kelsey, “The Women’s Ischemia Syndrome Evaluation (WISE) study: protocol design, methodology and feasibility report,” J. …, 1999.

  85. Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A. Nat Genet. 2009;41(6):677–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Ganesh SK, Tragante V, Guo W, Guo Y, Lanktree MB, Smith EN. Loci influencing blood pressure identified using a cardiovascular gene-centric array. Hum Mol Genet. 2013;22(8):1663–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449(7164):851–61.

    Article  CAS  PubMed  Google Scholar 

  88. Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56–65.

    Article  PubMed  Google Scholar 

  89. Krieger EM, Drager LF, Giorgi DMA, Krieger JE, Pereira AC, Barreto-Filho JAS, et al. Resistant hypertension optimal treatment trial: a randomized controlled trial. Clin Cardiol. 2014;37(1):1–6.

    Article  PubMed  Google Scholar 

  90. Gupta AK, Nasothimiou EG, Chang CL, Sever PS, Dahlöf B, Poulter NR. Baseline predictors of resistant hypertension in the Anglo-Scandinavian Cardiac Outcome Trial (ASCOT): a risk score to identify those at high-risk. J Hypertens. 2011;29(10):2004–13.

    Article  CAS  PubMed  Google Scholar 

  91. Sever PS, Dahlöf B, Poulter NR, Wedel H, Beevers G, Caulfield M, et al. Rationale, design, methods and baseline demography of participants of the Anglo-Scandinavian Cardiac Outcomes Trial. ASCOT investigators. J Hypertens. 2001;19(6):1139–47.

    Article  CAS  PubMed  Google Scholar 

  92. McCarthy JJ, McLeod HL, Ginsburg GS. Genomic medicine: a decade of successes, challenges, and opportunities. Sci Transl Med. 2013;5(189):189sr4.

    Article  PubMed  Google Scholar 

  93. Hankowski KE, Hamazaki T, Umezawa A, Terada N. Induced pluripotent stem cells as a next-generation biomedical interface. Lab Invest. 2011;91(7):972–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Zhu H, Lensch MW, Cahan P, Daley GQ. Investigating monogenic and complex diseases with pluripotent stem cells. Nat Rev Genet. 2011;12(4):266–75.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Cooper-DeHoff declares current grant funding from NIH, NIGMS U01 GM074492  and U01 GM092586; and NIH, NHGRI U01 HG007269. Dr. Rouby declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rhonda M. Cooper-DeHoff.

Additional information

This article is part of the Topical Collection on Resistant Hypertension

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Rouby, N., Cooper-DeHoff, R.M. Genetics of Resistant Hypertension: a Novel Pharmacogenomics Phenotype. Curr Hypertens Rep 17, 71 (2015). https://doi.org/10.1007/s11906-015-0583-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-015-0583-8

Keywords

Navigation