Skip to main content

Advertisement

Log in

The Impacts of Obesity on the Cardiovascular and Renal Systems: Cascade of Events and Therapeutic Approaches

  • Hypertension and Obesity (E Reisin, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

There is a neglected epidemic of both obesity and metabolic syndrome in industrialized and unindustrialized countries all over the globe. Both conditions are associated with a high incidence of other serious pathologies, such as cardiovascular and renal diseases. In this article, we review the potential underlying mechanisms by which obesity and metabolic syndrome promote hypertension, including changes in cardiovascular–renal physiology induced by leptin, the sympathetic nervous system, the renin–angiotensin–aldosterone system, insulin resistance, free fatty acids, natriuretic peptides, and proinflammatory cytokines. We also discuss the potential underlying mechanisms by which obesity promotes other cardiovascular and renal conditions, as well as available nonpharmacologic and pharmacologic approaches for treating obesity-induced hypertension. The findings presented herein suggest that adipocytes may be a key regulator of cardiovascular and renal function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Abelson P, Kennedy D. The obesity epidemic. Science. 2004;304(5676):1413. English.

    CAS  PubMed  Google Scholar 

  2. Flegal KM, Carroll MD, Ogden CL, Johnson CL. Prevalence and trends in obesity among US adults, 1999–2000. JAMA J Am Med Assoc. 2002;288(14):1723–7. English.

    Google Scholar 

  3. Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes. 2008;32(9):1431–7. English.

    CAS  Google Scholar 

  4. Paolisso G, Manzella D, Rizzo MR, Ragno E, Barbieri M, Varricchio G, et al. Elevated plasma fatty acid concentrations stimulate the cardiac autonomic nervous system in healthy subjects. Am J Clin Nutr. 2000;72(3):723–30. English.

    CAS  PubMed  Google Scholar 

  5. He Y, Jiang B, Wang J, Feng K, Chang Q, Fan L, et al. Prevalence of the metabolic syndrome and its relation to cardiovascular disease in an elderly Chinese population. J Am Coll Cardiol. 2006;47(8):1588–94. English.

    PubMed  Google Scholar 

  6. Bray GA. Risks of obesity. Endocrinol Metab Clin N Am. 2003;32:787–804.

    Google Scholar 

  7. Korda RJ, Liu B, Clements MS, Bauman AE, Jorm LR, Bambrick HR. Prospective cohort study of body mass index and the risk of hospitalisation: findings from 246 361 participants in the 45 and Up Study. Int J Obes. 2012 September.

  8. Morse SA, Zhang RB, Thakur V, Reisin E. Hypertension and the metabolic syndrome. Am J Med Sci. 2005;330(6):303–10. English.

    PubMed  Google Scholar 

  9. Must A, Spadano J, Coakley EH, Field AE, Colditz G, Dietz WH. The disease burden associated with overweight and obesity. JAMA J Am Med Assoc. 1999;282(16):1523–9. English.

    CAS  Google Scholar 

  10. Kissebah AH, Krakower GR. Regional adiposity and morbidity. Physiol Rev. 1994;74(4):761–811. English.

    CAS  PubMed  Google Scholar 

  11. Droyvold WB, Midthjell K, Nilsen TI, Holmen J. Change in body mass index and its impact on blood pressure: a prospective population study. Int J Obes (Lond). 2005;29(6):650–5. English.

    CAS  Google Scholar 

  12. Kotsis VSS, Bouldin M, Low A, Toumanidis S, Zakopoulos N. Impact of obesity on 24-h ambulatory blood pressure and hypertension. Hypertension. 2005;45:602–7.

    CAS  PubMed  Google Scholar 

  13. Mikhail N, Golub MS, Tuck ML. Obesity and hypertension. Prog Cardiovasc Dis. 1999;42(1):39–58. English.

    CAS  PubMed  Google Scholar 

  14. Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med. 1995;1(11):1155–61.

    CAS  PubMed  Google Scholar 

  15. Dunbar JC, Hu YG, Lu HQ. Intracerebroventricular leptin increases lumbar and renal sympathetic nerve activity and blood pressure in normal rats. Diabetes. 1997;46(12):2040–3. English.

    CAS  PubMed  Google Scholar 

  16. Shek EW, Brands MW, Hall JE. Chronic leptin infusion increases arterial pressure. Hypertension. 1998;31(1):409–14. English.

    CAS  PubMed  Google Scholar 

  17. Prior LJ, Eikelis N, Armitage JA, Davern PJ, Burke SL, Montani JP, et al. Exposure to a high-fat diet alters leptin sensitivity and elevates renal sympathetic nerve activity and arterial pressure in rabbits. Hypertension. 2010;55(4):862–8.

    CAS  PubMed  Google Scholar 

  18. Armitage JA, Burke SL, Prior LJ, Barzel B, Eikelis N, Lim K, et al. Rapid onset of renal sympathetic nerve activation in rabbits fed a high-fat diet. Hypertension. 2012;60(1):163–71. This animal study provides that the course of obesity-related hypertension is fast.

    CAS  PubMed  Google Scholar 

  19. Rahmouni K, Haynes WG, Morgan DA, Mark AL. Selective resistance to central neural administration of leptin in agouti obese mice. Hypertension. 2002;39(2):486–90. English.

    CAS  PubMed  Google Scholar 

  20. Marsh AJ, Fontes MAP, Killinger S, Pawlak DB, Polson JW, Dampney RAL. Cardiovascular responses evoked by leptin acting on neurons in the ventromedial and dorsomedial hypothalamus. Hypertension. 2003;42(4):488–93. English.

    CAS  PubMed  Google Scholar 

  21. Munzberg H, Flier JS, Bjorbaek C. Region-specific leptin resistance within the hypothalamus of diet-induced obese mice. Endocrinology. 2004;145(11):4880–9. English.

    PubMed  Google Scholar 

  22. Ozata M, Ozdemir IC, Licinio J. Human leptin deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin-mediated defects. J Clin Endocrinol Metab. 1999;84(10):3686–95. English.

    CAS  PubMed  Google Scholar 

  23. Shankar A, Xiao J. Positive relationship between plasma leptin level and hypertension. Hypertension. 2010;56(4):623–8. English.

    CAS  PubMed  Google Scholar 

  24. Lembo G, Vecchione C, Fratta L, Marino G, Trimarco V, DAmati G, et al. Leptin induces direct vasodilation through distinct endothelial mechanisms. Diabetes. 2000;49(2):293–7.

    CAS  PubMed  Google Scholar 

  25. Masuo K, Mikami H, Ogihara T, Tuck ML. Weight gain-induced blood pressure elevation. Hypertension. 2000;35(5):1135–40. English.

    CAS  PubMed  Google Scholar 

  26. Masuo K, Kawaguchi H, Mikami H, Ogihara T, Tuck ML. Serum uric acid and plasma norepinephrine concentrations predict subsequent weight gain and blood pressure elevation. Hypertension. 2003;42(4):474–80. English.

    CAS  PubMed  Google Scholar 

  27. Rahmouni K, Haynes WG, Morgan DA, Mark AL. Role of melanocortin-4 receptors in mediating renal sympathoactivation to leptin and insulin. J Neurosci. 2003;23(14):5998–6004. English.

    CAS  PubMed  Google Scholar 

  28. Greenfield JR, Miller JW, Keogh JM, Henning E, Satterwhite JH, Cameron GS, et al. Modulation of blood pressure by central melanocortinergic pathways. New Engl J Med. 2009;360(1):44–52. English.

    CAS  PubMed  Google Scholar 

  29. Rahmouni K, Morgan DA, Morgan GM, Liu XB, Sigmund CD, Mark AL, et al. Hypothalamic PI3K and MAPK differentially mediate regional sympathetic activation to insulin. J Clin Invest. 2004;114(5):652–8. English.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Reid IA. Interactions between Ang-Ii, sympathetic nervous-system, and baroreceptor reflexes in regulation of blood-pressure. Am J Physiol. 1992;262(6):E763–78. English.

    CAS  PubMed  Google Scholar 

  31. Schutte R, Huisman HW, Schutte AE, Malan NT. Leptin is independently associated with systolic blood pressure, pulse pressure and arterial compliance in hypertensive African women with increased adiposity: the POWIRS study. J Hum Hypertens. 2005;19(7):535–41.

    CAS  PubMed  Google Scholar 

  32. da Silva AA, do Carmo JM, Hall JE. Role of leptin and central nervous system melanocortins in obesity hypertension. Curr Opin Nephrol Hypertens. 2013;22(2):135–40.

    PubMed Central  PubMed  Google Scholar 

  33. Walker WG, Whelton PK, Saito H, Russell RP, Hermann J. Relation between blood pressure and renin, renin substrate, angiotensin II, aldosterone and urinary sodium and potassium in 574 ambulatory subjects. Hypertension. 1979;1(3):287–91.

    CAS  PubMed  Google Scholar 

  34. Caulfield M, Lavender P, Newell-Price J, Kamdar S, Farrall M, Clark AJ. Angiotensinogen in human essential hypertension. Hypertension. 1996;28(6):1123–5.

    CAS  PubMed  Google Scholar 

  35. Goodfriend TL, Kelley DE, Goodpaster BH, Winters SJ. Visceral obesity and insulin resistance are associated with plasma aldosterone levels in women. Obes Res. 1999;7(4):355–62. English.

    CAS  PubMed  Google Scholar 

  36. Goodfriend TL, Calhoun DA. Resistant hypertension, obesity, sleep apnea, and aldosterone—theory and therapy. Hypertension. 2004;43(3):518–24. English.

    CAS  PubMed  Google Scholar 

  37. Montani JP, Antic V, Yang Z, Dulloo A. Pathways from obesity to hypertension: from the perspective of a vicious triangle. Int J Obes. 2002;26:S28–38. English.

    CAS  Google Scholar 

  38. Hall JE, Henegar JR, Dwyer TM, Liu JK, da Silva AA, Kuo JJ, et al. Is obesity a major cause of chronic kidney disease? Adv Ren Replace Ther. 2004;11(1):41–54. English.

    PubMed  Google Scholar 

  39. Crandall DL, Herzlinger HE, Saunders BD, Armellino DC, Kral JG. Distribution of angiotensin II receptors in rat and human adipocytes. J Lipid Res. 1994;35(8):1378–85.

    CAS  PubMed  Google Scholar 

  40. Campbell DJ. Circulating and tissue angiotensin systems. J Clin Invest. 1987;79(1):1–6. English.

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Giacchetti G, Faloia E, Mariniello B, Sardu C, Gatti C, Camilloni MA, et al. Overexpression of the renin-angiotensin system in human visceral adipose tissue in normal and overweight subjects. Am J Hypertens. 2002;15(5):381–8. English.

    CAS  PubMed  Google Scholar 

  42. Massiera F, Bloch-Faure M, Ceiler D, Murakami K, Fukamizu A, Gasc JM, et al. Adipose angiotensinogen is involved in adipose tissue growth and blood pressure regulation. Faseb J. 2001;15(14):2727–9.

    CAS  PubMed  Google Scholar 

  43. Cassis LA, Police SB, Yiannikouris F, Thatcher SE. Local adipose tissue renin-angiotensin system. Curr Hypertens Rep. 2008;10(2):93–8. English.

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Darimont C, Vassaux G, Ailhaud G, Negrel R. Differentiation of preadipose cells—paracrine role of prostacyclin upon stimulation of adipose-cells by angiotensin-Ii. Endocrinology. 1994;135(5):2030–6. English.

    CAS  PubMed  Google Scholar 

  45. Engeli S, Bohnke J, Gorzelniak K, Janke J, Schling P, Bader M, et al. Weight loss and the renin-angiotensin-aldosterone system. Hypertension. 2005;45(3):356–62. English.

    CAS  PubMed  Google Scholar 

  46. Ehrhart-Bornstein M, Lamounier-Zepter V, Schraven A, Langenbach J, Willenberg HS, Barthel A, et al. Human adipocytes secrete mineralocorticoid-releasing factors. Proc Natl Acad Sci U S A. 2003;100(24):14211–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Colussi G, Catena C, Lapenna R, Nadalini E, Chiuch A, Sechi LA. Insulin resistance and hyperinsulinemia are related to plasma aldosterone levels in hypertensive patients. Diabetes Care. 2007;30(9):2349–54.

    CAS  PubMed  Google Scholar 

  48. Wada T, Ohshima S, Fujisawa E, Koya D, Tsuneki H, Sasaoka T. Aldosterone inhibits insulin-induced glucose uptake by degradation of insulin receptor substrate (IRS) 1 and IRS2 via a reactive oxygen species-mediated pathway in 3T3-L1 adipocytes. Endocrinology. 2009;150(4):1662–9.

    CAS  PubMed  Google Scholar 

  49. Bjorntorp P, Rosmond R. Neuroendocrine abnormalities in visceral obesity. Int J Obes. 2000;24:S80–5. English.

    CAS  Google Scholar 

  50. Rocchini AP, Key J, Bondie D, Chico R, Moorehead C, Katch V, et al. The effect of weight-loss on the sensitivity of blood-pressure to sodium in obese adolescents. New Engl J Med. 1989;321(9):580–5. English.

    CAS  PubMed  Google Scholar 

  51. Rocchini AP, Yang JQ, Gokee A. Hypertension and insulin resistance are not directly related in obese dogs. Hypertension. 2004;43(5):1011–6.

    CAS  PubMed  Google Scholar 

  52. Hall JE, Brands MW, Zappe DH, Dixon WN, Mizelle HL, Reinhart GA, et al. Hemodynamic and renal responses to chronic hyperinsulinemia in obese, insulin-resistant dogs. Hypertension. 1995;25(5):994–1002. English.

    CAS  PubMed  Google Scholar 

  53. Sawicki PT, Baba T, Berger M, Starke A. Normal blood pressure in patients with insulinoma despite hyperinsulinemia and insulin resistance. J Am Soc Nephrol. 1992;3(4 Suppl):S64–8.

    CAS  PubMed  Google Scholar 

  54. Liu J, da Silva AA, Tallam LS, Hall JE. Chronic central nervous system hyperinsulinemia and regulation of arterial pressure and food intake. J Hypertens. 2006;24(7):1391–5.

    CAS  PubMed  Google Scholar 

  55. Laakso M, Edelman SV, Brechtel G, Baron AD. Decreased effect of insulin to stimulate skeletal-muscle blood-flow in obese man—a novel mechanism for insulin resistance. J Clin Invest. 1990;85(6):1844–52. English.

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Walsh MF, Ali SS, Sowers JR. Vascular insulin/insulin-like growth factor-1 resistance in female obese Zucker rats. Metabolism. 2001;50(5):607–12. English.

    CAS  PubMed  Google Scholar 

  57. Liao J, Soltani Z, Ebenezer P, Isidro-Carrion AA, Zhang RB, Asghar A, et al. Tesaglitazar, a dual peroxisome proliferator-activated receptor agonist (PPAR alpha/gamma), improves metabolic abnormalities and reduces renal injury in obese Zucker rats. Nephron Exp Nephrol. 2010;114(2):E61–8. English.

    CAS  PubMed  Google Scholar 

  58. Nolan JJ, Ludvik B, Beerdsen P, Joyce M, Olefsky J. Improvement in glucose-tolerance and insulin-resistance in obese subjects treated with troglitazone. New Engl J Med. 1994;331(18):1188–93. English.

    CAS  PubMed  Google Scholar 

  59. Grekin RJ, Dumont CJ, Vollmer AP, Watts SW, Webb RC. Mechanisms in the pressor effects of hepatic portal venous fatty acid infusion. Am J Physiol Reg I. 1997;273(1):R324–30. English.

    CAS  Google Scholar 

  60. Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes. 2000;49(11):1939–45. English.

    CAS  PubMed  Google Scholar 

  61. Egan BM, Hennes MM, Stepniakowski KT, O’Shaughnessy IM, Kissebah AH, Goodfriend TL. Obesity hypertension is related more to insulin’s fatty acid than glucose action. Hypertension. 1996;27(3 Pt 2):723–8.

    CAS  PubMed  Google Scholar 

  62. Stepniakowski KT, Goodfriend TL, Egan BM. Fatty acids enhance vascular alpha-adrenergic sensitivity. Hypertension. 1995;25(4 Pt 2):774–8.

    CAS  PubMed  Google Scholar 

  63. Boden G, She PX, Mozzoli M, Cheung P, Gumireddy K, Reddy P, et al. Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kappa B pathway in rat liver. Diabetes. 2005;54(12):3458–65. English.

    CAS  PubMed  Google Scholar 

  64. Schnabel R, Larson MG, Dupuis J, Lunetta KL, Lipinska I, Meigs JB, et al. Relations of inflammatory biomarkers and common genetic variants with arterial stiffness and wave reflection. Hypertension. 2008;51(6):1651–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Sprague AH, Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol. 2009;78(6):539–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Dessi-Fulgheri P, Sarzani R, Tamburrini P, Moraca A, Espinosa E, Cola G, et al. Plasma atrial natriuretic peptide and natriuretic peptide receptor gene expression in adipose tissue of normotensive and hypertensive obese patients. J Hypertens. 1997;15(12):1695–9. English.

    CAS  PubMed  Google Scholar 

  67. Sarzani R, Salvi F, Dessi-Fulgheri P, Rappelli A. Renin-angiotensin system, natriuretic peptides, obesity, metabolic syndrome, and hypertension: an integrated view in humans. J Hypertens. 2008;26(5):831–43. English.

    CAS  PubMed  Google Scholar 

  68. Wang TJ, Larson MG, Levy D, Benjamin EJ, Leip EP, Wilson PWF, et al. Impact of obesity on plasma natriuretic peptide levels. Circulation. 2004;109(5):594–600. English.

    CAS  PubMed  Google Scholar 

  69. Dessi-Fulgheri P, Sarzani R, Rappelli A. The natriuretic peptide system in obesity-related hypertension: new pathophysiological aspects. J Nephrol. 1998;11(6):296–9. English.

    CAS  PubMed  Google Scholar 

  70. Sengenes C, Berlan M, De Glisezinski I, Lafontan M, Galitzky J. Natriuretic peptides: a new lipolytic pathway in human adipocytes. Faseb J. 2000;14(10):1345–51. English.

    CAS  PubMed  Google Scholar 

  71. Chatterjee TK, Stoll LL, Denning GM, Harrelson A, Blomkalns AL, Idelman G, et al. Proinflammatory phenotype of perivascular adipocytes: influence of high-fat feeding. Circ Res. 2009;104(4):541–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante Jr AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–808.

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Lohn M, Dubrovska G, Lauterbach B, Luft FC, Gollasch M, Sharma AM. Periadventitial fat releases a vascular relaxing factor. Faseb J. 2002;16(9):1057–63.

    PubMed  Google Scholar 

  74. Soltis EE, Cassis LA. Influence of perivascular adipose tissue on rat aortic smooth muscle responsiveness. Clin Exp Hypertens A Theory Pract. 1991;13(2):277–96.

    CAS  Google Scholar 

  75. Gao YJ, Zeng ZH, Teoh K, Sharma AM, Abouzahr L, Cybulsky I, et al. Perivascular adipose tissue modulates vascular function in the human internal thoracic artery. J Thorac Cardiovasc Surg. 2005;130(4):1130–6.

    PubMed  Google Scholar 

  76. Greenstein AS, Khavandi K, Withers SB, Sonoyama K, Clancy O, Jeziorska M, et al. Local inflammation and hypoxia abolish the protective anticontractile properties of perivascular fat in obese patients. Circulation. 2009;119(12):1661–70.

    CAS  PubMed  Google Scholar 

  77. Pou KM, Massaro JM, Hoffmann U, Vasan RS, Maurovich-Horvat P, Larson MG, et al. Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: the Framingham Heart Study. Circulation. 2007;116(11):1234–41.

    CAS  PubMed  Google Scholar 

  78. Faber DR, van der Graaf Y, Westerink J, Visseren FL. Increased visceral adipose tissue mass is associated with increased C-reactive protein in patients with manifest vascular diseases. Atherosclerosis. 2010;212(1):274–80.

    CAS  PubMed  Google Scholar 

  79. Wassmann S, Stumpf M, Strehlow K, Schmid A, Schieffer B, Bohm M, et al. Interleukin-6 induces oxidative stress and endothelial dysfunction by overexpression of the angiotensin II type 1 receptor. Circ Res. 2004;94(4):534–41. English.

    CAS  PubMed  Google Scholar 

  80. Nishimatsu H, Suzuki E, Takeda R, Takahashi M, Oba S, Kimura K, et al. Blockade of endogenous proinflammatory cytokines ameliorates endothelial dysfunction in obese Zucker rats. Hypertens Res. 2008;31(4):737–43. English.

    CAS  PubMed  Google Scholar 

  81. Zhang R, Reisin E. Obesity-hypertension: the effects on cardiovascular and renal systems. Am J Hypertens. 2000;13(12):1308–14.

    CAS  PubMed  Google Scholar 

  82. Milani RV, Lavie CJ, Mehra MR, Ventura HO, Kurtz JD, Messerli FH. Left ventricular geometry and survival in patients with normal left ventricular ejection fraction. Am J Cardiol. 2006;97(7):959–63.

    PubMed  Google Scholar 

  83. Reisin E, Hutchinson HG, editors. Obesity-hypertension: effects on the cardiovascular and renal system—the therapeutic approach. Philadelphia: W.B. Saunders; 1999.

    Google Scholar 

  84. Messerli FH, Christie B, Decarvalho JGR, Aristimuno GG, Suarez DH, Dreslinski GR, et al. Obesity and essential-hypertension—hemodynamics, intravascular volume, sodium-excretion, and plasma-renin activity. Arch Intern Med. 1981;141(1):81–5. English.

    CAS  PubMed  Google Scholar 

  85. Alexander JK, MA. A. Hemodynamic alterations with obesity in man Alpert MA, JK A, editors. New York: Futura Publishing Company; 1998.

  86. Ku CS, Lin SL, Wang DJ, Chang SK, Lee WJ. Left-ventricular filling in young normotensive obese adults. Am J Cardiol. 1994;73(8):613–5. English.

    CAS  PubMed  Google Scholar 

  87. Messerli FH, Sundgaardriise K, Reisin ED, Dreslinski GR, Ventura HO, Oigman W, et al. Dimorphic cardiac adaptation to obesity and arterial-hypertension. Ann Intern Med. 1983;99(6):757–61. English.

    CAS  PubMed  Google Scholar 

  88. Lip GYH, Gammage MD, Beevers DG. Hypertension and the heart. Brit Med Bull. 1994;50(2):299–321. English.

    CAS  PubMed  Google Scholar 

  89. Kenchaiah S, Evans JC, Levy D, Wilson PWF, Benjamin EJ, Larson MG, et al. Obesity and the risk of heart failure. New Engl J Med. 2002;347(5):305–13. English.

    PubMed  Google Scholar 

  90. Mohamed-Ali V, Goodrick S, Bulmer K, Holly JM, Yudkin JS, Coppack SW. Production of soluble tumor necrosis factor receptors by human subcutaneous adipose tissue in vivo. Am J Physiol. 1999;277(6 Pt 1):E971–5.

    CAS  PubMed  Google Scholar 

  91. Peterson LR, Waggoner AD, Schechtman KB, Meyer T, Gropler RJ, Barzilai B, et al. Alterations in left ventricular structure and function in young healthy obese women: assessment by echocardiography and tissue Doppler imaging. J Am Coll Cardiol. 2004;43(8):1399–404.

    PubMed  Google Scholar 

  92. Artham SM, Lavie CJ, Patel HM, Ventura HO. Impact of obesity on the risk of heart failure and its prognosis. J Cardiometab Syndr. 2008;3(3):155–61.

    PubMed  Google Scholar 

  93. Curtis JP, Selter JG, Wang Y, Rathore SS, Jovin IS, Jadbabaie F, et al. The obesity paradox: body mass index and outcomes in patients with heart failure. Arch Intern Med. 2005;165(1):55–61.

    PubMed  Google Scholar 

  94. Casas-Vara A, Santolaria F, Fernandez-Bereciartua A, Gonzalez-Reimers E, Garcia-Ochoa A, Martinez-Riera A. The obesity paradox in elderly patients with heart failure: analysis of nutritional status. Nutrition. 2012;28(6):616–22.

    PubMed  Google Scholar 

  95. Anker SD, Ponikowski P, Varney S, Chua TP, Clark AL, Webb-Peploe KM, et al. Wasting as independent risk factor for mortality in chronic heart failure. Lancet. 1997;349(9058):1050–3. English.

    CAS  PubMed  Google Scholar 

  96. Montani JP, Carroll JF, Dwyer TM, Antic V, Yang Z, Dulloo AG. Ectopic fat storage in heart, blood vessels and kidneys in the pathogenesis of cardiovascular diseases. Int J Obes. 2004;28:S58–65. English.

    CAS  Google Scholar 

  97. Morabito D, Vallotton MB, Lang U. Obesity is associated with impaired ventricular protein kinase C-MAP kinase signaling and altered ANP mRNA expression in the heart of adult Zucker rats. J Invest Med. 2001;49(4):310–8. English.

    CAS  Google Scholar 

  98. Cheyne J. A case of apoplexy in which the fleshy part of the heart was converted into fat. Dublin Hosp Rep. 1818;2:216–23.

    Google Scholar 

  99. Carpenter HM. Myocardial fat infiltration. Am Heart J. 1962;63:491–6.

    CAS  PubMed  Google Scholar 

  100. Lugo M, Putong PB. Metaplasia—an overview. Arch Pathol Lab Med. 1984;108(3):185–9. English.

    CAS  PubMed  Google Scholar 

  101. Unger RH, Zhou YT, Orci L. Regulation of fatty acid homeostasis in cells: novel role of leptin. Proc Natl Acad Sci U S A. 1999;96(5):2327–32.

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Zhou YT, Grayburn P, Karim A, Shimabukuro M, Higa M, Baetens D, et al. Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci U S A. 2000;97(4):1784–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Sharma S, Adrogue JV, Golfman L, Uray I, Lemm J, Youker K, et al. Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. Faseb J. 2004;18(14):1692–700.

    CAS  PubMed  Google Scholar 

  104. McGavock JM, Lingvay I, Zib I, Tillery T, Salas N, Unger R, et al. Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Circulation. 2007;116(10):1170–5.

    PubMed  Google Scholar 

  105. Marfella R, Di Filippo C, Portoghese M, Barbieri M, Ferraraccio F, Siniscalchi M, et al. Myocardial lipid accumulation in patients with pressure-overloaded heart and metabolic syndrome. J Lipid Res. 2009;50(11):2314–23.

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Lakka HM, Lakka TA, Tuomilehto J, Salonen JT. Abdominal obesity is associated with increased risk of acute coronary events in men. Eur Heart J. 2002;23(9):706–13. English.

    PubMed  Google Scholar 

  107. Berenson GS, Srinivasan SR, Bao WH, Newman WP, Tracy RE, Wattigney WA, et al. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. New Engl J Med. 1998;338(23):1650–6. English.

    CAS  PubMed  Google Scholar 

  108. Beltowski J. Leptin and atherosclerosis. Atherosclerosis. 2006;189(1):47–60.

    CAS  PubMed  Google Scholar 

  109. Kang SM, Kwon HM, Hong BK, Kim D, Kim IJ, Choi EY, et al. Expression of leptin receptor (Ob-R) in human atherosclerotic lesions: potential role in intimal neovascularization. Yonsei Med J. 2000;41(1):68–75.

    CAS  PubMed  Google Scholar 

  110. Rogacev KS, Ulrich C, Blomer L, Hornof F, Oster K, Ziegelin M, et al. Monocyte heterogeneity in obesity and subclinical atherosclerosis. Eur Heart J. 2010;31(3):369–76.

    CAS  PubMed  Google Scholar 

  111. Nordestgaard BG, Palmer TM, Benn M, Zacho J, Tybaerg-Hansen A, Smith GD, et al. The effect of elevated body mass index on ischemic heart disease risk: causal estimates from a Mendelian randomisation approach. Plos Med. 2012 May;9(5). English. This study shows the causal association between obesity and ischemic heart disease.

  112. Bagby SP. Obesity-initiated metabolic syndrome and the kidney: a recipe for chronic kidney disease? J Am Soc Nephrol. 2004;15:2775–91.

    PubMed  Google Scholar 

  113. Chen J, Muntner P, Hamm LL, Jones DW, Batuman V, Fonseca V, et al. The metabolic syndrome and chronic kidney disease in US adults. Ann Intern Med. 2004;140(3):167–74. English.

    PubMed  Google Scholar 

  114. US Renal Data System. USRDS 2005 Annual Data Report: Atlas of End-Stage Renal Disease in the United States. In: National Institute of Diabetes and Digestive and Kidney Diseases NIoH, editor. Bethesda 2005.

  115. Kramer H. Obesity and chronic kidney disease. Contrib Nephrol. 2006;151:1–18. English.

    PubMed  Google Scholar 

  116. Gelber RP, Kurth T, Kausz AT, Manson JE, Buring JE, Levey AS, et al. Association between body mass index and CKD in apparently healthy men. Am J Kidney Dis. 2005;46(5):871–80. English.

    PubMed  Google Scholar 

  117. Fox CS, Larson MG, Leip EP, Culleton B, Wilson PWF, Levy D. Predictors of new-onset kidney disease in a community-based population. JAMA. 2004;291(7):844–50. English.

    CAS  PubMed  Google Scholar 

  118. Hall JE, Crook ED, Jones DW, Wofford MR, Dubbert PM. Mechanisms of obesity-associated cardiovascular and renal disease. Am J Med Sci. 2002;324(3):127–37. English.

    PubMed  Google Scholar 

  119. Reisin E, Messerli FG, Ventura HO, Frohlich ED. Renal haemodynamic studies in obesity hypertension. J Hypertens. 1987;5(4):397–400.

    CAS  PubMed  Google Scholar 

  120. Aros C, Remuzzi G. The renin-angiotensin system in progression, remission and regression of chronic nephropathies. J Hypertens Suppl. 2002;20(3):S45–53.

    CAS  PubMed  Google Scholar 

  121. Yoshioka T, Rennke HG, Salant DJ, Deen WM, Ichikawa I. Role of abnormally high transmural pressure in the permselectivity defect of glomerular capillary wall: a study in early passive Heymann nephritis. Circ Res. 1987;61(4):531–8.

    CAS  PubMed  Google Scholar 

  122. Schieppati A, Remuzzi G. The future of renoprotection: frustration and promises. Kidney Int. 2003;64(6):1947–55. English.

    CAS  PubMed  Google Scholar 

  123. de Paula RB, da Silva AA, Hall JE. Aldosterone antagonism attenuates obesity-induced hypertension and glomerular hyperfiltration. Hypertension. 2004;43(1):41–7. English.

    PubMed  Google Scholar 

  124. Hall JE. The kidney, hypertension, and obesity. Hypertension. 2003;41(3):625–33. English.

    PubMed  Google Scholar 

  125. Shibata S, Nagase M, Yoshida S, Kawachi H, Fujita T. Podocyte as the target for aldosterone: roles of oxidative stress and Sgk1. Hypertension. 2007;49(2):355–64.

    CAS  PubMed  Google Scholar 

  126. Chen C, Liang W, Jia J, van Goor H, Singhal PC, Ding G. Aldosterone induces apoptosis in rat podocytes: role of PI3-K/Akt and p38MAPK signaling pathways. Nephron Exp Nephrol. 2009;113(1):e26–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Wolf G, Ziyadeh FN. Leptin and renal fibrosis. Contrib Nephrol. 2006;151:175–83. English.

    PubMed  Google Scholar 

  128. Wolf G, Hamann A, Han DC, Helmchen U, Thaiss F, Ziyadeh FN, et al. Leptin stimulates proliferation and TGF-beta expression in renal glomerular endothelial cells: potential role in glomerulosclerosis. Kidney Int. 1999;56(3):860–72. English.

    CAS  PubMed  Google Scholar 

  129. Zhang XL, Topley N, Ito T, Phillips A. Interleukin-6 regulation of transforming growth factor (TGF)-beta receptor compartmentalization and turnover enhances TGF-beta1 signaling. J Biol Chem. 2005;280(13):12239–45.

    CAS  PubMed  Google Scholar 

  130. Takano Y, Yamauchi K, Hayakawa K, Hiramatsu N, Kasai A, Okamura M, et al. Transcriptional suppression of nephrin in podocytes by macrophages: roles of inflammatory cytokines and involvement of the PI3K/Akt pathway. FEBS Lett. 2007;581(3):421–6.

    CAS  PubMed  Google Scholar 

  131. Ikezumi Y, Suzuki T, Karasawa T, Kawachi H, Nikolic-Paterson DJ, Uchiyama M. Activated macrophages down-regulate podocyte nephrin and podocin expression via stress-activated protein kinases. Biochem Biophys Res Commun. 2008;376(4):706–11.

    CAS  PubMed  Google Scholar 

  132. Jiang T, Wang Z, Proctor G, Moskowitz S, Liebman SE, Rogers T, et al. Diet-induced obesity in C57BL/6J mice causes increased renal lipid accumulation and glomerulosclerosis via a sterol regulatory element-binding protein-1c-dependent pathway. J Biol Chem. 2005;280(37):32317–25.

    CAS  PubMed  Google Scholar 

  133. Coimbra TM, Janssen U, Grone HJ, Ostendorf T, Kunter U, Schmidt H, et al. Early events leading to renal injury in obese Zucker (fatty) rats with type II diabetes. Kidney Int. 2000;57(1):167–82. English.

    CAS  PubMed  Google Scholar 

  134. Cases A, Coll E. Dyslipidemia and the progression of renal disease in chronic renal failure patients. Kidney Int Suppl. 2005;99:S87–93. English.

    CAS  PubMed  Google Scholar 

  135. Keane WF. The role of lipids in renal disease: future challenges. Kidney Int. 2000;57:S27–31. English.

    Google Scholar 

  136. Pi-Sunyer FX. NHLBI obesity education initiative expert panel on the identification, evaluation, and treatment of overweight and obesity in adults—the evidence report. Obes Res. 1998;6:51s–209s. English.

    Google Scholar 

  137. Redon J, Cifkova R, Laurent S, Nilsson P, Narkiewicz K, Erdine S, et al. The metabolic syndrome in hypertension: European society of hypertension position statement. J Hypertens. 2008;26(10):1891–900. English.

    CAS  PubMed  Google Scholar 

  138. Reisin E, Abel R, Modan M, Silverberg DS, Eliahou HE, Modan B. Effect of weight-loss without salt restriction on reduction of blood-pressure in overweight hypertensive patients. New Engl J Med. 1978;298(1):1–6. English.

    CAS  PubMed  Google Scholar 

  139. Reisin E, Frohlich ED, Messerli FH, Dreslinski GR, Dunn FG, Jones MM, et al. Cardiovascular changes after weight-reduction in obesity hypertension. Ann Intern Med. 1983;98(3):315–9. English.

    CAS  PubMed  Google Scholar 

  140. Neter JE, Stam BE, Kok FJ, Grobbee DE, Geleijnse JM. Influence of weight reduction on blood pressure—a meta-analysis of randomized controlled trials. Hypertension. 2003;42(5):878–84. English.

    CAS  PubMed  Google Scholar 

  141. Tuck ML, Sowers J, Dornfeld L, Kledzik G, Maxwell M. The effect of weight-reduction on blood-pressure, plasma-renin activity, and plasma-aldosterone levels in obese patients. New Engl J Med. 1981;304(16):930–3. English.

    CAS  PubMed  Google Scholar 

  142. Aucott L, Poobalan A, Smith WCS, Avenell A, Jung R, Broom J. Effects of weight loss in overweight/obese individuals and long-term hypertension outcomes—a systematic review. Hypertension. 2005;45(6):1035–41. English.

    CAS  PubMed  Google Scholar 

  143. Jones DW, Miller ME, Wofford MR, Anderson DC, Cameron ME, Willoughby DL, et al. The effect of weight loss intervention on antihypertensive medication requirements in the Hypertension Optimal Treatment (HOT) study. Am J Hypertens. 1999;12(12):1175–80. English.

    CAS  PubMed  Google Scholar 

  144. Freedman MR, King J, Kennedy E. Popular diets: a scientific review—executive summary. Obes Res. 2001;9:1S–40S. English.

    CAS  PubMed  Google Scholar 

  145. Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, et al. A clinical trial of the effects of dietary patterns on blood pressure. New Engl J Med. 1997;336(16):1117–24. English.

    CAS  PubMed  Google Scholar 

  146. Whelton SP, Chin A, Xin X, He J. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med. 2002;136(7):493–503. English.

    PubMed  Google Scholar 

  147. Hinderliter A, Sherwood A, Gullette ECD, Babyak M, Waugh R, Georgiades A, et al. Reduction of left ventricular hypertrophy after exercise and weight loss in overweight patients with mild hypertension. Arch Intern Med. 2002;162(12):1333–9. English.

    PubMed  Google Scholar 

  148. Fleischmann EH, Friedrich A, Danzer E, Gallert K, Walter H, Schmieder RE. Intensive training of patients with hypertension is effective in modifying lifestyle risk factors. J Hum Hypertens. 2004;18(2):127–31. English.

    CAS  PubMed  Google Scholar 

  149. Sjostrom L, Narbro K, Sjostrom D, Karason K, Larsson B, Wedel H, et al. Effects of bariatric surgery on mortality in Swedish obese subjects. New Engl J Med. 2007;357(8):741–52. English.

    PubMed  Google Scholar 

  150. Klatsky AL, Friedman GD, Siegelaub AB, Gerard MJ. Alcohol consumption and blood-pressure—Kaiser-Permanente Multiphasic Health Examination Data. New Engl J Med. 1977;296(21):1194–200. English.

    CAS  PubMed  Google Scholar 

  151. Xin X, He J, Frontini MG, Ogden LG, Motsamai OI, Whelton PK. Effects of alcohol reduction on blood pressure—a meta-analysis of randomized controlled trials. Hypertension. 2001;38(5):1112–7. English.

    CAS  PubMed  Google Scholar 

  152. Okubo Y, Miyamoto T, Suwazono Y, Kobayashi E, Nogawa K. Alcohol consumption and blood pressure in Japanese men. Alcohol. 2001;23(3):149–56. English.

    CAS  PubMed  Google Scholar 

  153. Reisin E, Tuck ML. Obesity-associated hypertension: hypothesized link between etiology and selection of therapy. Blood Press Monit. 1999;4 Suppl 1:S23–6.

    PubMed  Google Scholar 

  154. Reisin E, Weir MR, Falkner B, Hutchinson HG, Anzalone DA, Tuck ML. Lisinopril versus hydrochlorothiazide in obese hypertensive patients—a multicenter placebo-controlled trial. Hypertension. 1997;30(1):140–5. English.

    CAS  PubMed  Google Scholar 

  155. Bakris G, Molitch M, Hewkin A, Kipnes M, Sarafidis P, Fakouhi K, et al. Differences in glucose tolerance between fixed-dose anti hypertensive drug combinations in people with metabolic syndrome. Diabetes Care. 2006;29(12):2592–7. English.

    CAS  PubMed  Google Scholar 

  156. van der Zijl NJ, Moors CCM, Goossens GH, Hermans MMH, Blaak EE, Diamant M. Valsartan improves beta-cell function and insulin sensitivity in subjects with impaired glucose metabolism a randomized controlled trial. Diabetes Care. 2011;34(4):845–51. English. This study shows the importance effect of RAAS blockers on insulin secretion/sensitivity.

    PubMed Central  PubMed  Google Scholar 

  157. Khan BV, Sola S, Lauten WB, Natarajan R, Hooper WC, Menon RG, et al. Quinapril, an ACE inhibitor, reduces markers of oxidative stress in the metabolic syndrome. Diabetes Care. 2004;27(7):1712–5. English.

    CAS  PubMed  Google Scholar 

  158. Jansen PM, Danser JA, Spiering W, van den Meiracker AH. Drug mechanisms to help in managing resistant hypertension in obesity. Curr Hypertens Rep. 2010;12(4):220–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  159. Sharma AM, Pischon T, Hardt S, Kunz I, Luft FC. Beta-adrenergic receptor blockers and weight gain—a systematic analysis. Hypertension. 2001;37(2):250–4. English.

    CAS  PubMed  Google Scholar 

  160. Jacob S, Rett K, Henriksen EJ. Antihypertensive therapy and insulin sensitivity: do we have to redefine the role of beta-blocking agents? Am J Hypertens. 1998;11(10):1258–65. English.

    CAS  PubMed  Google Scholar 

  161. Fogari R, Preti P, Zoppi A, Lazzari P, Corradi L, Fogari E, et al. Effects of amlodipine-atorvastatin combination on inflammation markers and insulin sensitivity in normocholesterolemic obese hypertensive patients. Eur J Clin Pharmacol. 2006;62(10):817–22. English.

    CAS  PubMed  Google Scholar 

  162. Ferrier KE, Muhlmann MH, Baguet JP, Cameron JD, Jennings GL, Dart AM, et al. Intensive cholesterol reduction lowers blood pressure and large artery stiffness in isolated systolic hypertension. J Am Coll Cardiol. 2002;39(6):1020–5. English.

    CAS  PubMed  Google Scholar 

  163. Borghi C, Dormi A, Veronesi M, Immordino V, Ambrosioni E. Use of lipid-lowering drugs and blood pressure control in patients with arterial hypertension. J Clin Hypertens (Greenwich). 2002;4(4):277–85. English.

    Google Scholar 

  164. James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 Evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2013 Dec 18.

  165. Reisin E, Graves JW, Yamal JM, Barzilay JI, Pressel SL, Einhorn PT, et al. Blood pressure control and cardiovascular outcomes in normal-weight, overweight, and obese hypertensive patients treated with three different antihypertensives in ALLHAT. Journal of hypertension. 2014 May 16. Given the lack of enough clinical trials assessing antihypertensive therapy in obese patients, this post hoc analysis of large-scale study like ALLHAT is a useful approach. This study supports that obese hypertensive patients need more attention in terms of therapeutic approach and numerosity of antihypertensive medications.

Download references

Acknowledgments

We thank Majid Iranmanesh for assistance with the figures.

Compliance with Ethics Guidelines

Conflict of Interest

Zohreh Soltani, Vaughn Washco, Stephen Morse, and Efrain Reisin declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zohreh Soltani.

Additional information

This article is part of the Topical Collection on Hypertension and Obesity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani, Z., Washco, V., Morse, S. et al. The Impacts of Obesity on the Cardiovascular and Renal Systems: Cascade of Events and Therapeutic Approaches. Curr Hypertens Rep 17, 7 (2015). https://doi.org/10.1007/s11906-014-0520-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-014-0520-2

Keywords

Navigation